(19)
(11)EP 2 817 274 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.12.2019 Bulletin 2019/49

(21)Application number: 13708019.8

(22)Date of filing:  22.02.2013
(51)Int. Cl.: 
C04B 41/85  (2006.01)
F01N 3/022  (2006.01)
(86)International application number:
PCT/US2013/027228
(87)International publication number:
WO 2013/126634 (29.08.2013 Gazette  2013/35)

(54)

HONEYCOMB STRUCTURE COMPRISING A CEMENT SKIN COMPOSITION WITH CRYSTALLINE INORGANIC FIBROUS MATERIAL

WABENSTRUKTUR MIT EINER ZEMENTHAUTZUSAMMENSETZUNG MIT KRISTALLINEM ANORGANISCHEM FASERMATERIAL

STRUCTURE EN NID D'ABEILLES COMPORTANT UNE COMPOSITION DE PELLICULE DE CIMENT AYANT UNE MATIÈRE FIBREUSE INORGANIQUE CRISTALLINE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 24.02.2012 US 201261602883 P

(43)Date of publication of application:
31.12.2014 Bulletin 2015/01

(73)Proprietor: Corning Incorporated
Corning, New York 14831 (US)

(72)Inventors:
  • CHAPMAN, Thomas, Richard
    Painted Post, New York 14870 (US)
  • SARMA, Huthavahana, Kuchibhotla
    Painted Post, New York 14870 (US)
  • WIGHT, John, Forrest, Jr
    Corning, New York 14830 (US)

(74)Representative: Sturm, Christoph 
Quermann - Sturm - Weilnau Patentanwälte Partnerschaft mbB Unter den Eichen 5
65195 Wiesbaden
65195 Wiesbaden (DE)


(56)References cited: : 
EP-A1- 1 738 815
US-A1- 2004 238 158
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Background


    Field



    [0001] The present invention relates generally to honeycomb structures, and particularly to ceramic honeycomb particulate filters and substrates comprising an outer skin having a crystalline inorganic fibrous material.

    Technical Background



    [0002] Much interest has been directed towards the diesel engine due to its efficiency, durability and economical aspects. However, diesel emissions have come under attack both in the United States and Europe for their harmful effects on the environment and on humans. As such, stricter environmental regulations will require diesel engines to be held to the same standards as gasoline engines. Therefore, diesel engine manufacturers and emission-control companies are working to achieve a faster, cleaner diesel engine that meets the most stringent of requirements under all operating conditions with minimal cost to the consumer.

    [0003] Diesel particulate filters and substrates with large diameters cannot currently be manufactured to the tight dimensional requirements set by original equipment manufacturers (OEMs) and the supply chain due to unpredictable drying and firing shrinkage. Consequently, a coldset ceramic cement has been used to form the exterior skin of the cordierite monolith. The coldset ceramic cement is mixed and applied to a fired, contoured substrate and the wet skin is afterward allowed to dry either under ambient conditions or by convective or microwave drying at elevated temperatures. The dried part is then ready to receive a catalyst coating and any further downstream processing required.

    [0004] EP 1 738 815 A discloses a honeycomb body coated with a paste and silica-alumina fibers having average diameter 10 µm and average fiber length of 100 µm, present at 15.15 of the total weight of the inorganic solid components of the paste.

    SUMMARY



    [0005] A honeycomb body according to the present invention is defined in claim 1.

    [0006] A method of making a honeycomb structure according to the present invention is defined in claim 10.

    [0007] Additional features and advantages of the invention will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description which follows, the claims, as well as the appended drawings.

    [0008] It is to be understood that both the foregoing general description and the following detailed description present embodiments of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed. The accompanying drawings are included to provide a further understanding of the invention, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments of the invention, and together with the description serve to explain the principles and operations of the invention.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0009] 

    FIG. 1 is a perspective view of a honeycomb structure according an embodiment disclosed herein;

    FIG. 2 is an end view of the honeycomb body of FIG. 1;

    FIG. 3 is an SEM image of a crystalline inorganic fibrous material (wollastonite) that can be used in embodiments disclosed herein; and

    FIG. 4 is a plot of modulus of rupture versus fibrous material super addition (wt%) relative to inorganic filler material (wt%) according to embodiments disclosed herein.


    DETAILED DESCRIPTION



    [0010] Reference will now be made in detail to embodiments of the invention, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numeral will be used throughout the drawings to refer to the same or like parts.

    [0011] As used herein, a green material is an unfired material comprising a mixture of inorganic and/or organic materials. The green material may include various inorganic filler materials, inorganic and/or organic binder materials, and liquid vehicle. The green material may be dried to remove fluid content (e.g. water). Drying is often accomplished by allowing a part to sit exposed to the ambient atmosphere overnight, however, hot air, forced air, microwave or infrared radiation may be used to augment drying.

    [0012] As used herein, calcination refers to heating of a green material to a temperature less than 1000°C for a period sufficient to burn out organic materials contained within the material, for example, 600°C for about 3 hours.

    [0013] As used herein, a "super addition" refers to a weight percent of a component, such as, for example, an organic binder, liquid vehicle, additive or pore former, based upon and relative to 100 weight percent of the inorganic components of the mixture.

    [0014] Shown in FIGS. 1 and 2 is an exemplary honeycomb structure 10 according to one embodiment comprising honeycomb body 12. Honeycomb body 12 has a longitudinal axis 14 and a length L, and comprises a plurality of intersecting porous walls 16 that form mutually adjoining cells or channels 18 extending axially between opposing end faces 20, 22. Cell density can be between 100 and 900 cells per square inch. Typical cell wall thicknesses can range from about 0.025 mm to about 1.5 mm. As used herein, the term "honeycomb" is intended to include a generally honeycomb structure but is not strictly limited to a square structure. For example, hexagonal, octagonal, triangular, rectangular or any other suitable shape may be used. Typical pore sizes contained within the porous walls can be from 0.1 µm to about 100 µm, with cell wall porosity between about 15% and 75%, preferably between about 25% and 50%.

    [0015] Honeycomb body 12 may be formed from a ceramic material, such as cordierite (2MgO-2Al2O3-5SiO2). However, limited substitution of other constituents such as Fe (iron), Co (cobalt), Ni (nickel) and Mn (manganese) for Mg (magnesium), Ga (gallium) for Al (aluminum) and Ge (germanium) for silicon is acceptable. Also, the cordierite phase may include alkali metals, alkaline earth metals or rare earth metals. Honeycomb body 12 may in certain cases be made of other ceramic materials, such as silicon carbide, aluminum titanate gamma alumina and/or mullite, or combinations thereof.

    [0016] The honeycomb body can be formed according to any conventional process suitable for forming honeycomb monolithic bodies. For example, a plasticized ceramic forming batch composition can be shaped into a green body by any known conventional ceramic forming process, such as extrusion, injection molding, slip casting, centrifugal casting, pressure casting, dry pressing and the like. Typically, honeycomb structures are formed by an extrusion process where a ceramic material is extruded into a green form before the green form is fired to form the final ceramic structure. In an exemplary embodiment, the extrusion can be performed using a hydraulic ram extrusion press, a two stage de-airing single auger extruder or a twin screw mixer with a die assembly attached to the discharge end. The extruded material can be cut to create honeycomb structures such as filter bodies shaped and sized to meet the needs of engine manufacturers. These extruded green bodies can be any size or shape.

    [0017] Generally, as a ceramic honeycomb structure is extruded, a solid external surface is provided along the length of the structure. Under certain circumstances, however, it may become necessary to remove the external surface. For example, a green extruded honeycomb structure may be shaped to a desired shape and size by removing the extruded external surface. Alternatively, the green honeycomb structure may be fired and then ground to the desired shape and size by removing the external extruded surface and any portion of the porous wall structure necessary to attain the desired shape and size. Shaping can be accomplished by any means known in the art, including cutting, sanding or grinding away the outer extruded surface of the honeycomb structure to achieve the desired shape and size. Once the desired shape and size has been attained, a cement material can be applied to an outer periphery of the sized body to form a new external surface, or skin, on the body. Typically, the ends of the honeycomb body are not covered with the cement, although certain passages may be plugged if desired. Once the cement composition has been applied to the honeycomb structure, the cement composition can be dried and/or calcined. In some embodiments, the honeycomb body over which the cement is applied comprises fired ceramic material. In other embodiments, the honeycomb body comprises a green body or a calcined body. In some cases, final firing of the calcined honeycomb structure can take place during the catalyzation process.

    [0018] Various methods may be employed to apply a layer of cement to honeycomb body 12. For example, a dispensing device (not shown) can be used to apply an appropriate amount of cement mixture to the external surface of the honeycomb body 12. Methods of applying a skin material (e.g. cement) are well known in the art and not discussed further herein. For example, U. S. Patent Application No. 12/231,140 describes various methods of applying a cement skin to a honeycomb body.

    [0019] Accordingly, honeycomb structure 10 further comprises outer wall 24 deposited over peripheral surfaces of honeycomb body 12. Outer wall 24 (hereinafter skin 24) is a cement comprising an inorganic filler material having a first coefficient of thermal expansion from 25°C to 600°C and a crystalline inorganic fibrous material having a second coefficient of thermal expansion from 25°C to 600°C.

    [0020] The inorganic filler material comprises at least 10% of the total weight of the inorganic solid components of the cement mixture and the crystalline inorganic fibrous material comprises less than 25% of the total weight of the inorganic solid components of the cement mixture. The first coefficient of thermal expansion is less than 50% of the second coefficient of thermal expansion.

    [0021] For example, the inorganic filler material can comprise from 20% to 80%, such as from 25% to 75%, and further such as from 30% to 70%, and yet further such as from 35% to 65%, including at least 50%, at least 60%, or at least 70% of the total weight of the inorganic solids components of the cement mixture. The crystalline inorganic fibrous material can comprise from 3% to 20%, such as from 5% to 15%, and further such as from 8% to 12%, including less than 10%, less than 15%, or less than 20% of the total weight of the inorganic solids components of the cement mixture.

    [0022] The first coefficient of thermal expansion, can, in certain exemplary embodiments range from 0.5x10-7/°C to 20x10-7/°C, such as from 1.0x10-7/°C to 10x10-7/°C and further such as from 2.0x10-7/°C to 5x10-7/°C, including less than 7x10-7/°C, and including about 2.5x10-7/°C. The second coefficient of thermal expansion can, in certain exemplary embodiments, range from 10x10-7/°C to 100x10-7/°C, such as from 20x10-7/°C to 90x10-7/°C, and further such as from 30x10-7/°C to 80x10-7/°C, including at least 50x10-7/°C, and including about 65x10-7/°C. The first coefficient of thermal expansion can, in certain exemplary embodiments, be less than 5x10-7/°C while the second coefficient of thermal expansion can be greater than 30x10-7/°C. The first coefficient of thermal expansion can, in certain exemplary embodiments, be less than 25% of the second coefficient of thermal expansion, such as less than 20% of the second coefficient of thermal expansion, and further such as less than 15% of the second coefficient of thermal expansion, and yet further such as less than 10% of the second coefficient of thermal expansion, and still yet further such as less than 5% of the second coefficient of thermal expansion, such as from 1% to 20% of the second coefficient of thermal expansion, and further such as from 2% to 10% of the second coefficient of thermal expansion.

    [0023] In certain exemplary embodiments, at least 50% by weight of the crystalline inorganic fibrous material has an aspect ratio (longest dimension divided by shortest dimension) of from 3:1 to 10:1, such as from 4:1 to 8:1. In certain exemplary embodiments, less than 10% by weight of the crystalline inorganic fibrous material has an aspect ratio of less than 3:1. In certain exemplary embodiments, less than 5% by weight of the crystalline inorganic fibrous material has an aspect ratio of less than 3:1. In certain exemplary embodiments, the average aspect ratio of the crystalline inorganic fibrous material is from 3:1 to 10:1, such as from 4:1 to 8:1, including about 5:1. All aspect ratio measurements herein are made using scanning electron microscopy (SEM) according to methods known to those skilled in the art, unless otherwise indicated.

    [0024] In certain exemplary embodiments, the crystalline inorganic fibrous material has an average diameter of from 2 to 80 microns, such as from 5 to 50 microns, and further such as from 10 to 30 microns. The crystalline inorganic fibrous material can, in certain exemplary embodiments, have an average length of from 10 to 500 microns, such as from 50 to 400 microns, and further such as from 100 to 300 microns.

    [0025] In certain exemplary embodiments, the crystalline inorganic fibrous material can comprise a finer fibrous material having an average diameter of from 2 to 10 microns and an average length of from 10 to 50 microns. The crystalline inorganic fibrous material may also comprise a relatively coarser fibrous material having an average diameter of from 20 to 60 microns and an average length of from 100 to 300 microns. The crystalline inorganic fibrous material may also comprise a fibrous material of intermediate coarseness, having an average diameter of from 10 to 20 microns and an average length of from 50 to 100 microns.

    [0026] The crystalline inorganic fibrous material can, in certain exemplary embodiments, be present in the cement mixture in a single distribution (e.g., of only one of a finer fibrous material, coarser fibrous material, and fibrous material of intermediate coarseness), a bimodal distribution (e.g., of two of a finer fibrous material, coarser fibrous material, and fibrous material of intermediate coarseness), or a tri-modal distribution (e.g., of three of a finer fibrous material, coarser fibrous material, and fibrous material of intermediate coarseness).

    [0027] Applicants have surprisingly found that a finer fibrous material correlates to a lower amount of said fibrous material being present in certain exemplary cement mixtures having similar characteristics with respect to at least one property. Accordingly, one set of exemplary embodiments includes a cement mixture comprising a crystalline inorganic fibrous material, which comprises from 3% to 10% of the total weight of the inorganic solid components of the cement mixture, wherein the crystalline inorganic fibrous material has an average diameter of from 2 to 10 microns and an average length of from 10 to 50 microns. Exemplary embodiments also include those having a cement mixture comprising a crystalline inorganic fibrous material, which comprises from 5% to 15% of the total weight of the inorganic solid components of the cement mixture, wherein the crystalline inorganic fibrous material has an average diameter of from 10 to 20 microns and an average length of from 50 to 100 microns. Exemplary embodiments also include those having a cement mixture comprising a crystalline inorganic fibrous material, which comprises from 10% to 20% of the total weight of the inorganic solid components of the cement mixture, wherein the crystalline inorganic fibrous material has an average diameter of from 20 to 60 microns and an average length of from 100 to 300 microns.

    [0028] In certain exemplary embodiments, less than 5%, such as less than 2%, and further such as less than 1% by weight of the crystalline inorganic fibrous material has a diameter of greater than 250 microns. In certain exemplary embodiments, the crystalline inorganic fibrous material is essentially free of material having a diameter of greater than 250 microns.

    [0029] In certain exemplary embodiments, less than 5%, such as less than 2%, and further such as less than 1% by weight of the crystalline inorganic fibrous material has a diameter of greater than 200 microns. In certain exemplary embodiments, the crystalline inorganic fibrous material is essentially free of material having a diameter of greater than 200 microns.

    [0030] In certain exemplary embodiments, less than 5%, such as less than 2%, and further such as less than 1% by weight of the crystalline inorganic fibrous material has a diameter of greater than 150 microns. In certain exemplary embodiments, the crystalline inorganic fibrous material is essentially free of material having a diameter of greater than 150 microns.

    [0031] In certain exemplary embodiments, less than 5%, such as less than 2%, and further such as less than 1% by weight of the crystalline inorganic fibrous material has a diameter of greater than 100 microns. In certain exemplary embodiments, the crystalline inorganic fibrous material is essentially free of material having a diameter of greater than 100 microns.

    [0032] In certain exemplary embodiments, less than 5%, such as less than 2%, and further such as less than 1% by weight of the crystalline inorganic fibrous material has a diameter of greater than 50 microns. In certain exemplary embodiments, the crystalline inorganic fibrous material is essentially free of material having a diameter of greater than 50 microns.

    [0033] In certain exemplary embodiments, the crystalline inorganic fibrous material consists essentially of inorganic fibers having an aspect ratio of at least 2:1. In certain exemplary embodiments, the crystalline inorganic fibrous material contains less than 5%, such as less than 2%, and further such as less than 1% by weight of shot or filler material. In certain exemplary embodiments, the crystalline inorganic fibrous material is essentially free of shot or filler material.

    [0034] In certain exemplary embodiments, at least 95%, such as at least 98%, and further such as at least 99% by weight of the crystalline inorganic fibrous material has an aspect ratio of at least 2:1. In certain exemplary embodiments, substantially all of the crystalline inorganic fibrous material has an aspect ratio of at least 2:1.

    [0035] In certain exemplary embodiments, the crystalline inorganic fibrous material comprises a naturally occurring crystalline inorganic fibrous material. In certain exemplary embodiments, the crystalline inorganic fibrous material comprises an alkaline earth silicate, such as a naturally occurring alkaline earth silicate. An example of a suitable alkaline earth silicate is wollastonite (CaSiO3), such as that available under the trade name Ultrafibe II, available from NYCO Minerals Incorporated, Willsboro, New York, USA. An SEM image of wollastonite, showing its fibrous nature, is shown in FIG. 3.

    [0036] In certain exemplary embodiments, the inorganic filler material comprises at least one of ground cordierite and fused silica glass powder.

    [0037] In certain exemplary embodiments, the inorganic filler material comprises cordierite, such as ground cordierite.

    [0038] In certain exemplary embodiments, the inorganic filler material comprises fused silica glass powder. Skin 24 of honeycomb structure 10 may comprise an amorphous glass-based cement, the cement formed from a composition comprising a first (fine) glass powder as a low thermal expansion filler material, a second (coarse) glass powder as a low thermal expansion filler material, a crystalline inorganic fibrous material, a binder and a solvent or vehicle for carrying the solid constituents of the glass-based cement. In certain exemplary embodiments, the glasses of both the first glass powder filler material and the second glass powder filler material are amorphous fused silica having particle sizes greater than about 1 micron. The distribution of glass powder filler material particle size is multimodal in that a distribution of the glass powder filler material with particle sizes greater than about 1 micron exhibits multiple modes (local maximums) of particle sizes. In one embodiment, the amorphous glass-based cement comprises a bimodal particle size distribution of amorphous glass particles with a particle size greater than about 1 micron. The glass based cement includes a first glass powder filler material wherein a median (D50) particle size of the first glass powder filler material is in a range from 10 microns to 50 microns, from about 15 microns to 50 microns, from about 20 microns to about 45 microns or from about 30 microns to about 45 microns, with a D10 in a range from 1 micron to 10 microns and D90 in a range from 25 microns to 125 microns. A median (D50) particle size of the second glass powder filler material is in a range from 150 microns to 300 microns, in a range from 150 microns to about 250 microns, in a range from about 170 microns to about 230 microns or in a range from about 180 microns to about 220 microns, with D10 in a range from 100 microns to 150 microns, and D90 in a range from 250 microns to 350 microns. Particle sizes are determined as a mass-based equivalent spherical diameter. As used herein, the term D50 represents the median of the distribution of particle sizes, D10 represents the particle size in microns for which 10% of the distribution are smaller than the particle size, and D90 represents the particle size in microns for which 90% of the distribution are smaller than the particle size. All particle size measurements herein are made with a Microtrac Inc. particle size analyzer, unless otherwise indicated

    [0039] The glass based cement contains an amount of the first glass powder filler material in a range from 20% to 60% by weight of the total weight of the inorganic solid components of the cement, in a range from about 25% to about 50% by weight, in a range from about 25% to about 40% by weight, or in a range from about 25% to about 35% by weight. The glass based cement contains an amount of the second glass powder filler material in a range from 10% to 40% by weight of the total weight of the inorganic solid components of the cement, in a range from about 15% to 40% by weight or in a range from about 20% to about 35% by weight.

    [0040] In one embodiment, D50 of the first glass powder filler material may be in a range from about 34 microns to about 40 microns, and a median particle size of the second glass powder filler material is in a range from about 190 microns to about 280 microns. In one example, the first glass powder filler material has a D10 of about 6.0 microns, a D50 of about 34.9 microns and a D90 of about 99 microns. In another example, the first glass powder filler material has a D10 of about 6.7 microns, a D50 of about 39.8 microns, and a D90 of about 110.9 microns. In still another example, the first glass powder has a D10 of about 2.7 microns, a D50 of about 13.8 microns and a D90 of about 37.8 microns, and is yet another example, the first glass powder filler material has a D10 of about 2.8 microns, a D50 of about 17.2 microns and a D90 of about 47.9 microns.

    [0041] The ratio of the second glass powder filler material to the first glass powder filler material may be in a range from about 1:4 to about 1:1, such as about 1:3.5 to about 1:1, from about 1:3 to about 1:1, from about 1:2.5 to about 1:1, from about 1.2 to about 1:1 or from about 1:1.5 to about 1:1. In one exemplary embodiment, the ratio of the second glass powder filler material to the first glass powder filler material is about 1: 1.

    [0042] To provide the cement compositions of the present disclosure, the inorganic powders comprising any of the above inorganic powders and any optional inorganic additive components can be mixed together with a suitable organic and/or inorganic binder material. The organic binder material may comprise one or more organic materials, such as a cellulose ether, methylcellulose, ethylcellulose, polyvinyl alcohol, polyethylene oxide and the like, or in some embodiments a gum-like material such as Actigum®, xanthan gum or latex. For example, A4 Methocel is a suitable organic binder. Methocel A4 is a water-soluble methyl cellulose polymer binder available from Dow Chemical. The organic binder material may, for example, be present in the cement composition in an amount of from 0.1% to 10% by weight, such as from 0.2% to 5%, and further such as from 0.5% to 2%.

    [0043] A suitable inorganic binder may comprise colloidal silica or alumina comprising nanometer-scale silica or alumina particles suspended in a suitable liquid, such as water. The inorganic binder material may, for example, be present in the cement composition in an amount less than about of from 2% to 35% of the total weight of inorganic solids present in the cement, and in some embodiments inorganic binders are present in an amount of from 5% to 30%, and in certain other embodiments in an amount of from 10% to 25%. A suitable colloidal silica binder material is Ludox HS-40 produced by W.R. Grace. Typical colloidal binder materials may comprise approximately 40% by weight solid material as a suspension in a deionized water vehicle.

    [0044] Typically, the preferred liquid vehicle or solvent for providing a flowable or paste-like consistency has included water, such as deionized (DI) water, although other materials may be used. The liquid vehicle content may be present as a super addition in an amount equal to or less than about 30% of the total weight of the inorganic components of the cement mixture, such as a range of from about 10% to about 25% of the total weight of the inorganic components of the cement mixture. However, the liquid vehicle is typically adjusted to obtain a viscosity suitable to make the cement easy to apply.

    [0045] In some embodiments, the cement may optionally further contain organic modifiers, such as adhesion promoters for enhancing adhesion between the cement and the honeycomb body. For example, Michem 4983 has been found suitable for this purpose.

    [0046] In certain exemplary embodiments, the cement mixture sets at a temperature of less than 1000°C, such as a temperature of less than 800°C, and further such as a temperature of less than 600°C, and yet further such as a temperature of less than 400°C, and still yet further such as a temperature of less than 200°C. In certain exemplary embodiments, the cement mixture is capable of setting at room temperature (i.e., at about 25°C).

    [0047] Table 1 below sets forth examples of four different batches of different cement mixtures (excluding water), the first of which is comparative and the second, third, and fourth of which are according to embodiments described herein, each cement mixture containing: (i) an amorphous fused silica filler material with a particle size greater than 1 micron and a coefficient of thermal expansion from 25°C to 600°C of less than 5x10-7/°C; and (ii) a crystalline inorganic fibrous material (wollastonite) with an average aspect ratio of from 4:1 to 8:1 and a coefficient of thermal expansion of greater than 50x10-7/°C; where the weight percent for the first silica powder filler material and the crystalline inorganic fibrous material are expressed as a percent of the total inorganic components of the cement.
    Table 1
    ComponentBatch 1Batch 2Batch 3Batch 4
    Fused silica (C-E Minerals -200F) 38.1 36.3 33.2 30.5
    Fused silica (C-E Minerals 80X105) 38.1 36.3 33.2 30.5
    Wollastonite (NYCO Ultrafibe II) 0.0 3.6 9.9 15.2
    Methylcelluose (Dow A4M) 0.8 0.8 0.8 0.8
    Colloidal silica (Grace Ludox HS-40) 23 22.9 22.9 23


    [0048] The cement mixtures of Batches 1-4 were mixed with an appropriate amount of water to make a paste, which was subsequently cast into sheets. Modulus of rupture was determined for the cast (uncalcined) sheets in four point flexure according to ASTM C158, Standard Test Methods for Strength of Glass by Flexure (Determination of Modulus of Rupture). FIG. 4 depicts the measured modulus of rupture for Batches 1-4.

    [0049] In certain exemplary embodiments, the cement mixture has an uncalcined modulus of rupture of at least 3.45 MPa (500 psi), such as at least 3.79 MPa (550 psi), and further such as at least 4.14 MPa (600 psi), and still further such as at least 4.48 MPa (650 psi), and yet still further such as at least 4.83 MPa) (700 psi), and even yet still further such as at least 5.17 MPa (750 psi).

    [0050] In certain exemplary embodiments, the cement mixture subsequent to setting has an uncalcined modulus of rupture of at least 3.45 MPa (500 psi) while the crystalline inorganic fibrous material comprises less than 20% of the total weight of the inorganic solids components of the cement mixture. In certain exemplary embodiments, the cement mixture has an uncalcined modulus of rupture of from 3.45 to 5.52 MPa (500 to 800 psi) while the crystalline inorganic fibrous material comprises from 3% to 20% of the total weight of the inorganic solids components of the cement mixture. In certain exemplary embodiments, the cement mixture has an uncalcined modulus of rupture of from 3.45 to 5.52 MPa (500 to 800 psi) while the crystalline inorganic fibrous material comprises from 5% to 15% of the total weight of the inorganic solids components of the cement mixture.

    [0051] Cement compositions described herein can exhibit viscosities well suited for forming an external skin over a honeycomb body. For example, compositions according to the embodiments herein can have an infinite shear viscosity equal to or less than about 12 Pascal-seconds (Pa·s.), equal to or less than about 5 Pa·s., or equal to or less than about 4 Pa·s. For a shear rate of 10s-1, the shear viscosity may, for example, be equal to or less than about 400 Pa·s, equal to or less than about 350 Pa· s or less than or equal to about 300 Pa· s. Viscosity was measured using a parallel plate viscometer.

    [0052] Calcining of cement compositions disclosed herein can be conducted in a box furnace with a linear ramp to 600°C in 3 hours, followed by a hold for 3 hours at 600°C, then followed by a ramp down to room temperature over a time period of 3 hours. In commercial use, the ceramic article would be wash coated with catalyst followed by a heat treatment to remove organic materials. The ceramic article would also be canned with a mat material that may also require heat treatment to remove organic materials. The calcining process simulates service conditions experienced by the ceramic article.

    [0053] Calcined cement compositions described herein can exhibit an elastic modulus equal to or less than about 1x106, equal to or less than about 7x105 Pa, equal to or less than about 5x105 Pa or equal to or less than about 4x105 Pa. In certain embodiments the elastic modulus is in a range from about 2x105 Pa to about 6x105 Pa.

    [0054] Calcined cement compositions described herein can exhibit an average thermal shock final pass temperature of at least 600°C using the method described as follows. First, an oven is preheated to a first temperature and stabilized. Then, a room temperature article (i.e. 23°C), such as a honeycomb body comprising a ceramic skin, such as embodiments thereof described herein, is plunged into the hot oven for 30 minutes. After the 30 minute period, the hot article is removed from the oven and air quenched back to room temperature without forced cooling (e.g. blowing chilled air, etc.). The article is transferred from the hot and cold locations on low thermal mass ceramic setters (1" cubes of cordierite cellular ceramic). The article is inspected for cracks in the skin and honeycomb body using non-destructive methods including visual inspection (aided with 10x magnification), transmitted light and ultrasound pulse-echo. The article is deemed to have failed when a crack is detected in the honeycomb body or cement skin. When an article survives, the oven is set to a higher temperature and the process is repeated. The last temperature passed and 1st temperature failed bracket the performance of the article. In the case of the data presented herein, the 1st temperature is 500°C and each successive step is an addition of 50°C. The last temperature survived is reported. No temperatures in excess of 1100°C are used.

    [0055] Accordingly, in certain embodiments, the calcined cement skin of the ceramic structure exhibited no visible cracks under 10x magnification after heating to a temperature of 600°C for 30 minutes followed by unforced cooling to 23°C. In certain other embodiments, the calcined cement skin of the ceramic structure exhibited no visible cracks under 10x magnification after heating to a temperature of 1000°C for 30 minutes followed by unforced cooling to 23°C.

    [0056] While the cement mixture compositions disclosed herein have been described for skin applications, it is contemplated that they may be used for other applications relating to honeycomb bodies and ceramic particulate filters including for plugging at least some of the ends of the channels of the honeycomb bodies or for adhering segments of honeycomb bodies together.


    Claims

    1. A honeycomb structure comprising:

    a honeycomb body including a plurality of cells extending axially between first and second opposing end faces of the honeycomb body, the cells comprising intersecting porous walls;

    a glass-based cement mixture deposited over a periphery of the honeycomb body, the cement mixture comprising an inorganic filler material having a first coefficient of thermal expansion from 25°C to 600°C and a crystalline inorganic fibrous material having a second coefficient of thermal expansion from 25°C to 600°C, wherein:

    the inorganic filler material comprises at least 10% of the total weight of the inorganic solid components of the cement mixture,

    the inorganic filler material comprises glass powder, wherein the glass-based cement includes

    a first glass powder filler material in a range from 20% to 60% by weight of the total weight of the inorganic solid components of the cement mixture,
    wherein a median particle size D50 of the first glass powder filler material is in a range from 10 microns to 50 microns, with D10 of the first glass powder filler material representing the particle size in microns for which 10% of the distribution are smaller than the particle size being in a range from 1 micron to 10 microns and D90 of the first glass powder filler material representing the particle size in microns for which 90% of the distribution are smaller than the particle size being in a range from 25 microns to 125 microns, and

    a second glass powder filler material in a range from 10% to 40% by weight of the total weight of the inorganic solid components of the cement mixture,
    wherein D50 of the second glass powder filler material in a range from 150 microns to 300 microns, with D10 of the second glass powder filler material being in a range from 100 microns to 150 microns, and D90 of the second glass powder filler material being in a range from 250 microns to 350 microns,

    the crystalline inorganic fibrous material comprises less than 25% of the total weight of the inorganic solid components of the cement mixture; and

    the first coefficient of thermal expansion is less than 50% of the second coefficient of thermal expansion.


     
    2. The honeycomb structure according to claim 1, wherein the cement mixture sets at a temperature of less than 1000°C.
     
    3. The honeycomb structure according to claim 1 or 2, wherein at least 50% by weight of the crystalline inorganic fibrous material has an aspect ratio of from 3:1 to 10:1.
     
    4. The honeycomb structure according to any one of claims 1-3, wherein less than 5% by weight of the crystalline inorganic fibrous material has a diameter of greater than 250 microns.
     
    5. The honeycomb structure according to any one of claims 1-4, wherein the inorganic filler material comprises from 20% to 80% of the total weight of the inorganic solids components of the cement mixture, the crystalline inorganic fibrous material comprises from 3% to 20% of the total weight of the inorganic solids components of the cement mixture, the first coefficient of thermal expansion ranges from 0.5x10-7/°C to 20x10-7/°C, and the second coefficient of thermal expansion ranges from 10x10-7/°C to 100x10-7/°C.
     
    6. The honeycomb structure according to any one of claims 1-5, wherein the crystalline inorganic fibrous material comprises an alkaline earth silicate.
     
    7. The honeycomb structure according to any one of claims 1-6, wherein the crystalline inorganic fibrous material comprises wollastonite (CaSiO3).
     
    8. The honeycomb structure according to any one of claims 1-7, wherein the inorganic filler material comprises fused silica glass powder.
     
    9. The honeycomb structure according to any one of claims 1-8, wherein the cement mixture further comprises an organic binder, an inorganic binder, and a liquid vehicle.
     
    10. A method of making a honeycomb structure comprising:

    extruding a honeycomb body, the honeycomb body comprising a plurality of cells extending axially between first and second opposing end faces of the honeycomb body, the cells comprising intersecting porous walls;

    shaping the honeycomb body, thereby exposing portions of the porous walls around a periphery of the honeycomb body;

    coating the periphery of the shaped honeycomb body with a glass-based cement mixture; and

    drying the cement mixture;

    wherein the cement mixture comprises an inorganic filler material having a first coefficient of thermal expansion from 25°C to 600°C and a crystalline inorganic fibrous material having a second coefficient of thermal expansion from 25°C to 600°C, and wherein:

    the inorganic filler material comprises at least 10% of the total weight of the inorganic solid components of the cement mixture,

    the inorganic filler material comprises glass powder, wherein the glass-based cement includes

    a first glass powder filler material in a range from 20% to 60% by weight of the total weight of the inorganic solid components of the cement mixture,
    wherein a median particle size D50 of the first glass powder filler material is in a range from 10 microns to 50 microns, with D10 of the first glass powder filler material representing the particle size in microns for which 10% of the distribution are smaller than the particle size being in a range from 1 micron to 10 microns and D90 of the first glass powder filler material representing the particle size in microns for which 90% of the distribution are smaller than the particle size being in a range from 25 microns to 125 microns, and

    a second glass powder filler material in a range from 10% to 40% by weight of the total weight of the inorganic solid components of the cement mixture,
    wherein D50 of the second glass powder filler material in a range from 150 microns to 300 microns, with D10 of the second glass powder filler material being in a range from 100 microns to 150 microns, and D90 of the second glass powder filler material being in a range from 250 microns to 350 microns,

    the crystalline inorganic fibrous material comprises less than 25% of the total weight of the inorganic solid components of the cement mixture; and

    the first coefficient of thermal expansion is less than 50% of the second coefficient of thermal expansion.


     
    11. The method according to claim 10, wherein at least 50% by weight of the crystalline inorganic fibrous material has an aspect ratio of from 3:1 to 10:1.
     
    12. The method according to claim 10 or 11, wherein less than 5% by weight of the crystalline inorganic fibrous material has a diameter of greater than 250 microns.
     
    13. The method according to any one of claims 10-12, wherein the crystalline inorganic fibrous material comprises wollastonite (CaSiO3).
     


    Ansprüche

    1. Wabenstruktur, umfassend:

    einen Wabenkörper, der eine Vielzahl von Zellen enthält, die axial zwischen ersten und zweiten gegenüberliegenden Endflächen des Wabenkörpers verlaufen, wobei die Zellen sich kreuzende poröse Wände umfassen;

    ein Zementgemisch auf Glasbasis, das über einem Rand des Wabenkörpers aufgebracht ist, wobei das Zementgemisch ein anorganisches Füllstoffmaterial mit einem ersten Wärmeausdehnungskoeffizienten von 25 °C bis 600 °C und ein kristallines anorganisches Fasermaterial mit einem zweiten Wärmeausdehnungskoeffizienten von 25 °C bis 600 °C umfasst, wobei:

    das anorganische Füllstoffmaterial wenigstens 10 % des Gesamtgewichts der anorganischen festen Komponenten des Zementgemischs umfasst,

    das anorganische Füllstoffmaterial Glaspulver umfasst, wobei der Zement auf Glasbasis enthält:

    ein erstes Glaspulver-Füllstoffmaterial in einem Bereich von 20 Gew.-% bis 60 Gew.-% des Gesamtgewichts der anorganischen festen Komponenten des Zementgemischs,
    wobei die mediane Partikelgröße D50 des ersten Glaspulver-Füllstoffmaterials in einem Bereich von 10 Mikrometer bis 50 Mikrometer liegt, wobei D10 des ersten Glaspulver-Füllstoffmaterials, das die Partikelgröße in Mikrometer darstellt, bei der 10 % der Verteilung kleiner als die Partikelgröße sind, in einem Bereich von 1 Mikrometer bis 10 Mikrometer liegt, und D90 des ersten Glaspulver-Füllstoffmaterials, das die Partikelgröße in Mikrometer darstellt, bei der 90 % der Verteilung kleiner als die Partikelgröße sind, in einem Bereich von 25 Mikrometer bis 125 Mikrometer liegt, und

    ein zweites Glaspulver-Füllstoffmaterial in einem Bereich von 10 Gew.-% bis 40 Gew.-% des Gesamtgewichts der anorganischen festen Komponenten des Zementgemischs,
    wobei D50 des zweiten Glaspulver-Füllstoffmaterials in einem Bereich von 150 Mikrometer bis 300 Mikrometer liegt, wobei D10 des zweiten Glaspulver-Füllstoffmaterials in einem Bereich von 100 Mikrometer bis 150 Mikrometer liegt und D90 des zweiten Glaspulver-Füllstoffmaterials in einem Bereich von 250 Mikrometer bis 350 Mikrometer liegt,

    das kristalline anorganische Fasermaterial weniger als 25 % des Gesamtgewichts der anorganischen festen Komponenten des Zementgemischs umfasst; und

    der erste Wärmeausdehnungskoeffizient weniger als 50 % des zweiten Wärmeausdehnungskoeffizienten beträgt.


     
    2. Wabenstruktur gemäß Anspruch 1, wobei das Zementgemisch bei einer Temperatur von weniger als 1000 °C abbindet.
     
    3. Wabenstruktur gemäß Anspruch 1 oder 2, wobei wenigstens 50 Gew.-% des kristallinen anorganischen Fasermaterials ein Aspektverhältnis von 3:1 bis 10:1 aufweist.
     
    4. Wabenstruktur gemäß einem der Ansprüche 1-3, wobei weniger als 5 Gew.-% des kristallinen anorganischen Fasermaterials einen Durchmesser von größer als 250 Mikrometer aufweist.
     
    5. Wabenstruktur gemäß einem der Ansprüche 1-4, wobei das anorganische Füllstoffmaterial von 20 % bis 80 % des Gesamtgewichts der anorganischen Feststoffkomponenten des Zementgemischs umfasst, wobei das kristalline anorganische Fasermaterial von 3 % bis 20 % des Gesamtgewichts der anorganischen Feststoffkomponenten des Zementgemischs umfasst, wobei der erste Wärmeausdehnungskoeffizient in dem Bereich von 0,5 x 10- 7/°C bis 20 x 10-7/°C liegt, und der zweite Wärmeausdehnungskoeffizient in dem Bereich von 10 x 10- 7/°C bis 100 x 10-7/°C liegt.
     
    6. Wabenstruktur gemäß einem der Ansprüche 1-5, wobei das kristalline anorganische Fasermaterial ein Erdalkalisilicat umfasst.
     
    7. Wabenstruktur gemäß einem der Ansprüche 1-6, wobei das kristalline anorganische Fasermaterial Wollastonit (CaSiO3) umfasst.
     
    8. Wabenstruktur gemäß einem der Ansprüche 1-7, wobei das anorganische Füllstoffmaterial geschmolzenes Siliciumdioxidglaspulver umfasst.
     
    9. Wabenstruktur gemäß einem der Ansprüche 1-8, wobei das Zementgemisch ferner ein organisches Bindemittel, an anorganisches Bindemittel und einen flüssigen Träger umfasst.
     
    10. Verfahren zur Herstellung einer Wabenstruktur, umfassend:

    Extrudieren eines Wabenkörpers, wobei der Wabenkörper eine Vielzahl von Zellen umfasst, die axial zwischen ersten und zweiten gegenüberliegenden Endflächen des Wabenkörpers verlaufen, wobei die Zellen sich kreuzende poröse Wände umfassen;

    Formen des Wabenkörpers, um Teile der porösen Wände um einen Rand des Wabenkörpers freizulegen;

    Beschichten des Rands des geformten Wabenkörpers mit einem Zementgemisch auf Glasbasis; und

    Trocknen des Zementgemischs;

    wobei das Zementgemisch ein anorganisches Füllstoffmaterial mit einem ersten Wärmeausdehnungskoeffizienten von 25 °C bis 600 °C und ein kristallines anorganisches Fasermaterial mit einem zweiten Wärmeausdehnungskoeffizienten von 25 °C bis 600 °C umfasst, und wobei:

    das anorganische Füllstoffmaterial wenigstens 10 % des Gesamtgewichts der anorganischen festen Komponenten des Zementgemischs umfasst,

    das anorganische Füllstoffmaterial Glaspulver umfasst, wobei der Zement auf Glasbasis enthält:

    ein erstes Glaspulver-Füllstoffmaterial in einem Bereich von 20 Gew.-% bis 60 Gew.-% des Gesamtgewichts der anorganischen festen Komponenten des Zementgemischs,
    wobei die mediane Partikelgröße D50 des ersten Glaspulver-Füllstoffmaterials in einem Bereich von 10 Mikrometer bis 50 Mikrometer liegt, wobei D10 des ersten Glaspulver-Füllstoffmaterials, das die Partikelgröße in Mikrometer darstellt, bei der 10 % der Verteilung kleiner als die Partikelgröße sind, in einem Bereich von 1 Mikrometer bis 10 Mikrometer liegt, und D90 des ersten Glaspulver-Füllstoffmaterials, das die Partikelgröße in Mikrometer darstellt, bei der 90 % der Verteilung kleiner als die Partikelgröße sind, in einem Bereich von 25 Mikrometer bis 125 Mikrometer liegt, und

    ein zweites Glaspulver-Füllstoffmaterial in einem Bereich von 10 Gew.-% bis 40 Gew.-% des Gesamtgewichts der anorganischen festen Komponenten des Zementgemischs,
    wobei D50 des zweiten Glaspulver-Füllstoffmaterials in einem Bereich von 150 Mikrometer bis 300 Mikrometer liegt, wobei D10 des zweiten Glaspulver-Füllstoffmaterials in einem Bereich von 100 Mikrometer bis 150 Mikrometer liegt und D90 des zweiten Glaspulver-Füllstoffmaterials in einem Bereich von 250 Mikrometer bis 350 Mikrometer liegt,

    das kristalline anorganische Fasermaterial weniger als 25 % des Gesamtgewichts der anorganischen festen Komponenten des Zementgemischs umfasst; und

    der erste Wärmeausdehnungskoeffizient weniger als 50 % des zweiten Wärmeausdehnungskoeffizienten beträgt.


     
    11. Verfahren gemäß Anspruch 10, wobei wenigstens 50 Gew.-% des kristallinen anorganischen Fasermaterials ein Aspektverhältnis von 3:1 bis 10:1 aufweist.
     
    12. Verfahren gemäß Anspruch 10 oder 11, wobei weniger als 5 Gew.-% des kristallinen anorganischen Fasermaterials einen Durchmesser von größer als 250 Mikrometer aufweist.
     
    13. Verfahren gemäß einem der Ansprüche 10-12, wobei das kristalline anorganische Fasermaterial Wollastonit (CaSiO3) umfasst.
     


    Revendications

    1. Structure en nid d'abeilles comprenant :

    un corps en nid d'abeilles comportant une pluralité de cellules s'étendant axialement entre des première et deuxième faces d'extrémité opposées du corps en nid d'abeilles, les cellules comprenant des parois poreuses se croisant ;

    un mélange de ciment à base de verre déposé sur une périphérie du corps en nid d'abeilles, le mélange de ciment comprenant une matière de charge inorganique ayant un premier coefficient de dilatation thermique de 25 °C à 600 °C et une matière fibreuse inorganique cristalline ayant un deuxième coefficient de dilatation thermique de 25 °C à 600 °C, dans laquelle :

    la matière de charge inorganique constitue au moins 10 % du poids total des constituants solides inorganiques du mélange de ciment,

    la matière de charge inorganique comprend de la poudre de verre, le ciment à base de verre comportant

    une première matière de charge à base de poudre de verre dans une gamme de 20 % à 60 % en poids du poids total des constituants solides inorganiques du mélange de ciment,
    une taille médiane de particules D50 de la première matière de charge à base de poudre de verre se situant dans une gamme de 10 micromètres à 50 micromètres, le D10 de la première matière de charge à base de poudre de verre représentant la taille de particules en micromètres pour laquelle 10 % de la distribution sont plus petites que la taille de particules qui se situe dans une gamme de 1 micromètre à 10 micromètres, et le D90 de la première matière de charge à base de poudre de verre représentant la taille de particules en micromètres pour laquelle 90 % de la distribution sont plus petites que la taille de particules qui se situe dans une gamme de 25 micromètres à 125 micromètres, et

    une deuxième matière de charge à base de poudre de verre dans une gamme de 10 % à 40 % en poids du poids total des constituants solides inorganiques du mélange de ciment,
    le D50 de la deuxième matière de charge à base de poudre de verre étant dans une gamme de 150 micromètres à 300 micromètres, le D10 de la deuxième matière de charge à base de poudre de verre se situant dans une gamme de 100 micromètres à 150 micromètres, et le D90 de la deuxième matière de charge à base de poudre de verre se situant dans une gamme de 250 micromètres à 350 micromètres,

    la matière fibreuse inorganique cristalline constitue moins de 25 % du poids total des constituants solides inorganiques du mélange de ciment ; et

    le premier coefficient de dilatation thermique représente moins de 50 % du deuxième coefficient de dilatation thermique.


     
    2. Structure en nid d'abeilles selon la revendication 1, dans laquelle le mélange de ciment prend à une température de moins de 1000 °C.
     
    3. Structure en nid d'abeilles selon la revendication 1 ou 2, dans laquelle au moins 50 % en poids de la matière fibreuse inorganique cristalline a un rapport de forme de 3:1 à 10:1.
     
    4. Structure en nid d'abeilles selon l'une quelconque des revendications 1 à 3, dans laquelle moins de 5 % en poids de la matière fibreuse inorganique cristalline a un diamètre de plus de 250 micromètres.
     
    5. Structure en nid d'abeilles selon l'une quelconque des revendications 1 à 4, dans laquelle la matière de charge inorganique constitue de 20 % à 80 % du poids total des constituants solides inorganiques du mélange de ciment, la matière fibreuse inorganique cristalline constitue de 3 % à 20 % du poids total des constituants solides inorganiques du mélange de ciment, le premier coefficient de dilatation thermique va de 0,5x10-7/°C à 20x10-7/°C, et le deuxième coefficient de dilatation thermique va de 10x10-7/°C à 100x10-7/°C.
     
    6. Structure en nid d'abeilles selon l'une quelconque des revendications 1 à 5, dans laquelle la matière fibreuse inorganique cristalline comprend un silicate alcalino-terreux.
     
    7. Structure en nid d'abeilles selon l'une quelconque des revendications 1 à 6, dans laquelle la matière fibreuse inorganique cristalline comprend de la wollastonite (CaSiO3).
     
    8. Structure en nid d'abeilles selon l'une quelconque des revendications 1 à 7, dans laquelle la matière de charge inorganique comprend de la poudre de verre de silice fondue.
     
    9. Structure en nid d'abeilles selon l'une quelconque des revendications 1 à 8, dans laquelle le mélange de ciment comprend en outre un liant organique, un liant inorganique, et un véhicule liquide.
     
    10. Procédé de fabrication d'une structure en nid d'abeilles comprenant :

    l'extrusion d'un corps en nid d'abeilles, le corps en nid d'abeilles comprenant une pluralité de cellules s'étendant axialement entre des première et deuxième faces d'extrémité opposées du corps en nid d'abeilles, les cellules comprenant des parois poreuses se croisant ;

    le façonnage du corps en nid d'abeilles, pour exposer ainsi des parties des parois poreuses autour d'une périphérie du corps en nid d'abeilles ;

    le revêtement de la périphérie du corps en nid d'abeilles façonné avec un mélange de ciment à base de verre ; et

    le séchage du mélange de ciment ;

    dans lequel le mélange de ciment comprend une matière de charge inorganique ayant un premier coefficient de dilatation thermique de 25 °C à 600 °C et une matière fibreuse inorganique cristalline ayant un deuxième coefficient de dilatation thermique de 25 °C à 600 °C, et dans lequel :

    la matière de charge inorganique constitue au moins 10 % du poids total des constituants solides inorganiques du mélange de ciment,

    la matière de charge inorganique comprend de la poudre de verre, le ciment à base de verre comportant

    une première matière de charge à base de poudre de verre dans une gamme de 20 % à 60 % en poids du poids total des constituants solides inorganiques du mélange de ciment,
    une taille médiane de particules D50 de la première matière de charge à base de poudre de verre se situant dans une gamme de 10 micromètres à 50 micromètres, le D10 de la première matière de charge à base de poudre de verre représentant la taille de particules en micromètres pour laquelle 10 % de la distribution sont plus petites que la taille de particules qui se situe dans une gamme de 1 micromètre à 10 micromètres, et le D90 de la première matière de charge à base de poudre de verre représentant la taille de particules en micromètres pour laquelle 90 % de la distribution sont plus petites que la taille de particules qui se situe dans une gamme de 25 micromètres à 125 micromètres, et

    une deuxième matière de charge à base de poudre de verre dans une gamme de 10 % à 40 % en poids du poids total des constituants solides inorganiques du mélange de ciment,
    le D50 de la deuxième matière de charge à base de poudre de verre étant dans une gamme de 150 micromètres à 300 micromètres, le D10 de la deuxième matière de charge à base de poudre de verre se situant dans une gamme de 100 micromètres à 150 micromètres, et le D90 de la deuxième matière de charge à base de poudre de verre se situant dans une gamme de 250 micromètres à 350 micromètres,

    la matière fibreuse inorganique cristalline constitue moins de 25 % du poids total des constituants solides inorganiques du mélange de ciment ; et

    le premier coefficient de dilatation thermique représente moins de 50 % du deuxième coefficient de dilatation thermique.


     
    11. Procédé selon la revendication 10, dans lequel au moins 50 % en poids de la matière fibreuse inorganique cristalline a un rapport de forme de 3:1 à 10:1.
     
    12. Procédé selon la revendication 10 ou 11, dans lequel moins de 5 % en poids de la matière fibreuse inorganique cristalline a un diamètre de plus de 250 micromètres.
     
    13. Procédé selon l'une quelconque des revendications 10 à 12, dans lequel la matière fibreuse inorganique cristalline comprend de la wollastonite (CaSiO3).
     




    Drawing









    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description