(19)
(11)EP 2 825 756 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
16.10.2019 Bulletin 2019/42

(21)Application number: 13712436.8

(22)Date of filing:  12.03.2013
(51)International Patent Classification (IPC): 
F02F 3/00(2006.01)
F02F 3/16(2006.01)
(86)International application number:
PCT/US2013/030315
(87)International publication number:
WO 2013/138261 (19.09.2013 Gazette  2013/38)

(54)

ENGINE PISTON

MOTORKOLBEN

PISTON DE MOTEUR


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 12.03.2012 US 201261609594 P

(43)Date of publication of application:
21.01.2015 Bulletin 2015/04

(73)Proprietor: Tenneco Inc.
Lake Forest, IL 60045 (US)

(72)Inventors:
  • BRANDT, Marc
    Wixom, MI 48393 (US)
  • MILLER, Andrew, J.
    Plymouth, MI 48170 (US)

(74)Representative: Hoffmann Eitle 
Patent- und Rechtsanwälte PartmbB Arabellastraße 30
81925 München
81925 München (DE)


(56)References cited: : 
EP-A1- 0 748 931
JP-A- H0 315 650
JP-A- H06 193 734
DE-C1- 19 734 654
JP-A- H06 193 733
JP-U- S6 425 446
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    1. Field of the Invention



    [0001] The present invention relates generally to pistons for internal combustion engines and more particularly to pistons made of steel.

    2. Related Art



    [0002] In their continuing efforts to improve power production and fuel efficiency, many engine manufactures are incorporating advanced technologies such as direct injection, turbochargers and super-chargers into their gasoline-fueled engines. Often, these and other advanced technologies improve the engine's performance by increasing the pressures and temperatures of combustion within the engine's cylinder bore. However, conventional aluminum pistons may not be able to perform adequately in these increased temperatures and pressures. In order to withstand and perform at the increased combustion temperatures and pressures, some piston manufacturers have taken to using steel to make their pistons. In order to cool their steel pistons, many piston manufacturers incorporate one or more oil galleries into their piston bodies to retain a cooling oil at or near the upper crown portions of their piston bodies.

    [0003] DE 197 34 654 C1 is related to a one piece piston body having a crown portion, a pair of skirt portions and a pair of pin bosses. JP H06 193 733 A and JP H06 193 734 A are related to similar pistons.

    SUMMARY OF THE INVENTION



    [0004] An aspect of the present invention provides for a piston for an internal combustion engine in accordance with claim 1. Preferred embodiments are described in the further claims. The piston particularly includes a one piece piston body fabricated of steel and including a crown portion, a pair of diametrically opposed skirt portions depending from the crown portion and a pair of pin boss panels. The crown portion has an upper combustion surface, a lower surface with an undercrown surface area and an outer annular ring belt with at least one ring groove. The pin boss panels depend from the crown portion and extend in spaced relationship with one another between the skirt portions. Each pin boss panel includes a pin boss with a pin bore, and the pin bores are aligned with one another for receiving and supporting a wrist pin to a connect the piston body with a connecting rod. Each pin boss panel also has at least one recess located vertically between the associated one of the pin bores and the crown portion to increase the undercrown surface area. During operation of an engine, the increased undercrown surface area allows for improved cooling of the crown portion by providing a larger surface for receiving a jet of cooling oil which extracts heat from the crown portion.

    [0005] According to another aspect of the present invention, the recess between the pin boss and the crown portion is a window to further increase the undercrown surface area and provide for further improved cooling of the crown portion during operation of the engine.

    [0006] According to yet another aspect of the present invention, each pin boss panel includes a pair of side windows disposed adjacent to the window to still further increase the undercrown surface area and provide for even further improved cooling of the crown portion during operation of the engine.

    [0007] According to still another aspect of the present invention, each of the skirt portions is generally trapezoidal in shape with the narrow dimension of the trapezoid being integrally connected with the ring belt of the crown portion. This provides for an additional increase in the undercrown surface area by exposing a greater length of a lower surface of the ring belt to the cooling oil and provides for still further improved cooling of the crown portion during operation of the engine.

    [0008] According to a further aspect of the present invention, each of the skirt portions has a stiffening rib with an increased thickness which extends substantially between the pin boss panels and is located vertically at or below a pin bore axis that extends through the aligned pin bores. The stiffening ribs allow the skirt portions to have very thin walls and also have sufficient rigidity to withstand high combustion loads and to distribute the skirt loads.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0009] These and other features and advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:

    Figure 1 is an upper perspective view of a first exemplary embodiment of a piston body;

    Figure 2 is a side elevation view of the first exemplary embodiment of the piston body;

    Figure 3 is a lower perspective view of the first exemplary embodiment of the piston body;

    Figure 4 is another lower perspective view of the first exemplary embodiment of the piston body taken from a different angle from Figure 3;

    Figure 5 is yet another lower perspective view of the first exemplary embodiment of the piston body taken from a different angle from Figures 3 and 4;

    Figure 6 is a cross-sectional view of the first exemplary embodiment of the piston body taken through line 6-6 of Figure 4;

    Figure 7 is a perspective, fragmentary and sectional view of a second exemplary embodiment of the piston body;

    Figure 8 is a perspective, fragmentary and sectional view of a third exemplary embodiment of the piston body;

    Figure 9 is another perspective, fragmentary and sectional view of the third exemplary embodiment of the piston body;

    Figure 10 is a lower perspective view of a fourth exemplary embodiment of the piston body; and

    Figure 11 is a cross-sectional view of the fourth exemplary embodiment of the piston body taken through line 11-11 of Figure 10.


    DESCRIPTION OF THE ENABLING EMBODIMENT



    [0010] Referring to the Figures, wherein like numerals indicate corresponding parts throughout the several views, a first exemplary embodiment of a piston for an internal combustion engine is generally shown in Figure 1. The piston has a one piece piston body 20 which is formed of steel and is dimensionally compact to have a very low weight. Additionally, the piston body 20 is designed to maximize an undercrown surface area for optimized cooling of the piston body 20 with a flow of cooling oil from below. This allows for the piston body 20 to operate in the increased combustion temperatures and pressures of modern internal combustion engines. The piston body 20 is preferably configured for use in gasoline fueled spark ignition four stroke internal combustion engines but could alternately be used in diesel fueled engines, two stroke engines, and/or compression ignition engines.

    [0011] Referring still to Figure 1, the one piece piston body 20 has a crown portion 24 with an upper combustion surface 26 and an outer annular ring belt 28 with a plurality of ring grooves 30 (three being shown in the exemplary embodiment) for receiving piston rings (not shown) to establish a seal between the piston body 20 and a cylinder wall (not shown). As best shown in Figure 3, the ring grooves 30 are spaced vertically from one another by lands 32. The lower surface of the crown portion 24 is an undercrown surface 33 which, during operation of the engine, receives a jet of cooling oil to cool the piston body 20. During operation of the engine, the upper combustion surface 26 of the crown portion 24 is the portion that is directly exposed to the combustion of fuel and air within a combustion cylinder of the engine, and therefore, it is desirable to maximize the area of the undercrown surface 33 to maximize the transfer of heat to the cooling oil and away from the crown portion 24. As best shown in Figure 1, in the first exemplary embodiment, the upper combustion surface 26 is generally flat. However, it should be appreciated that the upper combustion surface 26 could alternately be provided with a combustion bowl or any desirable feature or features.

    [0012] The piston body 20 also includes a pair of diametrically opposed skirt portions 34 which extend downwardly from the ring belt 28 of the crown portion 24. The skirt portions 34 of the exemplary embodiment are generally trapezoidal in shape with a narrower dimension at the upper end, which is integrally connected with the ring belt 28, and a wider dimension at the lower end. During operation of the engine, having the narrow dimension at the upper end increases the undercrown surface area of the crown portion 24 by exposing a greater length of the bottom of the ring belt 28 to the jet of cooling oil, thereby increasing the transfer of heat from the crown portion 24 to the cooling oil. In the first exemplary embodiment of the piston body 20, the narrower upper end of each skirt portion 34 blends generally smoothly with the outer wall surface of the ring belt 28 of the crown portion 24.

    [0013] The piston body 20 further includes a pair of pin boss panels 36 which depend from the crown portion 24 and extend downwardly therefrom. The pin boss panels 36 are spaced from one another and extend in a generally linear fashion between adjacent ends, or edges, of the skirt portions 34. A pin boss 38 extends through each of the pin boss panels 36, and each pin boss 38 has a pin bore 40. The pin bores 40 are aligned with one another along a pin bore axis A for receiving and supporting a wrist pin (not shown) to couple the piston body 20 with a connecting rod (not shown) in an internal combustion engine. As shown in Figure 5, each pin bores 40 extend along the pin bore axis A by a width which is greater than the width of the adjacent portions 24, 34 of the pin boss panels 36. Each pin boss panel 36 also includes a support feature 42 which extends vertically upwardly from the pin boss 38 to the undercrown surface 33 of the crown portion 24 to provide additional support for the pin bosses 38. The pin bosses 38 preferably have a thickness of approximately 2 to 4% of the outer diameter D of the piston body 20.

    [0014] The vertical distance between the upper combustion surface 26 on the crown portion 24 and the pin bore axis A, a measurement which is commonly known as compression height HC, is preferably in the range of 25 to 35% of the outer diameter D of the piston body 20. As such, the piston body 20 is very low profile as compared to many conventional pistons. The lack of any cooling galleries, which are found on many conventional steel pistons, contributes to the low profile of the piston body 20 of the first exemplary embodiment. Additionally, the thickness of the crown portion 24 is preferably in the range of 5 to 10% of the compression height HC, the lower length of the skirt portion 34 (the distance from the bottom of the skirt to the pin bore axis A) is preferably in the range of 50 to 60% of the compression height HC, and at least one of the lands 32 in the ring belt 28 preferably has a height in the range of 2 to 5% of the compression height HC.

    [0015] Referring still to Figure 5, the pin boss panels 36 are undercut to provide a recess 44 above the pin boss 38 bores and below the crown portion 24 to increase the undercrown surface 22 area, thereby increasing the transfer of heat from the crown portion 24 to the cooling oil during operation of the engine. In addition to increasing the undercrown surface area, the recesses 44 also reduce the total weight of the piston body 20, which leads to other performance advantages, and reduce the material costs of the piston body 20. Preferably, the undercrown surface area is greater than or equal to 0.5D2∗π/4 with D being the outer diameter D (shown in Figure 6) of the piston body 20. In the first exemplary embodiment of the piston body 20, each pin boss panel 36 has recesses 44 on both its inner and outer surfaces to further increase the undercrown surface area.

    [0016] As best shown in Figure 4, the skirt portions 34 are thin walled and preferably have a thickness in the range of 1.5 to 5% of the outer diameter D of the piston body 20. This provides for reduced weight in the piston body 20 and also reduced material costs when making the piston body 20. Additionally, each of the skirt portions 34 has a stiffening rib 46 with an increased thickness for structurally reinforcing the skirt portions 34. The stiffening ribs 46 are preferably generally planar with or vertically below the pin bore axis A to provide the structural reinforcement in a lower area of the piston body 20. As such, the stiffening ribs 46 allow the skirt portions 34 to have very thin walls but with sufficient rigidity to support high combustion loads and distribute the skirt loads. Preferably, the middle areas of the stiffening ribs 46 are positioned approximately zero to ten millimeters (0-10 mm) below the pin bore axis A. The stiffening ribs 46 extend in a circumferential direction along the length of the skirt portions 34 and between the pin boss panels 36.

    [0017] Referring now to Figure 7, a second exemplary embodiment of the piston body 120 is generally shown with like numerals, separated by a factor of 100, indicating corresponding parts with the first exemplary embodiment described above. In this exemplary embodiment, the pin boss panels 136 each have only a single recess 144, and each recess 144 extends the full width of the corresponding pin boss 138 and is closed at its outer side by the ring belt 128.

    [0018] Referring now to Figures 8 and 9, a third exemplary embodiment of the piston body 220 is generally shown with like numerals, separated by a factor of 200, indicating corresponding parts with the first exemplary embodiment described above. In this exemplary embodiment, the recesses 244 on the pin boss panels 236 are central windows 244 which extend entirely through the pin boss panels 236. This embodiment also includes a pair of side windows 248 spaced on opposite side of the central windows 244. As with the central windows 244, the side windows 248 extend vertically to the undercrown surface 233 of the crown portion 24, thereby increasing the undercrown surface area as compared to the first and second exemplary embodiments. As shown, the central windows 244 and the side windows 248 are substantially entirely disposed vertically above the pin bores 240. Additionally, the upper combustion surface 226 of this exemplary embodiment is formed with a combustion bowl 250.

    [0019] Referring now to Figures 10 and 11, a fourth exemplary embodiment of the piston body 320 is generally shown with like numerals, separated by a factor of 300, indicating corresponding parts with the first exemplary embodiment described above. The fourth exemplary embodiment is similar to the third exemplary embodiment but the side windows 348 are greatly increased in size and they extend vertically to below the tops of the pin bores 340. This further increases the undercrown surface area as compared to the first, second and third exemplary embodiments. Like the third exemplary embodiment discussed above, the fourth exemplary embodiment also includes a combustion bowl 350 in the upper combustion surface 326.

    [0020] The use of steel allows the piston bodies 20, 120, 220, 320 of the above-discussed embodiments to perform in higher combustion pressures and temperatures as compared to aluminum piston bodies and also for higher pin boss loading and smaller wrist pins. The use of steel also allows for thinner walls, and as such, the masses of the exemplary steel piston bodies 20, 120, 220, 320 are comparable to aluminum pistons. Unlike conventional steel pistons, the steel piston bodies 20, 120, 220, 320 of the exemplary embodiments do not have any oil galleries. Rather than with cooling galleries, the needed cooling is achieved by the high undercrown surface area to receive a jet of cooling oil. The lack of cooling galleries also allows the piston bodies 20, 120, 220, 320 to have a much smaller compression height HC as compared to conventional steel pistons.

    [0021] The piston body 20, 120, 220, 320 may be formed through any suitable forming process or combination of forming processes including, for example, casting, forging, machining from a billet, etc. The piston body 20, 120, 220, 320 may also be put through one or more heat treating operations, if desired.


    Claims

    1. A piston for an internal combustion engine, comprising:

    a one piece piston body (20) fabricated of steel and including a crown portion (24), a pair of diametrically opposed skirt portions (34) depending from said crown portion, and a pair of pin boss panels (36);

    said crown portion (24) having an upper combustion surface (26), a lower surface having an undercrown surface area (33), and an outer annular ring belt (28) with at least one ring groove (30); and

    said pin boss panels (36) depending from said crown portion (24) and extending in spaced relationship with one another between said skirt portions (34), each pin boss panel (36) including a pin boss (38) having a pin bore (40), said pin bores (40) being aligned with one another for receiving a wrist pin, and each pin boss panel (36) presenting at least one recess (44) located between the associated one of said pin boss bores (40) and said crown portion (24) to increase said undercrown surface area (33) for improved cooling of said crown portion (24),

    wherein said crown portion (24) has an outer diameter (D) and said piston body (20) has a compression height (Hc) that is in the range of 25 to 35% of said outer diameter (D) of said crown portion (24), and

    wherein said piston body (20) is without any oil galleries.


     
    2. The piston as set forth in claim 1 wherein said at least one recess (44) on each pin boss panel (36) is a single recess, is on an inner surface, and extends substantially the entire length of the adjacent pin boss (38).
     
    3. The piston as set forth in claim 1 wherein said at least one recess (44) on each pin boss panel (36) is further defined as a pair of recesses with one of said recesses being on an inner surface of said pin boss panel (36) and the other of said recesses being on an outer surface of said pin boss panel (36) to further increase said under crown surface area.
     
    4. The piston as set forth in claim 1 wherein said at least one recess (44) on each pin boss panel (36) is a central window that extends between inner and outer surfaces of said pin boss panel (36) to further increase said under crown surface area.
     
    5. The piston as set forth in claim 4 wherein each of said pin boss panels (36) further includes a pair of side windows disposed on either side of said central window to further increase said under crown surface area.
     
    6. The piston as set forth in claim 5 wherein said side windows extend vertically below top portions of said pin bores (40).
     
    7. The piston as set forth in claim 1 wherein said crown portion (24) has an outer diameter (D) and said undercrown surface area (33) is at least 0.5D2∗π/4 where D is said outer diameter of said crown portion (24).
     
    8. The piston as set forth in claim 1 wherein each of said skirt portions (34) has a stiffening rib (46) with an increased thickness that extends between said pin boss panels (36).
     
    9. The piston as set forth in claim 1 wherein said pin bores (40) are aligned with one another by a pin bore axis and wherein said stiffening rib (46) is at or below said pin bore axis.
     
    10. The piston as set forth in claim 9 wherein said stiffening rib (46) is 0-10 mm below said pin bore axis.
     
    11. The piston as set forth in claim 1 wherein said skirt portions (34) are generally trapezoidal in shape with a narrow dimension being integrally connected with said ring belt (28).
     
    12. The piston as set forth in claim 1 wherein said pin boss panels (36) extend between adjacent ends of said skirt portions (34).
     


    Ansprüche

    1. Kolben für einen Verbrennungsmotor, umfassend:

    einen einstückigen Kolbenkörper (20), der aus Stahl gefertigt ist und einen Bodenabschnitt (24), ein Paar diametral entgegengesetzter Schaftabschnitte (34), abhängig vom Bodenabschnitt, und ein Paar von Bolzenaugenplatten (36) beinhaltet;

    wobei der Bodenabschnitt (24) eine obere Verbrennungsfläche (26), eine untere Fläche mit einem Unterbodenflächenbereich (33) und einem äußeren ringförmigen Ringband (28) mit mindestens einer Ringnut (30) aufweist; und

    wobei die Bolzenaugenplatten (36) vom Bodenabschnitt (24) abhängen und sich in einem beabstandeten Verhältnis zueinander zwischen den Schaftabschnitten (34) erstrecken, wobei jede Bolzenaugenplatte (36) ein Bolzenauge (38) mit einer Bolzenbohrung (40) beinhaltet, wobei die Bolzenbohrungen (40) miteinander ausgerichtet sind, um einen Kolbenbolzen aufzunehmen, und jede Bolzenaugenplatte (36) mindestens eine Vertiefung (44) präsentiert, die zwischen der zugehörigen der Bolzenaugenbohrungen (40) und dem Bodenabschnitt (24) gelegen ist, um den Unterbodenflächenbereich (33) für eine verbesserte Kühlung des Bodenabschnitts (24) zu vergrößern,

    wobei der Bodenabschnitt (24) einen Außendurchmesser (D) aufweist und der Kolbenkörper (20) eine Kompressionshöhe (Hc) aufweist, die im Bereich von 25 bis 35 % des Außendurchmessers (D) des Bodenabschnitts (24) liegt, und

    wobei der Kolbenkörper (20) ohne Ölkanäle ist.


     
    2. Kolben nach Anspruch 1, wobei die mindestens eine Vertiefung (44) an jeder Bolzenaugenplatte (36) eine einzelne Vertiefung ist, an einer Innenfläche liegt und sich im Wesentlichen über die gesamte Länge des benachbarten Bolzenauges (38) erstreckt.
     
    3. Kolben nach Anspruch 1, wobei die mindestens eine Vertiefung (44) auf jeder Bolzenaugenplatte (36) weiter als ein Paar von Vertiefungen definiert ist, wobei sich eine der Vertiefungen auf einer Innenfläche der Bolzenaugenplatte (36) befindet und die andere der Vertiefungen sich auf einer Außenfläche der Bolzenaugenplatte (36) befindet, um den Unterbodenflächenbereich weiter zu vergrößern.
     
    4. Kolben nach Anspruch 1, wobei die mindestens eine Vertiefung (44) auf jeder Bolzenaugenplatte (36) ein zentrales Fenster ist, das sich zwischen Innen- und Außenflächen der Bolzenaugenplatte (36) erstreckt, um den Unterbodenflächenbereich weiter zu vergrößern.
     
    5. Kolben nach Anspruch 4, wobei jede der Bolzenaugenplatten (36) weiter ein Paar von Seitenfenstern beinhaltet, die an jeder Seite des zentralen Fensters angeordnet sind, um den Unterbodenflächenbereich weiter zu vergrößern.
     
    6. Kolben nach Anspruch 5, wobei sich die Seitenfenster vertikal unter oberen Abschnitten der Bolzenbohrungen (40) erstrecken.
     
    7. Kolben nach Anspruch 1, wobei der Bodenabschnitt (24) einen Außendurchmesser (D) aufweist und der Unterbodenflächenbereich (33) mindestens 0,5D2∗π/4 ist, wobei D der Außendurchmesser des Bodenabschnitts (24) ist.
     
    8. Kolben nach Anspruch 1, wobei jeder der Schaftabschnitte (34) eine Versteifungsrippe (46) mit einer erhöhten Dicke aufweist, die sich zwischen den Bolzenaugenplatten (36) erstreckt.
     
    9. Kolben nach Anspruch 1, wobei die Bolzenbohrungen (40) miteinander durch eine Bolzenbohrungsachse ausgerichtet sind und wobei die Versteifungsrippe (46) an oder unter der Bolzenbohrungsachse ist.
     
    10. Kolben nach Anspruch 9, wobei die Versteifungsrippe (46) 0-10 mm unter der Bolzenbohrungsachse ist.
     
    11. Kolben nach Anspruch 1, wobei die Schaftabschnitte (34) im Allgemeinen eine Trapezform aufweisen, mit einer schmalen Dimension, die mit dem Ringband (28) integriert verbunden ist.
     
    12. Kolben nach Anspruch 1, wobei sich die Bolzenaugenplatten (36) zwischen benachbarten Enden der Schaftabschnitte (34) erstrecken.
     


    Revendications

    1. Piston pour un moteur à combustion interne, comprenant :

    un corps de piston monobloc (20) fabriqué en acier et incluant une partie de couronne (24), une paire de parties de jupe diamétralement opposées (34) dépendante de ladite partie de couronne, et une paire de panneaux de bossage d'axe (36) ;

    ladite partie de couronne (24) ayant une surface de combustion supérieure (26), une surface inférieure ayant une zone de surface sous-couronne (33), et une courroie annulaire externe (28) avec au moins une gorge annulaire (30) ; et

    lesdits panneaux de bossage d'axe (36) étant dépendants de ladite partie de couronne (24) et s'étendant selon une relation espacée l'un de l'autre entre lesdites parties de jupe (34), chaque panneau de bossage d'axe (36) incluant un bossage d'axe (38) ayant un alésage d'axe (40), lesdits alésages d'axe (40) étant alignés l'un avec l'autre pour recevoir un axe de piston, et chaque panneau de bossage d'axe (36) présentant au moins un évidement (44) situé entre l'alésage associé parmi lesdits alésages de bossage d'axe (40) et ladite partie de couronne (24) pour augmenter ladite zone de surface sous-couronne (33) afin d'améliorer un refroidissement de ladite partie de couronne (24),

    dans lequel ladite partie de couronne (24) a un diamètre extérieur (D) et ledit corps de piston (20) a une hauteur de compression (Hc) qui se situe dans la plage de 25 à 35 % dudit diamètre extérieur (D) de ladite partie de couronne (24), et

    dans lequel ledit corps de piston (20) est dépourvu de toutes galeries d'huile.


     
    2. Piston selon la revendication 1, dans lequel ledit au moins un évidement (44) sur chaque panneau de bossage d'axe (36) est un évidement unique, se trouve sur une surface intérieure, et s'étend sensiblement sur la longueur entière du bossage d'axe adjacent (38).
     
    3. Piston selon la revendication 1, dans lequel ledit au moins un évidement (44) sur chaque panneau de bossage d'axe (36) est en outre défini comme une paire d'évidements, l'un desdits évidements se trouvant sur une surface intérieure du panneau de bossage d'axe (36) et l'autre desdits évidements se trouvant sur une surface extérieure dudit panneau de bossage d'axe (36) afin d'augmenter davantage ladite zone de surface sous-couronne.
     
    4. Piston selon la revendication 1, dans lequel ledit au moins un évidement (44) sur chaque panneau de bossage d'axe (36) est une fenêtre centrale qui s'étend entre des surfaces intérieure et extérieure dudit panneau de bossage d'axe (36) pour augmenter davantage la zone de surface sous-couronne.
     
    5. Piston selon la revendication 4, dans lequel chacun desdits panneaux de bossage d'axe (36) inclut en outre une paire de fenêtres latérales disposées de chaque côté de ladite fenêtre centrale pour augmenter davantage ladite zone de surface sous-couronne.
     
    6. Piston selon la revendication 5, dans lequel lesdites fenêtres latérales s'étendent verticalement au-dessous de parties supérieures desdits alésages d'axe (40).
     
    7. Piston selon la revendication 1, dans lequel ladite partie de couronne (24) a un diamètre extérieur (D) et ladite zone de surface sous-couronne (33) est d'au moins 0,5D2∗π/4, où D est ledit diamètre extérieur de ladite partie de couronne (24).
     
    8. Piston selon la revendication 1, dans lequel chacune desdites portions de jupe (34) a une nervure de raidissement (46) ayant une épaisseur accrue qui s'étend entre lesdits panneaux de bossage d'axe (36).
     
    9. Piston selon la revendication 1, dans lequel lesdits alésages d'axe (40) sont alignés l'un avec l'autre par un axe d'alésage d'axe et dans lequel ladite nervure de raidissement (46) est au niveau ou en dessous dudit axe d'alésage d'axe.
     
    10. Piston selon la revendication 9, dans lequel ladite nervure de raidissement (46) est entre 0 et 10 mm en dessous dudit axe d'alésage d'axe.
     
    11. Piston selon la revendication 1, dans lequel lesdites portions de jupe (34) ont une forme générale trapézoïdale, une dimension étroite étant connectée d'un seul tenant avec ladite courroie (28).
     
    12. Piston selon la revendication 1, dans lequel lesdits panneaux de bossage d'axe (36) s'étendent entre des extrémités adjacentes desdites parties de jupe (34).
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description