(19)
(11)EP 2 823 513 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 13711534.1

(22)Date of filing:  11.03.2013
(51)Int. Cl.: 
H01L 31/0224  (2006.01)
H01L 31/0749  (2012.01)
H01L 31/073  (2012.01)
(86)International application number:
PCT/US2013/030186
(87)International publication number:
WO 2013/134762 (12.09.2013 Gazette  2013/37)

(54)

PHOTOVOLTAIC DEVICE AND METHOD OF MANUFACTURE

PHOTOVOLTAISCHE VORRICHTUNG UND DEREN HERSTELLUNGSVERFAHREN

DISPOSITIF PHOTOVOLTAÏQUE ET SON PROCÉDÉ DE FABRICATION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 09.03.2012 US 201261608918 P

(43)Date of publication of application:
14.01.2015 Bulletin 2015/03

(73)Proprietor: First Solar, Inc
Perrysburg, OH 43551 (US)

(72)Inventors:
  • ZHAO, Zhibo
    Novi, MI 48377 (US)
  • LEE, Chungho
    San Jose, CA 95134 (US)
  • BULLER, Benyamin
    Perrysburg, OH 43560 (US)
  • SHAO, Rui
    Sylvania, OH 43560 (US)
  • XIONG, Gang
    Maumee, OH 43537 (US)

(74)Representative: Thompson, Andrew John et al
Withers & Rogers LLP 4 More London Riverside
London SE1 2AU
London SE1 2AU (GB)


(56)References cited: : 
EP-A2- 2 387 079
DE-A1- 10 010 177
US-A1- 2005 284 518
US-A1- 2010 186 802
WO-A2-2009/006910
US-A- 4 388 483
US-A1- 2008 251 119
US-A1- 2011 308 584
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] This disclosure relates to photovoltaic devices with tunneling layers and methods for manufacturing photovoltaic devices with tunneling layers.

    BACKGROUND



    [0002] As used herein, the term tunneling refers to a quantum mechanical phenomenon where a sub-atomic particle, e.g., an electron, tunnels through a barrier, e.g., a classically forbidden energy state, that it classically could not surmount. A simple tunneling barrier can be created by separating two conductors with a very thin insulator. This can be represented in a semiconductor device by an electron tunneling from a semiconductor material through a dielectric material, which represents the energy barrier, to a conductive material on the other side. Even if the energy barrier presented by the dielectric material is higher than the electron energy, there is quantum-mechanically a finite probability of this transition through the dielectric layer.

    [0003] Thus, a tunneling layer provides a physical barrier to particles, but not an electrical barrier to sub-atomic electrons and electrical current. Such a tunneling layer will not increase resistance in an electrical device because electrons do not need to overcome an energy barrier to pass the tunneling layer. However, such a tunneling layer can be a physical barrier to the movement of particles larger than electrons, e.g., atoms or ions.

    [0004] In any event, a photovoltaic (PV) device is a device that can convert photo-radiation into electrical current. A typical PV device includes two conductive electrodes sandwiching a series of semiconductor layers, which provide a junction at which photoconversion occurs. During operation, photons pass through the PV device layers and are absorbed at or near the junction. This produces photo-generated electron-hole pairs, the movement of which, promoted by a built-in electric field, produces electric current that can be output from the device. A PV device can be a PV cell, PV module, etc. A PV module is made of a plurality of connected PV cells.

    [0005] PV modules can be formed on an optically transparent substrate of any suitable, transparent substrate material. Suitable materials include, for example, glass, such as soda-lime glass or float glass, etc., and polymer (sheet or plates). A first of the two conductive electrodes is provided over the transparent substrate. The first conductive electrode can be a transparent conductive oxide (TCO) layer (e.g., indium tin oxide). The TCO layer can also be associated with a barrier layer, which can be conductive, between it and the transparent substrate and a conductive oxide buffer layer over the TCO layer, which together provide a conductive TCO stack that functions as the first conductive electrode. Over the first conductive electrode (e.g., over the buffer layer if provided) a semiconductor layer can be provided. The semiconductor layer can be a bi-layer that includes a semiconductor window layer (e.g., cadmium sulfide) and a semiconductor absorber layer (e.g., cadmium telluride). Over the semiconductor layer, the second of the two conductive electrodes can be a back contact layer. A back cover can be provided over the back contact layer to provide support for the PV module. An interlayer can be provided between the back contact layer and the back cover and over the sides of the other layers of the PV module to seal the PV module from the environment.

    [0006] Efficiency, stability, and reliability in PV module performance are always goals in PV module manufacturing. These depend at least in part on materials used in the component layers of the PV module, the position of each layer relative to each other, and the thickness of each layer. For example, one way a PV module can be made more efficient is by thinning the window layer because the materials commonly used for this component (e.g., CdS) are fairly light absorbent, particularly to blue wavelength light. A thinner window layer can allow more light to be transmitted to the absorber layer, thereby allowing more photoconversion of electricity. However, in making the window thinner problems can occur, such as having missing portions of the window layer material where the underlying conductive TCO stack may come into direct electrical contact with the absorber layer. This electrical contact between the absorber layer and TCO stack could cause the PV module to malfunction. For example, electrical shunting (a conductive path through an otherwise nonconducting layer) or shorting (unwanted direct electrical contact between materials) between the absorber and conductive TCO stack could be exhibited, which can make the PV device unstable.

    [0007] Furthermore, during field operation of a PV module, it is possible for the materials of some layers within the module to migrate to other layers within the PV module under the influence of the electrical current caused by photoconversion. For example, Mg2+, Na+, and/or Ca2+ ions from the glass substrate of the PV module could migrate to the absorber layer, which could significantly degrade the performance of the PV module by changing the electrical characteristics of the absorber layer or making it sensitive to moisture.

    [0008] A PV module structure which mitigates against such shorting/shunting and particle migration problems is desired.

    [0009] US 2008/251119 discloses a method of making thermodynamically stable, diffusion-impeded barrier layers within, for example, a photovoltaic cell with a metal-containing electrical contact using exposure to fluorine. Exposing the cadmium telluride surface to fluorine creates a Te-poor barrier layer of cadmium fluoride. Once that barrier layer is formed, the metal-containing electrical contact may be applied or formed. The barrier layer allows tunneling current to occur between the p-type layer and the metal-containing electrical contact establishing a low-resistance, highly uniform, and thermally stable electrical contact.

    SUMMARY OF THE INVENTION



    [0010] The invention relates to a photovoltaic module structure according to claim 1, and a methof of forming a photovoltaic module according to claim 7.

    DESCRIPTION OF DRAWINGS



    [0011] 

    FIG. 1 is a perspective view of a portion of a PV module.

    FIG. 2 is a perspective view of a portion of a PV module.

    FIG. 3 is a perspective view of a portion of a PV module.

    FIG. 4 is a perspective view of a prefabricated portion of a PV module.

    FIG. 5 is a flowchart, illustrating a method that may be used to manufacture a PV module.

    FIG. 6 is a flowchart, illustrating a method that may be used to manufacture a PV module.

    FIG. 7 is a flowchart, illustrating a method that may be used to manufacture a PV module.

    FIG. 8 shows a PV module with multiple tunneling layers.

    FIG. 9 shows a PV module with multiple tunneling layers.


    DETAILED DESCRIPTION



    [0012] Referring to the figures, which use like reference numbers to denote like features, Fig. 1 shows an exemplary embodiment of a PV module 100. As noted above, the PV module 100 includes a substrate layer 105, a barrier layer 110, a TCO layer 115, a buffer layer 120, a window layer 130, an absorber layer 135, a back contact layer 140, an interlayer 145, and a back cover 150. These layers can be serially deposited. Due to particle mobility (i.e., movement of atoms and ions between the layers of the PV module 100) and the proximity of different materials in the layers of the PV module 100 to one another, electrical characteristics of the layers can degrade over time as atoms and ions move from their original layers to layers where they were not intended to be.

    [0013] During the PV module 100 fabrication steps involving thermal activations and also during field use of the PV module 100 when an electric current is present, migration of mobile particles, such as ions or atoms, is possible. During PV module 100 fabrication, the device may be annealed, which can cause particles, e.g., ions in the glass layer 105, to move among the layers of the PV module 100. During field use of the PV module 100, light exposure produces current and an electrical field within the module 100, which can also cause the migration of ions, such as Mg2+, Na+, and/or Ca2+ ions from the glass layer 105 or Cu2+ ions from the window layer 130, into other layers of the PV module 100, e.g., the absorber layer 135. Such movement of ionic or atomic particles in the module 100 is undesirable because it can change chemical and electrical properties of the layers from which the particles originate and, particularly, of the layers to which the particles move. This can degrade the functioning of the PV device.

    [0014] Reliability of the PV module 100 often depends on the condition of the absorber layer 135, which can change over time during field use of the PV module 100 if, e.g., particles from the glass layer 105 migrate to the absorber layer 135. For example, the absorber layer 135 typically has a threshold for sodium ion (Na+) concentration of about 1018/cm3. Above this threshold, performance of the PV module 100 degrades because the absorber layer 135 (preferably CdTe material) becomes more sensitive to moisture. Because during field use the PV module 100 is exposed to moisture, such sensitivity can make the PV module 100 less reliable. Preventing or reducing the movement of such ions to the absorber layer 135 can, thus, improve the PV module 100 reliability. Stability of the PV module 100 can similarly degrade over time because of such movement of conductive particles between the layers of the module 100.

    [0015] To improve performance, reliability, and stability of the PV module 100, a tunneling layer 125 is provided. In the exemplary embodiment shown in Fig. 1, the tunneling layer 125 is positioned between the buffer layer 120 of the TCO stack 122 and the semiconductor window layer 130. The tunneling layer 125 can maintain the desired material make-up and associated electrical properties of the layers of the PV module 100. In this way, the tunneling layer 125 acts as a barrier to migration of such mobile particles and can improve the stability (the long term maintenance of performance characteristics) and reliability (continued expected performance) of the PV module 100. Providing the tunneling layer 125 as a physical barrier to such particle movement can help maintain the condition of the module 100 as it was immediately after manufacture, thereby improving the stability of the PV module 100.

    [0016] As explained above, the tunneling layer 125 does not present an electrical barrier between the TCO layer 115 of the TCO stack 122, which is an electrode of the PV module 100, and the absorber layer 135 and is essentially electrically invisible to current, so it does not negatively effect the performance of the PV module 100. The inclusion of the tunneling layer 125 also allows the window layer 130 to be thinner without concern about the potential for unwanted electrical contact between the absorber layer 135 and the TCO stack 122, thereby improving PV module 100 performance as discussed above. Further, providing the tunneling layer 125 between the window 130 and buffer layer 120 helps to maintain the desired interfacial chemistry and reduce interfacial states of these layers at their boundary.

    [0017] The tunneling layer 125 can be an ultra thin dielectric layer positioned anywhere between the TCO layer 115 and the semiconductor absorber layer 135. As explained below, the precise positioning of the tunneling layer 125 between the TCO layer 115 and the semiconductor absorber layer 135 depends on the effects desired that the tunneling layer can provide.

    [0018] As mentioned above, electrons can pass between the absorber layer 135 and the TCO layer 115 through the tunneling layer 125 with little resistance by direct tunneling. Therefore, electrons from the conduction band (the range of electron energies, higher than that of the valence band where atom-bound electrons are found, sufficient to free an electron from binding with its individual atom and allow it to move freely within the atomic lattice of the material) in the semiconductor-based material of the absorber layer 135 can transfer across the tunneling layer 125 directly (i.e. without changing energy) into the conduction band of the conductive material of the TCO stack 122. The tunneling layer 125 is effectively electrically invisible to current within the PV module 100. The tunneling layer 125 is composed of a combination of two or more of silicon oxide, silicon nitride, silicon oxynitride, tantalum pentoxide, hafnium oxide, zirconium oxide, and aluminum oxide.

    [0019] The tunneling layer 125 can be of a variety of thicknesses, but is preferably between about 1Å (angstroms; 1 angstrom = 0.1 nanometers) to about 300Å thick, and more preferably is between about 5Å and 60Å thick. The thickness of the tunneling layer 125 can optionally depend in part on the materials in the absorber layer 135 of the PV module 100. Typically, an absorber layer 135 is doped with chlorine (e.g., using CdCl2) to activate the layer. A more heavy chlorine doping of the absorber layer 135 can cause fluxing (secondary growth and flow) of the associated window layer material (CdS), causing it to be absent in areas between the absorber 135 and TCO stack 122. In such a case, the tunneling layer 125 can and should be thicker, within the above-identified thickness range, to provide separation between the absorber 125 and TCO stack 122 to compensate for the potentially absent window layer material.

    [0020] The inclusion of the tunneling layer 125 in the PV module 100 can mitigate the effects that direct electrical shunting and shorting have on performance and reliability of the PV module 100, e.g., where areas of the TCO stack 122 and the semiconductor absorber layer 135 would otherwise come into electrical contact because of defects in the semiconductor window 130 where it is too thin or missing. This is an issue even where the TCO stack 122 includes a buffer layer 120 because the buffer layer 120 is conductive. Even though the tunneling layer 125 allows electrons to pass therethrough and is, therefore electrically invisible in terms of current, the dielectric nature of the tunneling layer 125 provides an insulating advantage in terms of controlling shorting and shunting between the TCO stack 122 and absorber layer 135.

    [0021] The tunneling layer 125 can also improve interfacial chemistry and reduce the loss of current due to recombination (electrons occupy the empty state associated with a hole) at interfacial defect states (which can provide electron traps) of the PV module 100. The interfaces of most interest are those between the semiconductor absorber layer 135 and window layer 130, and between the window layer 130 and the TCO stack 122. Interfacial chemistry refers to the chemical make-up and related properties of adjacent layers at their interface and the differences between the adjacent layers on either side of the interface. Interface defect states refers to the differences in energy levels between the conductor and valence bands of the materials on either side of a layer interface, e.g., the window 130 and absorber 135 interface, caused by material irregularities and defects in the layers at the interface.

    [0022] The tunneling layer 125 is particularly beneficial to a PV module 100 having a CdTe based semiconductor absorber layer 135 and a very thin CdS based semiconductor window layer 130; however, it also can be utilized in PV modules 100 based on other materials, e.g., CIGS-based absorber layer.

    [0023] In the alternative exemplary embodiment shown in Fig. 2, a PV module 100 is shown having similar layers to the structure shown in Fig. 1. In the PV module 100 of Fig. 2, the tunneling layer 125 is positioned between the window layer 130 and the absorber layer 135. Similar to the embodiment shown in Fig. 1, the tunneling layer 125 of Fig. 2 provides a physical barrier, which helps reduce the movement of particles, e.g., from the substrate 105 to the absorber layer 135, in the PV module 100. As also explained above, the tunneling layer 125 does not present an electrical barrier between the TCO layer 115 and the absorber layer 135 and is essentially electrically invisible to current. The inclusion of the tunneling layer 125 at this location also allows the window layer 130 to be thinner without concerns for potential unwanted electrical contacts between the absorber layer 135 and the TCO stack 122 in cases where the window layer 130 is so thin as to allow discontinuities to exist therein.

    [0024] Although the tunneling layer 125 of the PV module 100 shown in Fig. 2 is positioned at the P-N junction between the window 130 and absorber 135 layers, it does not impede photoconversion at the junction because the tunneling layer 125 is very thin and is not an electrical barrier to electron flow because of the tunneling phenomena. Therefore, there is still electrical communication between the window layer 130 and absorber layer 135 so as to provide a P-N junction. Further, providing the tunneling layer 125 between the window 130 and absorber 135 helps to maintain the desired interfacial chemistry (the chemical make up of the materials on either side of the interface) and reduce interfacial states (caused by defects and grain boundaries) of these layers at their boundary.

    [0025] In the alternative exemplary embodiment shown in Fig. 3, which has similar layers to the structure shown in Fig. 1, the tunneling layer 125 is positioned within the TCO stack 122, between the buffer layer 120 and the TCO layer 115. While, in this embodiment, the tunneling layer 125 is not between all parts of the TCO stack 122 and the semiconductor absorber layer 135 of the PV module 100, it still provides a particle barrier preventing mobile particle migration into the absorber layer 135, e.g., from the glass substrate 105, while allowing flow of electrical current between the TCO layer 115 of the TCO stack 122 and the absorber layer 135. The embodiments shown in Figs. 1-3 are examples and are not intended to limit the possible positions of the tunneling layer 125 within the PV module 100.

    [0026] In further exemplary embodiments, multiple tunneling layers can be provided in any suitable position in a photovoltaic module 100. For example, Fig. 8 shows a first tunneling layer 125a formed between the buffer layer 120 and the window layer 130, and a second tunneling layer 125b between the window layer 130 and the absorber layer 135. This combines the structures and advantages of Figs. 1 and 2, discussed above. Also, Fig. 9 shows a first tunneling layer 125a between the TCO layer 115 and the buffer layer 120, and a second tunneling layer 125b between the window layer 130 and the absorber layer 135. This combines the structures and advantages of Figs. 2 and 3, discussed above. These are examples of multi-tunneling-layer PV modules and are not limiting.

    [0027] As indicated above with reference to Figs. 1-3, 8, and 9, the tunneling layer 125 (125a, 125b) does not degrade the performance of the PV module 100. When used as shown in the Figs. 1, 2, 8, and 9 embodiments, the tunneling layer 125 (125a, 125b) also allows the thickness of the window layer 130 to be reduced, thereby increasing the efficiency of the PV module 100 by allowing more light to reach the absorber layer 135. Notably, with the addition of the tunneling layer 125 (125a, 125b) to the PV module 100, a preferred semiconductor window layer 130 including cadmium sulfide (CdS) can be as thin as about 50Å to about 1000Å, which is at least about 50% thinner and up to about 99.9% thinner than the typical thickness of a CdS window layer (e.g., about 100-5000Å) used in standard PV modules. It is believed that the window layer could even be eliminated or nearly eliminated if, for example a tunneling layer 125 (125a, 125b) of SnO2 of the preferred thickness (about 1-300Å) is utilized as in the exemplary embodiments of Figs. 1-3, 8, and 9. Consequently, the efficiency of the module 100 can be increased by this thinning or elimination of the window layer 130. The associated semiconductor absorber layer 135 can be cadmium telluride (CdTe), copper indium gallium (di)selenide (CIGS), or another suitable PV semiconductor.

    [0028] As discussed above, because the tunneling layer 125 (125a, 125b) can provide a physical barrier (and does not present an electrical current barrier), it can prevent or reduce ion and atomic particle transport during operation of the PV module 100. By doing so, the tunneling layer 125 (125a, 125b) can improve the stability and reliability of the PV module 100 by preventing doping profiles within the PV module 100 semiconductor layers (e.g. layers 130 and 135) from changing over time due to migration of ions or atoms. In one example, the tunneling layer 125 (125a, 125b) can prevent diffusion of copper atoms, which can originate from a CIGS-based absorber layer (e.g., layer 135), a Cu+ doped CdS-based window layer (e.g., layer 130), or the back contact (e.g., layer 140), to other layers of the PV module 100 on the opposite side of the tunneling layer 125 (125a, 125b) and, thus, change the electrical properties of the destination layer. As another example, the tunneling layer 125 (125a, 125b) can prevent the migration of sodium ions from the substrate (e.g., layer 105) to the absorber (e.g., layer 135) on the opposite side of the tunneling layer 125 (125a, 125b). As a result, the tunneling layer 125 (125a, 125b) can preserve the initial doping profile of the PV module's layers and may thereby maintain the PV module 100 efficiency and stability during use.

    [0029] The tunneling layer 125 (125a, 125b) of the exemplary embodiments shown in Figs. 1-3, 8, and 9 includes silicon oxide (SiOx), silicon nitride (Si3N4), silicon oxynitride (SiOxNy), tantalum pentoxide (Ta2O5), hafnium oxide (HfO2), zirconium oxide (ZrO2), aluminum oxide (Al2O3), or combinations thereof. The tunneling layer 125 (125a, 125b) can be formed through any suitable process such as, for example, evaporation deposition, DC pulsed sputtering, RF sputtering, AC sputtering, sputtering using a ceramic or metallic target, physical vapor deposition (PVD), atomic layer deposition, laser ablation, chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), metalorganic chemical vapor deposition (MOCVD), atmospheric pressure chemical vapor deposition (APCVD), close-spaced sublimation, electrodeposition, screen printing, chemical bath deposition, vapor transport deposition, or other suitable techniques.

    [0030] Generally, the layers and materials of the exemplary PV modules 100 shown in Figs. 1-3, 8, an 9 can be provided as follows. The glass substrate 105 of the PV modules 100 is an optically transparent substrate and can include an optically transparent material such as soda-lime glass (most common and least expensive form of glass, which usually contains 60-75% silica, 12-18% soda, 5-12% lime), solar float glass (a set of standard to high-transmittance soda-lime float glass), low iron glass (extremely clear glass with a minimal green cast), or borosilicate glass (silicate glass having at least 5% of boric oxide in its composition).

    [0031] Cadmium stannate (Cd2SnO4, CTO) can function well as a TCO layer 115 material, because it exhibits high optical transmission and low electrical sheet resistance (the measure of a sheet's opposition to electric current). Other preferred materials for the TCO layer 115 include a fluorine-doped tin oxide (F-SnO2) based material; in such a case, the tunneling layer 125 can be provided over the TCO layer 115 (e.g., Figs. 3 and 9). The TCO layer 115 can also be a cadmium stearate (CdSt) based material; if so, the TCO stack 122 can be annealed to achieve optimum TCO characteristics, e.g., high conductivity and low optical absorption, for a front contact. The TCO layer 115 can also be a cadmium tin (CdSn) based material, indium tin oxide (ITO) based material, cadmium indium oxide (CIO) based material, aluminum zinc oxide (AZO) based material, or other TCO materials. When used with the tunneling layer 125 (125a, 125b), the TCO layer 115 can be about 500Å to about 2000Å thick.

    [0032] The barrier layer 110, which can be provided as a part of the TCO stack 122 and in association with the TCO layer 115, can be silicon oxide (SiO2), silicon aluminum oxide (Si/Al2O3), tin oxide (SnO2), or combinations of these or other materials. The barrier layer 110 can be about 100Å to about 3000Å thick.

    [0033] The buffer layer 120, which can be deposited between the TCO layer 115 and the semiconductor window layer 130, includes tin oxide (SnO2), indium oxide (In2O3), or zinc tin oxide (ZnO:SnO2). The buffer layer 120 can be from about 50Å to about 2000Å thick and is preferably about 200Å to about 1000Å thick.

    [0034] The semiconductor window layer 130 is preferably an n-type semiconductor material. The semiconductor window layer 130 can include a thin layer of cadmium sulfide (CdS), for example, about 50Å to about 1500Å thick and, preferably, about 200Å to about 1000Å thick. The semiconductor window layer 130 can be formed using any suitable thin-film deposition technique.

    [0035] The semiconductor absorber layer 135 can be formed adjacent to the semiconductor window layer 130 and is preferably a p-type semiconductor material. The semiconductor absorber layer 135 can include a material such as, for example, cadmium telluride (CdTe), cadmium selenide, amorphous silicon (a-Si), copper indium (di)selenide (CIS), and copper indium gallium (di)selenide (CIGS). The semiconductor absorber layer 135 can be deposited using any suitable deposition technique. The semiconductor absorber layer 135 may have a thickness ranging from about 103Å to about 104Å (about 1 µm to about 10 µm) and, preferably, a thickness ranging from about 2x103Å to 5x103Å (2 µm to about 5 µm).

    [0036] The back electrical contact layer 140 can include one or more highly conductive materials. For example, the back contact layer 140 can include molybdenum, aluminum, copper, silver, gold, or any combination thereof. The interlayer 145 may serve as an electrical insulator and a moisture barrier between the back contact layer 140 and the back cover 150 and may be deposited and heated by a lamination process.

    [0037] The tunneling layer 125 (125a, 125b) can be formed during a PV module 100 manufacturing process where successive layers are applied to the substrate 105, which is typically a glass or other transparent material, until the PV module 100 is structurally complete. The PV module 100 can be fabricated beginning with either the substrate 105 or the back contact 140 with the other layers being formed thereover in sequence. Alternately, the tunneling layer 125 can be added during the preparation of a substrate that may be provided as a pre-fabricated unit to be used to produce a PV module 100, e.g., as shown in Fig. 4. Fig. 4 shows an example of a multilayer structure 500 having a tunneling layer 125 where, for example, a glass manufacturer may clean and prep a substrate 105, add the tunneling layer 125 after applying one or more barrier layers, e.g. 111, 112, adjacent to the substrate layer 105, a TCO layer 115 adjacent to the one or more of the barrier layers 111, 112, and a buffer layer 120 adjacent to the TCO layer 115. The tunneling layer 125 can be applied adjacent to the buffer layer 120. The multilayered structure 500 can then be provided as such a prepared unit to a PV device manufacturer who can further process the structure 500 by adding additional layers, e.g., semiconductor layers, 130, 135, back contact 140, interlayer 145, and back cover 150, as shown, for example, in Fig. 1, adjacent to the multilayered structure 500 to produce a functioning PV module 100.

    [0038] Various methods may be used to form a tunneling layer 125 for a photovoltaic module 100 (e.g., Figs. 1-3, 8, 9) or multilayered structure 500 (Fig. 4), non-limiting examples of which are described above. In one example, as shown in Fig. 5, a method for manufacturing a photovoltaic module 100 or multilayered structure 500 includes the following steps: (605) forming a TCO layer (e.g., 115); (610) forming a buffer layer (e.g., 120) adjacent to the TCO layer; and (615) forming a tunneling layer (e.g., 125) adjacent to the buffer layer. In another example, as shown in Fig. 6, a method for manufacturing a photovoltaic module 100 or multilayered structure 500 includes the following steps: (705) forming a tunneling layer (e.g., 125); (710) forming a window layer (e.g., 130) adjacent to the tunneling layer; and (715) forming an absorber layer (e.g., 135) adjacent to the window layer. In yet another example, as shown in Fig. 7, a method for manufacturing a photovoltaic module 100 or multilayered structure 500 includes the following steps: (805) forming a semiconductor window layer (e.g., 130); (810) forming a tunneling layer (e.g., 125) adjacent to the window layer; and (815) forming an absorber layer (e.g., 135) adjacent to the tunneling layer. Each of these method examples depicted in Figs. 5-7 may also be used in combination with other method examples shown in Figs. 5-7 to form structures as shown, for example, in Figs. 1-4, 8, and 9.

    [0039] Although the formation of the PV module 100 and/or multilayer structure 500 is/are described herein as occurring in a particular sequence or direction, for example, beginning with a substrate layer 105, forming layers, e.g., 110, 115, 120, 125, 130, 135, 140, in sequence adjacent to the substrate layer 105, and completing the module 100 with a back cover 150, this is not limiting. Formation of the module 100, for example, can be processed in a reverse sequence, beginning with a back cover 150 and forming layers, e.g., 140, 135, 130, 125, 120, 115, 110, in sequence over the back cover 150. A substrate layer 105 is then provided (in which case, it may be referred to as a superstrate). In addition, some layers illustrated may be omitted and the interlayer illustrated as 145 in Figs. 1-3, 8, and 9 may be provided only on the sides of the other material layers and not between the back contact 140 and the back cover 150.

    [0040] The term photovoltaic device may include any photovoltaic cell, collection of cells, module, device, or any portion or combination thereof. Also, each layer described herein may include more than one layer or film. Additionally, each layer can cover all or a portion of the device and/or all or a portion of the layer or substrate underlying the layer. For example, a "layer" can include any amount of any material that contacts all or a portion of a surface.

    [0041] Additionally, any layer can be formed through any suitable deposition technique such as, for example, physical vapor deposition, atomic layer deposition or epitaxy, laser ablation, chemical vapor deposition, close-spaced sublimation, electrodeposition, screen printing, sputtering (e.g., DC pulsed sputtering, RF sputtering, and AC sputtering), chemical bath deposition, or vapor transport deposition.

    [0042] Details of one or more embodiments are set forth in the accompanying drawings and description above. Other features, objects, and advantages will be apparent from the description, drawings, and claims. Although a number of embodiments of the invention have been described, it will be understood that various modifications can be made without departing from the scope of the invention. Also, it should also be understood that the appended drawings are not necessarily to scale, presenting a somewhat simplified representation of various features and basic principles of the invention. The invention is not intended to be limited by any portion of the disclosure and is defined only by the appended claims.


    Claims

    1. A photovoltaic module structure (100), comprising:

    a substrate (105);

    a transparent conductive oxide layer (115) over the substrate (105);

    a buffer layer (120) over the transparent conductive oxide layer (115), the buffer layer (120) comprising at least one of tin oxide, indium oxide, and zinc tin oxide;

    a first semiconductor layer (130) over the buffer layer (120);

    a second semiconductor layer (135) over the first semiconductor layer (130); and

    a dielectric tunnelling layer (125) between the transparent conductive oxide layer (115) and the second semiconductor layer (135), wherein the dielectric tunneling layer (125) comprises a material selected from the group consisting of silicon oxide, silicon nitride, silicon oxynitride, tantalum pentoxide, hafnium oxide, zirconium oxide, aluminum oxide, and combinations of these materials.


     
    2. The structure (100) of claim 1, wherein the dielectric tunnelling layer (125) is between the transparent conductive oxide layer (115) and the buffer layer (120).
     
    3. The structure (100) of claim 1, wherein the dielectric tunnelling layer (125) is between the first semiconductor layer (130) and the buffer layer (120).
     
    4. The structure (100) of claim 1, wherein the dielectric tunnelling layer is a first dielectric tunnelling layer (125a), the structure (100) further comprising a second dielectric tunnelling layer (125b) between the transparent conductive oxide layer (115) and the second semiconductor layer (135).
     
    5. The structure (100) of claim 4, wherein the first dielectric tunnelling layer (125a) is between the transparent conductive oxide layer (115) and the first semiconductor layer (130), and wherein the second dielectric tunnelling layer (125b) is between the first semiconductor layer (130) and the second semiconductor layer (135).
     
    6. The structure (100) of claim 1, wherein the dielectric tunnelling layer (125) is about 1 Å to about 300 Å thick.
     
    7. A method of forming a photovoltaic module (100), comprising:

    forming a transparent conductive oxide layer (115) over a substrate (105);

    forming a buffer layer (120) over the transparent conductive oxide layer (115), wherein the buffer layer (120) comprises at least one of tin oxide, indium oxide, and zinc tin oxide;

    forming a semiconductor window layer (130) over the buffer layer (120);

    forming a semiconductor absorber layer (135) over the semiconductor window layer (135); and

    forming a dielectric tunnelling layer (125) between the transparent conductive oxide (125) layer and the semiconductor absorber layer (135), wherein the dielectric tunneling layer (125) comprises a material selected from the group consisting of silicon oxide, silicon nitride, silicon oxynitride, tantalum pentoxide, hafnium oxide, zirconium oxide, aluminum oxide, and combinations of these materials.


     
    8. The method of claim 7, wherein the dielectric tunnelling layer (125) is formed between the transparent conductive oxide layer (115) and the buffer layer (120).
     
    9. The method of claim 7, wherein the dielectric tunnelling layer (125) is formed between the semiconductor window layer (130) and the buffer layer (120).
     
    10. The method of claim 7, wherein the dielectric tunnelling layer is a first dielectric tunnelling layer (125a), the method further comprising forming a second dielectric tunnelling layer (125b) between the transparent conductive oxide layer (115) and the semiconductor absorber layer (135).
     
    11. The method of claim 10, wherein the first dielectric tunnelling layer (125a) is formed between the transparent conductive oxide layer (115) and the buffer layer (120), and wherein the second dielectric tunnelling layer (125b) is formed between the semiconductor window layer (130) and the semiconductor absorber layer (135).
     
    12. The method of claim 10, wherein the first dielectric tunnelling layer (125a) is formed between the buffer layer (120) and the semiconductor window layer (130).
     
    13. The method of claim 7, wherein the dielectric tunnelling layer (125) is about 1 Å to about 300 Å thick.
     


    Ansprüche

    1. Photovoltaikmodulstruktur (100), Folgendes umfassend:

    ein Substrat (105);

    eine transparente, leitfähige Oxidschicht (115) über dem Substrat (105);

    eine Pufferschicht (120) über der transparenten, leitfähigen Oxidschicht (115), wobei die Pufferschicht (120) mindestens eines von Zinnoxid, Indiumoxid, und Zink-Zinn-Oxid umfasst;

    eine erste Halbleiterschicht (130) über der Pufferschicht (120);

    eine zweite Halbleiterschicht (135) über der ersten Halbleiterschicht (130); und

    eine dielektrische Tunnelschicht (125) zwischen der transparenten, leitfähigen Oxidschicht (115) und der zweiten Halbleiterschicht (135), wobei die dielektrische Tunnelschicht (125) ein Material umfasst, das aus der Gruppe ausgewählt ist, die aus Folgendem besteht: Siliciumoxid, Siliciumnitrid, Siliciumoxynitrid, Tantalpentoxid, Hafniumoxid, Zirconiumoxid, Aluminiumoxid, und Kombinationen dieser Materialien.


     
    2. Struktur (100) nach Anspruch 1, wobei sich die dielektrische Tunnelschicht (125) zwischen der transparenten, leitfähigen Oxidschicht (115) und der Pufferschicht (120) befindet.
     
    3. Struktur (100) nach Anspruch 1, wobei sich die dielektrische Tunnelschicht (125) zwischen der ersten Halbleiterschicht (130) und der Pufferschicht (120) befindet.
     
    4. Struktur (100) nach Anspruch 1, wobei die dielektrische Tunnelschicht eine erste dielektrische Tunnelschicht (125a) ist, wobei die Struktur (100) ferner eine zweite dielektrische Tunnelschicht (125b) zwischen der transparenten, leitfähigen Oxidschicht (115) und der zweiten Halbleiterschicht (135) umfasst.
     
    5. Struktur (100) nach Anspruch 4, wobei sich die erste dielektrische Tunnelschicht (125a) zwischen der transparenten, leitfähigen Oxidschicht (115) und der ersten Halbleiterschicht (130) befindet, und wobei sich die zweite dielektrische Tunnelschicht (125b) zwischen der ersten Halbleiterschicht (130) und der zweiten Halbleiterschicht (135) befindet.
     
    6. Struktur (100) nach Anspruch 1, wobei die dielektrische Tunnelschicht (125) ungefähr 1 Å bis ungefähr 300 Å dick ist.
     
    7. Verfahren zum Bilden eines Photovoltaikmoduls (100), Folgendes umfassend:

    Bilden einer transparenten, leitfähigen Oxidschicht (115) über einem Substrat (105);

    Bilden einer Pufferschicht (120) über der transparenten, leitfähigen Oxidschicht (115), wobei die Pufferschicht (120) mindestens eines von Zinnoxid, Indiumoxid, und Zink-Zinn-Oxid umfasst;

    Bilden einer Halbleiterfensterschicht (130) über der Pufferschicht (120);

    Bilden einer Halbleiterabsorberschicht (135) über der Halbleiterfensterschicht (135); und

    Bilden einer dielektrischen Tunnelschicht (125) zwischen der transparenten, leitfähigen Oxidschicht (125) und der Halbleiterabsorberschicht (135), wobei die dielektrische Tunnelschicht (125) ein Material umfasst, das aus der Gruppe ausgewählt ist, die aus Folgendem besteht: Siliciumoxid, Siliciumnitrid, Siliciumoxynitrid, Tantalpentoxid, Hafniumoxid, Zirconiumoxid, Aluminiumoxid, und Kombinationen dieser Materialien.


     
    8. Verfahren nach Anspruch 7, wobei die dielektrische Tunnelschicht (125) zwischen der transparenten, leitfähigen Oxidschicht (115) und der Pufferschicht (120) gebildet ist.
     
    9. Verfahren nach Anspruch 7, wobei die dielektrische Tunnelschicht (125) zwischen der Halbleiterfensterschicht (130) und der Pufferschicht (120) gebildet ist.
     
    10. Verfahren nach Anspruch 7, wobei die dielektrische Tunnelschicht eine erste dielektrische Tunnelschicht (125a) ist, wobei das Verfahren ferner das Bilden einer zweiten dielektrischen Tunnelschicht (125b) zwischen der transparenten, leitfähigen Oxidschicht (115) und der Halbleiterabsorberschicht (135) umfasst.
     
    11. Verfahren nach Anspruch 10, wobei die erste dielektrische Tunnelschicht (125a) zwischen der transparenten, leitfähigen Oxidschicht (115) und der Pufferschicht (120) gebildet ist, und wobei die zweite dielektrische Tunnelschicht (125b) zwischen der Halbleiterfensterschicht (130) und der Halbleiterabsorberschicht (135) gebildet ist.
     
    12. Verfahren nach Anspruch 10, wobei die erste dielektrische Tunnelschicht (125a) zwischen der Pufferschicht (120) und der Halbleiterfensterschicht (130) gebildet ist.
     
    13. Verfahren nach Anspruch 7, wobei die dielektrische Tunnelschicht (125) ungefähr 1 Å bis ungefähr 300 Å dick ist.
     


    Revendications

    1. Structure de module photovoltaïque (100), comprenant :

    un substrat (105) ;

    une couche d'oxyde transparente conductrice (115) sur le substrat (105) ;

    une couche tampon (120) sur la couche d'oxyde transparente conductrice (115), la couche tampon (120) comprenant au moins l'un de l'oxyde d'étain, de l'oxyde d'indium et de l'oxyde de zinc-étain ;

    une première couche semi-conductrice (130) sur la couche tampon (120) ;

    une seconde couche semi-conductrice (135) sur la première couche semi-conductrice (130) ; et

    une couche à effet tunnel diélectrique (125) entre la couche d'oxyde transparente conductrice (115) et la seconde couche semi-conductrice (135), dans laquelle la couche à effet tunnel diélectrique (125) comprend un matériau choisi dans le groupe constitué de l'oxyde de silicium, du nitrure de silicium, de l'oxynitrure de silicium, du pentoxyde de tantale, de l'oxyde d'hafnium, de l'oxyde de zirconium, de l'oxyde d'aluminium et de combinaisons de ces matériaux.


     
    2. Structure (100) selon la revendication 1, dans laquelle la couche à effet tunnel diélectrique (125) est entre la couche d'oxyde transparente conductrice (115) et la couche tampon (120) .
     
    3. Structure (100) selon la revendication 1, dans laquelle la couche à effet tunnel diélectrique (125) est entre la première couche semi-conductrice (130) et la couche tampon (120).
     
    4. Structure (100) selon la revendication 1, dans laquelle la couche à effet tunnel diélectrique est une première couche à effet tunnel diélectrique (125a), la structure (100) comprenant en outre une seconde couche à effet tunnel diélectrique (125b) entre la couche d'oxyde transparente conductrice (115) et la seconde couche semi-conductrice (135).
     
    5. Structure (100) selon la revendication 4, dans laquelle la première couche à effet tunnel diélectrique (125a) est entre la couche d'oxyde transparente conductrice (115) et la première couche semi-conductrice (130), et dans laquelle la seconde couche à effet tunnel diélectrique (125b) est entre la première couche semi-conductrice (130) et la seconde couche semi-conductrice (135).
     
    6. Structure (100) selon la revendication 1, dans laquelle la couche à effet tunnel diélectrique (125) a une épaisseur d'environ 1 Å à environ 300 Â.
     
    7. Procédé de formation d'un module photovoltaïque (100), comprenant :

    la formation d'une couche d'oxyde transparente conductrice (115) sur un substrat (105) ;

    la formation d'une couche tampon (120) sur la couche d'oxyde transparente conductrice (115), dans lequel la couche tampon (120) comprend au moins l'un de l'oxyde d'étain, de l'oxyde d'indium et de l'oxyde de zinc-étain ;

    la formation d'une couche de fenêtre semi-conductrice (130) sur la couche tampon (120) ;

    la formation d'une couche d'absorbeur semi-conductrice (135) sur la couche de fenêtre semi-conductrice (135) ; et

    la formation d'une couche à effet tunnel diélectrique (125) entre la couche d'oxyde transparente conductrice (125) et la couche d'absorbeur semi-conductrice (135), dans lequel la couche à effet tunnel diélectrique (125) comprend un matériau choisi dans le groupe constitué de l'oxyde de silicium, du nitrure de silicium, de l'oxynitrure de silicium, du pentoxyde de tantale, de l'oxyde d'hafnium, de l'oxyde de zirconium, de l'oxyde d'aluminium et de combinaisons de ces matériaux.


     
    8. Procédé selon la revendication 7, dans lequel la couche à effet tunnel diélectrique (125) est formée entre la couche d'oxyde transparente conductrice (115) et la couche tampon (120) .
     
    9. Procédé selon la revendication 7, dans lequel la couche à effet tunnel diélectrique (125) est formée entre la couche de fenêtre semi-conductrice (130) et la couche tampon (120).
     
    10. Procédé selon la revendication 7, dans lequel la couche à effet tunnel diélectrique est une première couche à effet tunnel diélectrique (125a), le procédé comprenant en outre la formation d'une seconde couche à effet tunnel diélectrique (125b) entre la couche d'oxyde transparente conductrice (115) et la couche d'absorbeur semi-conductrice (135).
     
    11. Procédé selon la revendication 10, dans lequel la première couche à effet tunnel diélectrique (125a) est formée entre la couche d'oxyde transparente conductrice (115) et la couche tampon (120), et dans lequel la seconde couche à effet tunnel diélectrique (125b) est formée entre la couche de fenêtre semi-conductrice (130) et la couche d'absorbeur semi-conductrice (135) .
     
    12. Procédé selon la revendication 10, dans lequel la couche à effet tunnel diélectrique (125a) est formée entre la couche tampon (120) et la couche de fenêtre semi-conductrice (130).
     
    13. Procédé selon la revendication 7, dans lequel la couche à effet tunnel diélectrique (125) a une épaisseur d'environ 1 Å à environ 300 Å.
     




    Drawing






























    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description