(19)
(11)EP 2 820 279 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.05.2019 Bulletin 2019/21

(21)Application number: 13784980.8

(22)Date of filing:  16.02.2013
(51)International Patent Classification (IPC): 
F02K 3/04(2006.01)
F01D 5/14(2006.01)
F02K 3/00(2006.01)
F01D 5/20(2006.01)
(86)International application number:
PCT/US2013/026543
(87)International publication number:
WO 2013/165527 (07.11.2013 Gazette  2013/45)

(54)

TURBOMACHINE BLADE

TURBOMASCHINENSCHAUFEL

AUBE DE TURBOMACHINE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 29.02.2012 US 201261605019 P
24.04.2012 US 201213454316

(43)Date of publication of application:
07.01.2015 Bulletin 2015/02

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventor:
  • STRACCIA, Joseph, C.
    Middletown, CT 06457 (US)

(74)Representative: Dehns 
St. Brides House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A2- 1 905 952
US-A- 4 880 355
US-A1- 2008 152 501
US-A1- 2010 054 946
US-A1- 2010 150 729
WO-A2-2007/086908
US-A1- 2006 210 395
US-A1- 2008 213 098
US-A1- 2010 150 729
US-B2- 7 967 571
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present disclosure is related in general to airfoils for use in turbine machines, and in particular to airfoils incorporating localized high order dihedral.

    BACKGROUND OF THE INVENTION



    [0002] Turbine machines, such as turbofan gas turbine engines or land based turbine generators, typically include a compressor section, a combustor section and a turbine section. During operation, air is pressurized in the compressor section and mixed with fuel in the combustor section for generating hot combustion gases. The hot combustion gases flow through the turbine section which extracts energy from the hot combustion gases to power the compressor section and in the case of turbine generators, drive the turbine power shaft.

    [0003] Many turbine machines include axial-flow type compressor sections in which the flow of compressed air is parallel to an engine centerline axis. Axial-flow compressors may utilize multiple stages to obtain the pressure levels needed to achieve desired thermodynamic cycle goals. A typical compressor stage consists of a row of rotating airfoils (called rotor blades) and a row of stationary airfoils (called stator vanes).

    [0004] One design feature of an axial-flow compressor section that affects compressor performance and stability is tip clearance flow. A small gap extends between the tip of each rotor blade airfoil and a surrounding shroud in each compressor stage. Tip clearance flow is defined as the flow of fluid between the rotor tip and an outer shroud from the high pressure side (pressure side) to the low pressure side (suction side) of the rotor blade. Tip clearance flow reduces the ability of the compressor section to sustain pressure rise, increases losses and may have a negative impact on stall margin (i.e., the point at which the compressor section can no longer sustain an increase in pressure such that the gas turbine engine stalls).

    [0005] At the airfoil tip in the region where the airfoil and its boundary layer interact with the endwall boundary layer and the tip leakage flow, the aerodynamic loading tends to be higher than at the airfoil midspan. High aerodynamic loading results in higher turning deviation, larger losses and an increased likelihood of boundary layer separation. Bulk separation of the boundary layer on rotor tips is one mechanism for compressor stall.

    [0006] US 4880355 discloses a prior art turbomachine blade in accordance with the precharacterising portion of claim 1.

    [0007] US 2006/0210395 discloses a prior art turbofan stator vane.

    [0008] US 2010/0150729 discloses a prior art rotor blade.

    SUMMARY OF THE INVENTION



    [0009] According to the invention, there is provided a turbomachine blade as set forth in claim 1.

    [0010] In an embodiment, n is greater than or equal to 2.1.

    [0011] In a further embodiment, n is greater than or equal to 3.

    [0012] In a further embodiment, the blend point is at least at 70% of the span.

    [0013] In a further embodiment, the blend point is at least at 80% of the span.

    [0014] In a further embodiment, the blade comprises a dihedral angle measured between a radial vector projected out of the tip region and a line tangent to the tip region of the spanwise stacking distribution, and the dihedral angle is in the range of 15 degrees to 35 degrees.

    [0015] In a further embodiment, the airfoil is a rotor blade.

    [0016] In a further embodiment, the airfoil is a rotor blade in a compressor section of a gas turbine engine.

    [0017] In a further embodiment, the airfoil is a stator blade.

    [0018] In a further embodiment, the airfoil is a stator blade in a compressor section of a gas turbine engine.

    [0019] In a further embodiment, the spanwise stacking distribution extends from a root to a tip of the airfoil, and wherein the spanwise stacking distribution is a curve passing through the centroids of each of multiple stacked planar sections of the airfoil.

    [0020] In a further embodiment, the end of the spanwise stacking distribution is a tip region of said airfoil.

    [0021] In a further embodiment, the end of the spanwise stacking distribution is a root region of said airfoil.

    [0022] These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0023] 

    Figure 1 is a cross-sectional view of an example gas turbine engine.

    Figure 2 illustrates a portion of a compressor section of the example gas turbine engine illustrated in Figure 1.

    Figure 3 illustrates a schematic view of an exemplary turbomachine blade.

    Figure 4 illustrates another view of the blade illustrated in Figure 3.

    Figure 5 illustrates a planar view of an airfoil of an exemplary blade.

    Figure 6 illustrates a wireframe view of an airfoil of an exemplary blade.

    Figure 7 illustrates an airfoil spanwise stacking distribution including a high order polynomial curve in accordance with the present invention.

    Figure 8 illustrates a graph relating a tip deflection and a blend point of multiple example airfoils.


    DETAILED DESCRIPTION OF AN EMBODIMENT



    [0024] Figure 1 illustrates an example gas turbine engine 10 that includes a fan 12, a compressor section 14, a combustor section 16 and a turbine section 18. The gas turbine engine 10 is defined about an engine centerline axis A about which the various engine sections rotate. Air is drawn into the gas turbine engine 10 by the fan 12 and flows through the compressor section 14 to pressurize the airflow. Fuel is mixed with the pressurized air and combusted within the combustor 16. The combustion gases are discharged through the turbine section 18, which extracts energy therefrom for powering the compressor section 14 and the fan 12. Of course, this view is highly schematic. In the illustrated example, the gas turbine engine 10 is a turbofan gas turbine engine. It should be understood, however, that the features and illustrations presented within this disclosure are not limited to a turbofan gas turbine engine. That is, the present disclosure is applicable to any axial flow turbine machine. In an alternate example, the features described herein can also be incorporated in a land based turbine machine such as a gas turbine generator. Some turbine machines do not include a fan section.

    [0025] Figure 2 schematically illustrates a portion of the compressor section 14 of the gas turbine engine 10. In one example, the compressor section 14 is an axial-flow compressor. Compressor section 14 includes a plurality of compression stages including alternating rows of rotor blades 30 and stator blades 32. The rotor blades 30 rotate about the engine centerline axis A in a known manner to increase the velocity and pressure level of the airflow communicated through the compressor section 14. The stationary stator blades 32 convert the velocity of the airflow into pressure, and turn the airflow in a desired direction to prepare the airflow for the next set of rotor blades 30. The rotor blades 30 are partially housed by a shroud assembly 34 (i.e., an outer case). A gap 36 extends between a tip 38 and shroud 34 of each rotor blade 30 to provide clearance for the rotating rotor blades 30.

    [0026] Figures 3 and 4 illustrate an example rotor blade 30 that includes design elements localized at the tip 38 for reducing the aerodynamic loading of the airfoil. The rotor blade 30 includes an airfoil 40 having a leading edge 42 and a trailing edge 44. A chord 46 of the airfoil 40 extends between the leading edge 42 and the trailing edge 44. A span 48 of the airfoil 40 extends between a root 50 and the tip 38 of the rotor blade 30. The root 50 of the rotor blade 30 is adjacent to a platform 52 that connects the rotor blade 30 to a rotating drum or disk (not shown) in a known manner. The airfoil 40 also includes a dihedral feature, described in greater detail below. Generally, the dihedral feature refers to a curve region of a spanwise stacking distribution of the airfoil 40.

    [0027] The airfoil 40 of the rotor blade 30 also includes a suction surface 54 and an opposite pressure surface 56. The suction surface 54 is a generally convex surface and the pressure surface 56 is a generally concave surface. The suction surface 54 and the pressure surface 56 are conventionally designed to pressurize the airflow F as it is communicated from an upstream direction UP to a downstream direction DN. The airflow F flows in a direction having an axial component that is parallel to the longitudinal centerline axis A of the gas turbine engine 10. The rotor blade 30 rotates about the engine centerline axis A.

    [0028] Figure 5 illustrates a planar section 400 of the airfoil 40 illustrated in Figure 4. The airfoil planar section 400 is composed of a leading edge 312, a trailing edge 314, a suction side 340 and a pressure side 350. A chordline 310 extends from the leading edge 312 to the trailing edge 314 of the airfoil planar section 400. A chordline angle 360 is measured between the chordline 310 and the axial direction x. The airfoil planar section 400 has a centroid 320 (such as a center of gravity) that is the center of mass for that planar section. The direction of the incident air at the leading edge 312 of the airfoil planar section 400 is indicated with the vector F.

    [0029] The airfoil planar section 400 can be positioned in space by the three dimensional location of its centroid 320. A traditional coordinate system, for example where x is parallel to the axis of rotation, z is the radial direction relative to x, and y is tangential to the circumference of rotation, is used to position the airfoil planar section 400. A second coordinate system is defined relative to the airfoil planar section 400 such that the x and y directions are rotated about the z axis by the chordline angle 360 such that the new y' direction is perpendicular to the chordline 310 and the new x' direction is parallel to the chordline 310. This second coordinate system, x', y', z, is referred to as the rotated coordinate system. Alternatively, the x,y,z coordinate system may also be rotated about the z axis by the angle between the inlet air direction F and the x axis to form the rotated coordinate system. The dihedral curve region is applied to the airfoil spanwise stacking distribution in the rotated coordinate system.

    [0030] Figure 6 illustrates a wireframe view of an airfoil 40 composed of several airfoil planar sections, such as the section 400 illustrated in Figure 5. The centroids 420 of the airfoil planar sections 400 are "stacked" or positioned in space along the spanwise stacking distribution 48 to define the three dimensional shape of the airfoil 40. A radial airfoil with no dihedral is constructed by stacking the airfoil planar sections' centroids 420 in a straight radial line from the hub 420 to the tip 430. To introduce dihedral the stacking location of the airfoil planar section 400 centroid 420 is shifted in the y' direction, normal to the chordline 410. Positive dihedral displaces the airfoil planar section 400 towards the airfoil suction side 340 and away from the airfoil pressure side 350. Positive dihedral may alternatively be defined as the suction side 340 of the airfoil tip producing an obtuse angle with an outer shroud 34.

    [0031] With reference to Figures 6 and 7 the dihedral angle D is used to quantify the amount of dihedral added to the airfoil 40. The dihedral angle D describes the spatial relationship, in the y' direction, of the airfoil tip planar section 430 relative to the sections below the airfoil tip. The dihedral angle D is measured between two vectors in the rotated coordinate plane y'-z. The first vector is the radial vector 450 projected out of the stacking distribution tip 38. The second vector is a line 460 tangent to the tip 38 of the spanwise stacking distribution 48. The projection of the two vectors into the y'-z plane is shown in Figure 7 and this plane's relationship to the airfoil planar section 400 is depicted in Figure 5.

    [0032] The airfoil 40 includes a dihedral angle D (See Figure 7) that is localized relative to the tip 38 of the airfoil 40. The term "localized" as utilized in this disclosure is intended to define a dihedral curve region which is restricted to a specific radial portion of the spanwise stacking distribution 48. Although the dihedral angle D and the dihedral stacking shape are disclosed herein with respect to a rotor blade airfoil 40, it should be understood that other components, such as stator blade airfoils, of the gas turbine engine 10 may benefit from similar aerodynamic improvements as those illustrated with respect to the airfoil 40. Although the localized dihedral distribution is disclosed herein with respect to the airfoil tip, it should be understood that the same localized high order dihedral distribution may be applied to the airfoil root and produce the same reduction in airfoil aerodynamic loading.

    [0033] With continued reference to Figure 3-6, Figure 7 illustrates a rotor blade spanwise stacking distribution 48 (in the y'-z coordinate system). The illustrated rotor blade spanwise stacking distribution 48 includes a curve region 110 that diverges from a reference line 120 to create the dihedral angle D at the tip 38. The reference line 120 indicates where the spanwise stacking distribution 48 would be if a straight region 130 of the airfoil 40 extended to the tip 38 of the airfoil 40. The curve region 110 starts at a blend point 112 and extends to the tip 38 along a curve 116. The shape of the curve 116 is defined by a high order polynomial (i.e., a polynomial with an order greater than two). The shape of the curve region is defined by a polynomial including the term A*(Z-Zblena)n, and more specifically, the shape of the curve region is defined by Δy'=A*(Z-Zblend)n where Δy' is a displacement of the spanwise stacking distribution in the chordline normal (y') direction (see Figure 5), A is a constant, Z is the radial location of the spanwise stacking distribution 48 section, Zblend is the radial location for blend point and n is the order of the dihedral. In one example n ≥ 2.1. In another example 2<n<2.1. In another example the shape of the curve 116 is defined by a third or higher order polynomial.

    [0034] By using a high order polynomial to define the curve 116, the blend point 112 can be shifted closer to the tip 38 and/or the tip deflection 114 can be reduced, while achieving the same dihedral angle D as a curve 116 defined by a second order polynomial. Alternatively, the tip deflection 114 can be maintained and a higher dihedral angle D can be achieved. Thus, a high order polynomial defining the shape of the curve region 116 allows the tip displacement 114 for a specified dihedral angle D to be reduced. Reducing the tip displacement 114 provides benefits with regards to: ease of manufacturing, minimizing root stress and/or limiting axial displacement to aid in achieving gapping constrains.

    [0035] In any given airfoil 40 including a tip 38 with a dihedral angle D, there are three factors that influence the dihedral angle D: the blend point 112, the tip deflection 114, and the shape of the curve 116 in the curve region 110. Shifting the blend point 112 along the span line 48 towards 100% span, increasing the order of the polynomial defining the curve 116, or increasing the tip deflection 114 will all increase the dihedral angle D.

    [0036] With continued reference to Figures 1-7, Figure 8 illustrates a graph of the spanwise stacking distribution in terms of percent span in the rotated coordinate system (y'-z). A prior art airfoil 210, using a second order polynomial shaped curve 116 in the curve region 110 and a dihedral angle D of approximately 8 degrees has a relatively high tip deflection 114 and a blend point 212 that is near 70% span. A reference radial airfoil 240 with no dihedral angle D (approximately 0 degrees) and no curve region is also illustrated.

    [0037] An example airfoil 220 with a high order (order n, where n is greater than or equal to 2.1) polynomial shape for the curve 116 with the same tip deflection 114 as the prior art airfoil 210 has a significantly increased tip dihedral angle D of approximately 27 degrees and a blend point 222 that is shifted significantly further toward the tip along the span line 48 than the prior art blade 210. In a similar manner, an airfoil 230 that holds the tip dihedral angle D at approximately 8 degrees, as in the prior art airfoil 210, but includes a higher order polynomial shape 116 for the curve region 110, has a tip deflection 114 that is significantly less than the prior art airfoil tip offset. As with the example airfoil 220, the example airfoil 230 has a blend point 232 that is significantly closer to the tip 38 along the span line 48 than the prior art airfoil 210. In each of the example blades 220, 230, the inclusion of the higher order curve 116 has allowed the tip deflection 114 required to achieve a desired dihedral angle D to be reduced.

    [0038] In another example, airfoil 40 using a high order shaped polynomial curve region 116 of the spanwise stacking distribution 48, the blend point can be at least 80% span. In further examples, a maximized dihedral angle D in the range of 15 to 35 degrees is achieved without causing excessive tip deflection 114. Similar systems using a second order polynomial curve 116 in the curve region 110 achieve less than a 10 degree dihedral angle D for the same tip deflection.

    [0039] It is further understood that airfoils designed according to the above description can be incorporated into newly designed turbine machines or existing turbine machines and accrue the same benefits in each.

    [0040] It is further understood that any of the above described concepts can be used alone or in combination with any or all of the other above described concepts.

    [0041] Although an embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.


    Claims

    1. A turbomachine blade (30; 32) comprising:

    an airfoil (40; 220; 230) extending along a spanwise stacking distribution (48) between a root (50) and a tip region (38), said airfoil (40; 220; 230) including a chordline (46, 310) extending between a leading edge (42, 312) and a trailing edge (44, 314); and

    a dihedral feature of the spanwise stacking distribution (48), wherein said dihedral feature is generally localized at an end of the spanwise stacking distribution (48), said dihedral feature being further defined by a curved region (110) where the spanwise stacking distribution (48) of said airfoil (40; 220; 230) diverges from a radial airfoil stacking line (120), a shape of said curved region (110) being defined by a high order polynomial, and said high order polynomial is defined by a polynomial comprising the polynomial term A*(Z-Zblend)n where, A is a constant, Z is a radial location of the spanwise stacking distribution section (48), Zblend is a radial location for a blend point (112; 212) of said spanwise stacking distribution (48) where said curve region (110) initially diverges from the radial airfoil stacking line (120), and n is the order of the polynomial;

    characterised in that:
    said high order polynomial is defined by Δy'=A*(Z-Zblend)n, where Δy' is a displacement of the spanwise stacking distribution (48) in a direction normal to the chordline (46, 310).


     
    2. The turbomachine blade (30; 32) of claim 1, wherein n is greater than or equal to 2.1.
     
    3. The turbomachine blade (30; 32) of claim 1, wherein n is greater than or equal to 3.
     
    4. The turbomachine blade (30; 32) of claim 1, 2 or 3, wherein said blend point (112; 212) is at least at 70% of said span.
     
    5. The turbomachine blade (30; 32) of claim 4, wherein said blend point (112; 212) is at least at 80% of said span.
     
    6. The turbomachine blade (30; 32) of any preceding claim, comprising a dihedral angle (D) measured between a radial vector (450) projected out of the tip region (38) and a line (460) tangent to the tip region (38) of the spanwise stacking distribution (48), wherein said dihedral angle is in the range of 15 degrees to 35 degrees.
     
    7. The turbomachine blade (30; 32) of any preceding claim, wherein said airfoil (40; 220; 230) is a rotor blade (30) or a stator blade (32).
     
    8. The turbomachine blade (30; 32) of claim 7, wherein said airfoil (40; 220; 230) is in a compressor section (14) of a gas turbine engine (10).
     
    9. The turbomachine blade (30; 32) of any preceding claim, wherein said spanwise stacking distribution (48) extends from a root (50) to a tip (38) of said airfoil (40; 220; 230), and wherein said spanwise stacking distribution (48) is a curve (116) passing through the centroids (420) of each of multiple stacked planar sections (400) of said airfoil (40; 220; 230).
     
    10. The turbomachine blade (30; 32) of any preceding claim, wherein said end of the spanwise stacking distribution (48) is a tip region (38) of said airfoil (40; 220; 230).
     
    11. The turbomachine blade (30; 32) of any of claims 1 to 9, wherein said end of the spanwise stacking distribution (48) is a root region (50) of said airfoil (40; 220; 230).
     


    Ansprüche

    1. Turbomaschinenschaufel (30; 32), umfassend:

    ein Strömungsprofil (40; 220; 230), das sich entlang einer Stapelverteilung (48) in Spannrichtung zwischen einer Wurzelregion (50) und einer Spitzenregion (38) erstreckt, wobei das Strömungsprofil (40; 220; 230) eine Profilsehne (46, 310) beinhaltet, die sich zwischen einer Vorderkante (42, 312) und einer Hinterkante (44, 314) erstreckt; und

    ein Diedermerkmal der Stapelverteilung (48) in Spannrichtung, wobei das Diedermerkmal im Allgemeinen an einem Ende der Stapelverteilung (48) in Spannrichtung angeordnet ist, wobei das Diedermerkmal ferner durch eine gekrümmte Region (110) definiert ist, an der die Stapelverteilung (48) in Spannrichtung des Strömungsprofils (40; 220; 230) von einer radialen Stapellinie (120) des Strömungsprofils divergiert, wobei eine Form der gekrümmten Region (110) durch ein Polynom hoher Ordnung definiert ist und das Polynom hoher Ordnung durch ein Polynom definiert ist, das den Polynomausdruck A*(Z-Zblend)n umfasst, wobei A eine Konstante ist, Z ein radialer Ort des Stapelverteilungsabschnitts (48) in Spannrichtung ist, Zblend ein radialer Ort für einen Verschmelzungspunkt (112; 212) der Stapelverteilung (48) in Spannrichtung ist, wobei die gekrümmte Region (110) anfangs von der radialen Stapellinie (120) des Strömungsprofils divergiert, und n die Ordnung des Polynoms ist;

    dadurch gekennzeichnet, dass:
    das Polynom hoher Ordnung durch Δy'=A* (Z-Zblend)n definiert ist, wobei Δy' eine Verschiebung der Stapelverteilung (48) in Spannrichtung in einer zu der Profilsehne (46, 310) senkrechten Richtung ist.


     
    2. Turbomaschinenschaufel (30; 32) nach Anspruch 1, wobei n größer oder gleich 2,1 ist.
     
    3. Turbomaschinenschaufel (30; 32) nach Anspruch 1, wobei n größer oder gleich 3 ist.
     
    4. Turbomaschinenschaufel (30; 32) nach Anspruch 1, 2 oder 3, wobei der Verschmelzungspunkt (112; 212) zumindest 70 % der Spannweite ist.
     
    5. Turbomaschinenschaufel (30; 32) nach Anspruch 4, wobei der Verschmelzungspunkt (112; 212) zumindest 80 % der Spannweite ist.
     
    6. Turbomaschinenschaufel (30; 32) nach einem der vorangehenden Ansprüche, umfassend einen Diederwinkel (D), der zwischen einem radialen Vektor (450), der aus der Spitzenregion (38) heraus projiziert ist, und einer Linie (460) gemessen ist, bei der es sich um eine Tangente der Spitzenregion (38) der Stapelverteilung (48) in Spannrichtung handelt, wobei der Diederwinkel in dem Bereich zwischen 15 Grad und 35 Grad liegt.
     
    7. Turbomaschinenschaufel (30; 32) nach einem der vorangehenden Ansprüche, wobei es sich bei dem Strömungsprofil (40; 220; 230) um eine Rotorschaufel (30) oder eine Statorschaufel (32) handelt.
     
    8. Turbomaschinenschaufel (30; 32) nach Anspruch 7, wobei sich das Strömungsprofil (40; 220; 230) in einem Verdichterabschnitt (14) eines Gasturbinentriebwerks (10) befindet.
     
    9. Turbomaschinenschaufel (30; 32) nach einem der vorangehenden Ansprüche, wobei sich die Stapelverteilung (48) in Spannrichtung von einer Wurzel (50) zu einer spitze (38) des Strömungsprofils (40; 220; 230) erstreckt und wobei es sich bei der Stapelverteilung (48) in Spannrichtung um eine Krümmung (116) handelt, die durch die Schwerpunkte (420) jeder von mehreren gestapelten planaren Abschnitten (400) des Strömungsprofils (40; 220; 230) verläuft.
     
    10. Turbomaschinenschaufel (30; 32) nach einem der vorangehenden Ansprüche, wobei es sich bei dem Ende der Stapelverteilung (48) in Spannrichtung um eine Spitzenregion (38) des Strömungsprofils (40; 220; 230) handelt.
     
    11. Turbomaschinenschaufel (30; 32) nach einem der Ansprüche 1 bis 9, wobei es sich bei dem Ende der Stapelverteilung (48) in Spannrichtung um eine Wurzelregion (50) des Strömungsprofils (40; 220; 230) handelt.
     


    Revendications

    1. Aube de turbomachine (30 ; 32) comprenant :

    un profil (40 ; 220 ; 230) s'étendant le long d'une distribution d'empilement dans le sens de l'envergure (48) entre un pied (50) et une région de pointe (38), ledit profil (40 ; 220 ; 230) incluant une ligne de corde (46, 310) s'étendant entre un bord d'attaque (42, 312) et un bord de fuite (44, 314) ; et

    un élément dièdre de la distribution d'empilement dans le sens de l'envergure (48), dans laquelle ledit élément dièdre est généralement situé au niveau d'une extrémité de la distribution d'empilement dans le sens de l'envergure (48), ledit élément dièdre étant en outre défini par une région incurvée (110) où la distribution d'empilement dans le sens de l'envergure (48) dudit profil (40 ; 220 ; 230) s'écarte d'une ligne d'empilement de profil radiale (120), une forme de ladite région incurvée (110) étant définie par un polynôme d'ordre élevé, et ledit polynôme d'ordre élevé est défini par un polynôme comprenant un terme polynomial A*(Z-Zmélange)n où, A est une constante, Z est un emplacement radial de la section de distribution d'empilement dans le sens de l'envergure (48), Zmélange est un emplacement radial d'un point de mélange (112 ; 212) de ladite distribution d'empilement dans le sens de l'envergure (48) où ladite région incurvée (110) s'écarte initialement de la ligne d'empilement de profil radiale (120), et n est l'ordre du polynôme ;

    caractérisée en ce que :
    ledit polynôme d'ordre élevé est défini par Ay'=A*(Z-Zmélange)n, où Δy' est un déplacement de la distribution d'empilement dans le sens de l'envergure (48) dans une direction perpendiculaire à la ligne de corde (46, 310).


     
    2. Aube de turbomachine (30 ; 32) selon la revendication 1, dans laquelle n est supérieur ou égal à 2,1.
     
    3. Aube de turbomachine (30 ; 32) selon la revendication 1, dans laquelle n est supérieur ou égal à 3.
     
    4. Aube de turbomachine (30 ; 32) selon la revendication 1, 2 ou 3, dans laquelle ledit point de mélange (112 ; 212) se situe au moins à 70 % de ladite envergure.
     
    5. Aube de turbomachine (30 ; 32) selon la revendication 4, dans laquelle ledit point de mélange (112 ; 212) se situe au moins à 80 % de ladite envergure.
     
    6. Aube de turbomachine (30 ; 32) selon l'une quelconque des revendications précédentes, comprenant un angle dièdre (D) mesuré entre un vecteur radial (450) projeté hors de la région de pointe (38) et une ligne (460) tangente par rapport à la région de pointe (38) de la distribution d'empilement dans le sens de l'envergure (48), dans laquelle ledit angle dièdre se situe dans la plage de 15 degrés à 35 degrés.
     
    7. Aube de turbomachine (30 ; 32) selon l'une quelconque des revendications précédentes, dans laquelle ledit profil (40 ; 220 ; 230) est une aube de rotor (30) ou une aube de stator (32).
     
    8. Aube de turbomachine (30 ; 32) selon la revendication 7, dans laquelle ledit profil (40 ; 220 ; 230) se situe dans une section de compresseur (14) d'un moteur à turbine à gaz (10) .
     
    9. Aube de turbomachine (30 ; 32) selon l'une quelconque des revendications précédentes, dans laquelle ladite distribution d'empilement dans le sens de l'envergure (48) s'étend d'un pied (50) à une pointe (38) dudit profil (40 ; 220 ; 230), et dans laquelle ladite distribution d'empilement dans le sens de l'envergure (48) est une courbe (116) passant à travers les centres de masse (420) de chacune de multiples sections planaires empilées (400) dudit profil (40 ; 220 ; 230) .
     
    10. Aube de turbomachine (30 ; 32) selon l'une quelconque des revendications précédentes, dans laquelle ladite extrémité de la distribution d'empilement dans le sens de l'envergure (48) est une région de pointe (38) dudit profil (40 ; 220 ; 230) .
     
    11. Aube de turbomachine (30 ; 32) selon l'une quelconque des revendications 1 à 9, dans laquelle ladite extrémité de la distribution d'empilement dans le sens de l'envergure (48) est une région de pied (50) dudit profil (40 ; 220 ; 230).
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description