(19)
(11)EP 2 832 505 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
31.03.2021 Bulletin 2021/13

(21)Application number: 14179091.5

(22)Date of filing:  30.07.2014
(51)International Patent Classification (IPC): 
B25J 19/00(2006.01)

(54)

Robot

Roboter

Robot


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 30.07.2013 JP 2013158210

(43)Date of publication of application:
04.02.2015 Bulletin 2015/06

(73)Proprietor: Kabushiki Kaisha Yaskawa Denki
Kitakyushu-shi, Fukuoka 806-0004 (JP)

(72)Inventors:
  • Takahashi, Shingi
    Kitakyushu-shi, Fukuoka 806-0004 (JP)
  • Shiraki, Tomoyuki
    Kitakyushu-shi, Fukuoka 806-0004 (JP)
  • Ito, Masato
    Kitakyushu-shi, Fukuoka 806-0004 (JP)
  • Sakaki, Kaori
    Kitakyushu-shi, Fukuoka 806-0004 (JP)
  • Kanamori, Takahiko
    Kitakyushu-shi, Fukuoka 806-0004 (JP)

(74)Representative: Viering, Jentschura & Partner mbB Patent- und Rechtsanwälte 
Am Brauhaus 8
01099 Dresden
01099 Dresden (DE)


(56)References cited: : 
JP-A- H0 985 674
JP-U- H0 266 987
US-A1- 2012 186 379
JP-A- 2005 103 711
US-A1- 2012 067 157
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND


    1. Technical Field



    [0001] The disclosed embodiments relate to a robot.

    2. Related Art



    [0002] JP-A-2011-200989discloses robots have a rotation base and a multi-axis arm. The rotation base is provided in a rotatable manner with respect to a stage unit fixed on a floor. The multi-axis arm is attached to the rotation stage.

    [0003] Further, a balancer for weight compensation is connected to the rotation base. For the balancer, the spring type one is often used.

    [0004] Further, a cable rigged to the robot is arranged twisted around the outside of the rotation base. Furthermore, the cable is arranged along the multi-axis arm from the outer circumference of the rotation base.

    [0005] In the above-described conventional art, however, there is room for a further improvement in terms of space saving.

    [0006] Specifically, when the spring type balancer is used, there is a problem that the footprint is likely to increase. Further, the arrangement of the above-described cable is also likely to cause the increased footprint.

    [0007] JP 09 085674 A discloses a robot comprising: a stage unit; a rotation base connected to the stage unit in a rotatable manner around a predetermined rotating axis; an arm unit connected to the rotation base and having a base end rotatable around a first rotation axis that is substantially orthogonal to the rotating axis; a balancer connected to both the rotation base and the arm unit; and a cable arranged along the arm unit outside the balancer while supported by that balancer. Another such robot is disclosed in JP-A-2005 103711.

    [0008] The object of the present invention is to improve space saving and cable protection.

    SUMMARY



    [0009] According to the present invention, a robot as defined in claim 1 is provided. The dependent claims define preferred embodiments of such a robot.

    BRIEF DESCRIPTION OF DRAWINGS



    [0010] 

    FIG. 1 is a perspective view of a robot according to an embodiment;

    FIG. 2A is a left side view of a configuration of the robot according to the embodiment;

    FIG. 2B is a schematic diagram of an advantages allowed by a balancer according to the embodiment;

    FIG. 3A is a front view of the robot according to the embodiment;

    FIG. 3B is a view around a rotation base viewed from an arrow A indicated in FIG. 3A;

    FIG. 4A is a transparent view around a P1 part indicated in FIG. 2A;

    FIG. 4B is a transparent view of the P1 part viewed from an arrow A' indicated in FIG. 4A;

    FIG. 4C is a plane view of the robot according to the embodiment;

    FIG. 5A is a plane view of a flange unit; and

    FIG. 5B is a schematic diagram of a use state of the flange unit.


    DETAILED DESCRIPTION



    [0011] In the following detailed description, for purpose of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It will be apparent, however, that one or more embodiments may be practiced without these specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.

    [0012] A robot according to one form of an embodiment has a stage unit, a rotation base, an arm unit, a balancer, and a cable. The rotation base is connected to the stage unit in a rotatable manner around a predetermined rotating axis. The arm unit is connected to the rotation base so that the base end of the arm unit is rotatable around a rotation axis that is substantially orthogonal to the rotating axis. The balancer is connected to both the rotation base and the arm unit. The cable is arranged along the arm unit outside the balancer while supported by that balancer.

    [0013] One form of the embodiments allows for space saving.

    [0014] By referring to the attached drawings, described in detail below will be the embodiments of a robot disclosed by the present application. It is noted that the scope of the disclosure is not limited by the following embodiments.

    [0015] In the followings, the description will be provided by exemplifying a robot used for spot welding.

    [0016] Firstly, the general configuration of a robot 10 according to the embodiment will be described. FIG. 1 is a perspective view of the robot 10 according to the embodiment. It is noted that, in the followings, a positional relationship among respective units of the robot 10 will be described assuming that the rotation position and attitude of the robot 10 is basically in a state as depicted in FIG. 1 for the purpose of description.

    [0017] Further, for the better understanding of the description, FIG. 1 depicts a three-dimensional orthogonal coordinate system including the Z axis whose positive direction is the perpendicularly upper direction. Such orthogonal coordinate system may also be applied to other drawings used for the following description. It is noted that, in the present embodiment, the positive direction of the X axis indicates the front direction of the robot 10.

    [0018] As illustrated in FIG. 1, the robot 10 is of so-called vertical multi-joint type. Specifically, the robot 10 has a stage unit 11, a rotation base 12, an arm unit 13, a wrist unit 14, and a flange unit 15. The wrist unit 14 is an example of a swing unit.

    [0019] Further, the arm unit 13 has a lower arm 13a and an upper arm 13b. The lower arm 13a is an example of a first arm. Also, the upper arm 13b is an example of a second arm.

    [0020] The stage unit 11 is a support base fixed on a floor. The rotation base 12 is provided to the stage unit 11 in a rotatable manner. The lower arm 13a is provided to the rotation base 12 in a rotatable manner.

    [0021] The upper arm 13b is provided to the lower arm 13a in a rotatable manner. The wrist unit 14 is provided to the tip end of the upper arm 13b in a swingable manner. Further, the flange unit 15 is provided to the wrist unit 14 in a rotatable manner. In addition, an end effector such as a spot welding gun can be attached to the flange unit 15.

    [0022] Further, the robot 10 has a balancer 16 for weight compensation. The balancer 16 has a cylinder unit 16a that is filled with fluid such as nitrogen gas, and a rod unit 16b that is expanded and contracted by a pressure of the fluid. It is noted that other gas or liquid such as oil may be used for the fluid in the cylinder unit 16a.

    [0023] The balancer 16 is connected to the rotation base 12 and the lower arm 13a via a first attachment unit 12a provided to the rotation base 12 and a second attachment unit 13aa provided to the lower arm 13a, respectively.

    [0024] It is noted that, at the rod unit 16b of the balancer 16, a rod having a smaller radius than the cylinder unit 16a is covered with a bellows-like cover member 16c. The cover member 16c is expanded and contracted according to the expansion and contraction of the rod. As such, it is effective to cover the rod with the cover member 16c, because the burning by a heated piece such as a spatter is suppressed when the robot 10 is used for the welding. It is noted that the shape of the cover member 16c is not always required to be bellows-shaped but may be any shape that covers the rod unit 16b in a cylindrical manner.

    [0025]  Further, the robot 10 has a cable 17. The cable 17 is some of cables and/or hoses and the like equipped for the welding. The cable 17 is routed along the lower arm 13a outside the balancer 16 while supported by the above-described balancer 16.

    [0026] Further, the cable 17 is routed with respect to the upper arm 13b so as to round the outside of the base end of the upper arm 13b and be directed to the tip end of the upper arm 13b.

    [0027] The robot 10 of the present embodiment is to achieve the space saving in the above-described configuration. The robot 10 then enables the rotation base 12, the arm unit 13, and the wrist unit 14 to operate without being affected by undesirable restriction by the cable 17. The robot 10 performs handling operation such as spot welding operation by controlling the position and attitude of the end effector attached to the wrist unit 14.

    [0028] The configuration of the robot 10 will be described below in further detail by using FIG. 2A and subsequent drawings. FIG. 2A is a left side view of the configuration of the robot 10 according to the embodiment.

    [0029] As illustrated in FIG. 2A, the rotation base 12 is connected to the stage unit 11 in a rotatable manner around the rotating axis S (see the arrow 201 in the figure). It is noted that, in the coupling portion of the stage unit 11 and the rotation base 12, the cable 17 is routed so as to achieve the space saving. The details of this point will be described later by using the transparent views (FIG. 4A and FIG. 4B) of a P1 part depicted in the figures.

    [0030]  Further, as illustrated in FIG. 2A, the lower arm 13a is connected to the rotation base 12 so that the base end of the lower arm 13a is rotatable around an axis L that is substantially orthogonal to the rotating axis S (see the arrow 202 in the figure). The axis L is an example of a first rotation axis.

    [0031] Further, the upper arm 13b is connected to the tip end of the lower arm 13a so that the base end of the upper arm 13b is rotatable around an axis U that is substantially parallel to the axis L (see the arrow 203 in the figure). It is noted that the upper arm 13b operates so as to extend more forward than the lower arm 13a at the rotation position of the origin (see the rotation center of the axis U).

    [0032] In addition, the upper arm 13b is provided so as to be able to twist around an axis R that is substantially orthogonal to the axis U (see the arrow 204 in the figure).

    [0033] Further, the wrist unit 14 is connected to the tip end of the upper arm 13b swingable (or rotatable) around an axis B that is substantially orthogonal to the axis R (see the arrow 205 in the figure). Further, the flange unit 15 is connected to the wrist unit 14 in a rotatable manner around an axis T that is substantially orthogonal to the axis B (see the arrow 206 in the figure). It is noted that the axis B is a rotation axis that is substantially parallel to the axis L. The axis B is an example of a second rotation axis. The axis T is an example of a third rotation axis.

    [0034] In addition, the flange unit 15 is provided with an end effector attachment unit 15b (described later) enabling the attachment of the end effector. The details of the flange unit 15 will be described later by using FIG. 5A and FIG. 5B.

    [0035]  Further, in the balancer 16 as illustrated in FIG. 2A, the base end of the balancer 16 is attached to the first attachment unit 12a, while the tip end of the balancer 16 is attached to the second attachment unit 13aa. That is, the balancer 16 is connected to both the rotation base 12 and the lower arm 13a.

    [0036] Further, the balancer 16 is attached to the first attachment unit 12a in a rotatable manner around an axis AX1 that is substantially parallel to the axis L (see the arrow 207 in the figure). Further, the balancer 16 is attached to the second attachment unit 13aa in a rotatable manner around an axis AX2 that is substantially parallel to the axis L (see the arrow 208 in the figure). It is noted that the axis AX1 is an example of a first support axis and the axis AX2 is an example of a second support axis.

    [0037] Here, as illustrated in FIG. 2A, the first attachment unit 12a is arranged in the outside, in the rotation radius direction, of the main part of the rotation base 12 and nearer to the stage unit 11 than the axis L. That is, the first attachment unit 12a is formed so that the base end of the balancer 16 is able to be attached in more front of the robot 10 than the rotation base 12.

    [0038] Described will be the advantages allowed by the balancer 16 attached in this way. FIG. 2B is a schematic diagram of the advantages allowed by the balancer 16 according to the embodiment. It is noted that, in FIG. 2B, the upper figure illustrates the robot 10 in a state where the lower arm 13a is elected and the lower figure illustrates the robot 10 in a state where the lower arm 13a is collapsed rearward. In these figures, the robot 10 is depicted in a quite schematic manner using graphic symbols that indicate the joints.

    [0039]  As illustrated in FIG. 2B, the base end of the balancer 16 is arranged via the first attachment unit 12a in more front of the robot 10 than the rotation base 12. This allows the lower arm 13a to be collapsed rearward in a wider range (see the arrow 209 in the figure). This is because the force supporting upward the lower arm 13a that is being collapsed rearward is applied by the balancer 16.

    [0040] This allows for improved flexibility in the attitude that the robot 10 is able to take in the spot welding operation. Further, it allows the robot 10 to take a more compact attitude in the conveyance of the robot 10, that is, which allows the robot 10 to be collapsed in a more compact manner. Therefore, the volume at the conveyance can be reduced.

    [0041] Further, the attachment of the balancer 16 in the above manner is unlikely to cause the increased footprint, compared to the case where the conventional spring type balancer is attached. That is, the footprint is narrowed, so that the space saving can be achieved.

    [0042] Turning back to the description of FIG. 2A, the cable 17 is routed to the upper part of the rotation base 12 from the coupling portion of the stage unit 11 and the rotation base 12 as illustrated in FIG. 2A. Furthermore, the cable 17 is routed along the lower arm 13a outside the balancer 16 while supported by the balancer 16.

    [0043] That is, the cable 17 is routed while supported by the balancer 16 that reduces the footprint as described above. Therefore, again, the space saving can be achieved.

    [0044] It is noted that the robot 10 further has a stay 18. The stay 18 is provided along the balancer 16. The stay 18 is fixed at two points to the cylinder unit 16a by a support member. The cable 17 is supported by the balancer 16 by being fixed to the tip end of the balancer 16 via the stay 18.

    [0045] Further, the cable 17 is routed with respect to the upper arm 13b so as to round the outside of the base end of the upper arm 13b and be directed to the tip end of the upper arm 13b. Thereby, the cable 17 is unlikely to be caught between the upper arm 13b and the lower arm 13a. This allows the robot 10 to operate without being undesirably restricted by the cable 17.

    [0046] This feature is useful in the spot welding in which the cable 17 tends to be bulky with cables and/or hoses equipped for the welding.

    [0047] Next, the configuration around the rotation base 12 will be described in further details. FIG. 3A is a front view of the robot 10 according to the embodiment. Further, FIG. 3B is a view around the rotation base 12 viewed from the arrow A illustrated in FIG. 3A.

    [0048] As illustrated in FIG. 3A, the robot 10 further has a servo motor M1 and a reduction gear G1. The servo motor M1 applies, to the lower arm 13a, a rotary driving force for rotating the lower arm 13a around the axis L. The reduction gear G1 is connected to the servo motor M1 so as to be able to transfer the motive power.

    [0049] The rotation base 12 has a connection unit 12b. The connection unit 12b accommodates the reduction gear G1 so that it is connected to the lower arm 13a in a rotatable manner. Thus, the connection unit 12b also supports the servo motor M1 connected to the reduction gear G1.

    [0050] It is noted that the rotation base 12 is a cast metal. The connection unit 12b is integrally formed with the rotation base 12.

    [0051] Further, under the lower arm 13a, the above-described first attachment unit 12a extends from the lower part of the connection unit 12b in substantially parallel to the axis L. The first attachment unit 12a is connected to the base end of the balancer 16 in more extending direction side (in the Y axis negative side in the figure) than the lower arm 13a. The first attachment unit 12a is also integrally formed with the rotation base 12.

    [0052] Further, as illustrated in FIG. 3B, the connection unit 12b is provided with a hole 12ba. Into the hole 12ba, a cable 19 (described later) connected to the servo motor M1 is inserted.

    [0053] Next, the routing of the cables including the cable 19 and the above-described cable 17 will be described by using FIG. 4A to FIG. 4C. FIG. 4A is a transparent view around the P1 part indicated in FIG. 2A, FIG. 4B is a transparent view of the P1 part viewed from the arrow A' indicated in FIG. 4A, and FIG. 4C is a plane view of the robot 10 according to the embodiment.

    [0054] As illustrated in FIG. 4A, the stage unit 11 and the rotation base 12 are connected via a hollow reduction gear G2 having a hollow hole G21 along the rotating axis S. The hollow reduction gear G2 is an example of a rotation member.

    [0055] Here, the cable 17 and the cable 19 are first routed from the outside of the robot 10 to the hollow hole G21. Here, these cables are routed without being arranged around the rotating axis S (without being subjected to the U-shape motion bent process and the like) inside the stage unit 11.

    [0056] As illustrated in FIG. 4B, the cable 17 and the cable 19 are then subjected to the twist process in the hollow hole G21. Therefore, according to the robot 10 of the present embodiment, it can be suppressed that the stage unit 11 would otherwise become undesirably large due to the cables arranged therearound.

    [0057] Therefore, the footprint of the robot 10 can be narrowed and the cables can be arranged in a high density. That is, the space saving can be achieved.

    [0058] It is noted that the cables twisted inside the hollow hole G21 is routed through the hollow hole G21 and from the stage unit 11 to the upper part of the rotation base 12, as illustrated in FIG. 4C. Furthermore, the cables are branched at the upper part of the rotation base 12.

    [0059] One of the branched cables 19 is connected to the servo motor M1 through the hole 12ba of the connection unit 12b. Further, the other branched cable 17 is gathered with another cable 17. These cables 17 are routed around the peripheral of the servo motor M1 and along the stay 18.

    [0060] Next, the details of the flange unit 15 will be described by using FIG. 5A and FIG. 5B. FIG. 5A is a plane view of the flange unit 15, and FIG. 5B is a schematic diagram of a use state of the flange unit 15.

    [0061] As illustrated in FIG. 5A, the flange unit 15 is formed in substantially a U-shape in a plane view. The flange unit 15 has a part to be attached 15a, an end effector attachment unit 15b, and an opening 15c.

    [0062] It is noted that the bottom of the flange unit 15 opposing to the opening 15c is also opened though its depiction is omitted in FIG. 5A.

    [0063] The flange unit 15 is attached to the wrist unit 14 by the part to be attached 15a, as illustrated in FIG. 5B. Further, to the end effector attachment unit 15b, a spot welding gun 20 is attached, for example, as an end effector. Thereby, the wrist unit 14 and the spot welding gun 20 are jointed via the flange unit 15.

    [0064] Further, as described above, the cable 17 is routed along the upper arm 13b from the lower arm 13a. The cable 17 is inserted into the bottom side of the flange unit 15 from the U-shaped opening 15c side of the flange unit 15 and then connected to the spot welding gun 20.

    [0065] Then, the cable 17 is held by the flange unit 15 with spatial room. This allows the cable 17 to move in a high flexibility in the space within the flange unit 15 even when the spot welding gun 20 is rotated in response to the rotation of the wrist unit 14.

    [0066] That is, even when the cables 17 are the cables equipped for the welding that are likely to be bulky, the cables 17 can be gathered in a compact manner, and the high flexibility in the operation of the cables 17 can be maintained. This allows the robot 10 to perform the spot welding operation without being affected by the undesirable restriction (such as the interference) in the operation.

    [0067] As has been described above, the robot according to the present embodiment has the stage unit, the rotation base, the arm unit, the balancer, and the cable. The rotation base is connected to the stage unit in a rotatable manner around a predetermined rotating axis. The arm unit is connected to the rotation base so that the base end of the arm unit is rotatable around the first rotation axis that is substantially orthogonal to the rotating axis.

    [0068] The balancer is connected to both the rotation base and the arm unit. The cable is arranged along the arm unit outside the balancer while supported by the balancer.

    [0069] Therefore, the robot of the embodiment allows for the space saving.

    [0070] It is noted that, in the embodiment described above, the example in which the robot is used for the spot welding has been described. However, the type of the operation performed by the robot is not limited to the spot welding. That is, for example, a hand that is able to hold a work may be attached as the end effector in place of the spot welding gun. In this case, the robot can be used for the handling operation of the work.

    [0071] Further, in the embodiment described above, the example in which the balancer is held at its base end and tip end has been described. However, the supported portion of the balancer is not limited to them. That is, the balancer may be supported at another part, or at more than two points.

    [0072] Further, in the embodiment described above, the multi-axis robot having six axes has been exemplified. However, the number of axes of the robot is not limited to it. The robot may be the multi-axis robot having seven axes, for example.

    [0073] Further, in the embodiment described above, the robot with a single arm has been exemplified. Without limited to it, however, the above-described embodiment may be applied to at least any one of the arms of the multi-arm robot having two or more arms.


    Claims

    1. A robot comprising:

    a stage unit (11);

    a rotation base (12) connected to the stage unit in a rotatable manner around a predetermined rotating axis (S);

    an arm unit (13) connected to the rotation base and having a base end rotatable around a first rotation axis (L) that is substantially orthogonal to the rotating axis;

    a balancer (16) connected to both the rotation base and the arm unit; and

    a cable (17) arranged along the arm unit outside the balancer while supported by that balancer; wherein

    the arm unit (13) has a first arm (13a) having a base end connected to the rotation base (12), and

    a second arm (13b) having a base end connected to a tip end of the first arm (13a) in a rotatable manner around a parallel axis that is substantially parallel to the first rotation axis (L);

    wherein the cable (17) is routed with respect to the second arm (13b) so as to round outside of a base end of the second arm and be directed to a tip end of the second arm;

    wherein the balancer (16) has a cylinder unit (16a) filled with fluid and a rod unit (16b) expanded and contracted by a pressure of the fluid;

    wherein the robot (10) further has a stay (18), wherein the stay (18) is provided along the balancer (16) and fixed at two points to the cylinder unit (16a) by a support member, and wherein the cable (17) is supported by the balancer (16) by being fixed to the tip end of the balancer (16) via the stay (18).


     
    2. The robot according to claim 1 further comprising a support member (18),
    wherein the cable is supported by the balancer by being fixed to a tip end of the balancer via the support member.
     
    3. The robot according to any one of claims 1 to 2,
    wherein the rotation base has a connection unit (12b) that accommodates a reduction gear (G1) so that the reduction gear is connected to the arm unit in a rotatable manner,
    wherein the connection unit supports a servo motor (M1) adapted to apply a rotary driving force to the arm unit, and
    wherein the servo motor is connected to the reduction gear accommodated in the connection unit so as to be able to transfer motive power to the reduction gear.
     
    4. The robot according to claim 3, wherein a hole (12ba) into which a cable (19) to be connected to the servo motor is inserted is provided to the connection unit.
     
    5. The robot according to claim 4,
    wherein the stage unit and the rotation base are connected via a rotation member (G2) having a hollow hole (G21) along the rotating axis,
    wherein the cable to be connected to the servo motor and the cable are routed through the hollow hole and from the stage unit to an upper part of the rotation base and branched at the upper part of the rotation base,
    wherein the branched cable to be connected to the servo motor is connected to the servo motor through the hole of the connection unit, and
    wherein the cable is gathered with another cable and routed along the balancer.
     
    6. The robot according to any one of claims 1 to 5 further comprising:

    a first attachment unit (12a) provided to the rotation base, arranged in an outside, in a rotation radius direction, of the rotation base and nearer to the stage unit than the first rotation axis; and

    a second attachment unit (13aa) provided to the arm unit,

    wherein a base end of the balancer is attached to the first attachment unit in a rotatable manner around a first support axis (AX1) that is substantially parallel to the first rotation axis, and

    wherein a tip end of the balancer is attached to the second attachment unit in a rotatable manner around a second support axis (AX2) that is substantially parallel to the first rotation axis.


     
    7. The robot according to any one of claims 1 to 6, wherein the balancer has a cover member (16c) that covers the balancer.
     
    8. The robot according to claim 1 further comprising:

    a swing unit (14) connected to the second arm in a rotatable manner around a second rotation axis (B) that is substantially parallel to the first rotation axis;

    a flange unit (15) rotatable around a third rotation axis (T) that is substantially orthogonal to the second rotation axis; and

    an end effector attachment unit (15b) provided to the flange unit and enabling attachment of an end effector.


     
    9. The robot according to claim 8, wherein the end effector is a spot welding gun (20).
     


    Ansprüche

    1. Roboter, aufweisend:

    eine Haltestelle-Einheit (11),

    eine Drehbasis (12), welche mit der Haltestelle-Einheit verbunden ist in einer drehbaren Weise um eine vorbestimmte Drehachse (S),

    eine Armeinheit (13), welche mit der Drehbasis verbunden ist und ein Basisende hat, welches um eine erste Drehungsachse (L) drehbar ist, welche im Wesentlichen orthogonal zu der Drehachse ist,

    eine Ausgleichsvorrichtung (16), welche sowohl mit der Drehbasis als auch mit der Armeinheit verbunden ist, und

    ein Kabel (17), welches entlang der Armeinheit außerhalb der Ausgleichsvorrichtung angeordnet ist, wobei es mittels dieser Ausgleichsvorrichtung gelagert ist,

    wobei die Armeinheit (13) hat:

    einen ersten Arm (13a), welcher ein Basisende hat, welches mit der Drehbasis (12) verbunden ist, und

    einen zweiten Arm (13b), welcher ein Basisende hat, welches mit einem Spitzenende des ersten Arms (13a) verbunden ist in einer drehbaren Weise um eine parallele Achse, welche im Wesentlichen parallel zu der ersten Drehungsachse (L) ist,

    wobei das Kabel (17) in Bezug auf den zweiten Arm (13b) verlegt ist, um sich außerhalb eines Basisendes des zweiten Arms zu runden und zu einem Spitzenende des zweiten Arms geführt zu sein,

    wobei die Ausgleichsvorrichtung (16) eine Zylindereinheit (16a), welche mit einem Fluid gefüllt ist, und eine Stangeneinheit (16b) hat, welche mittels eines Drucks des Fluids expandiert und kontrahiert wird,

    wobei der Roboter (10) ferner eine Strebe (18) aufweist, wobei die Strebe (18) entlang der Ausgleichsvorrichtung (16) bereitgestellt und an zwei Punkten an der Zylindereinheit (16a) mittels eines Lagerelementes fixiert ist, und wobei das Kabel (17) mittels der Ausgleichsvorrichtung (16) gelagert ist, indem es an dem Spitzenende der Ausgleichsvorrichtung (16) über die Strebe (18) fixiert ist.


     
    2. Roboter gemäß Anspruch 1 ferner aufweisend: ein Lagerelement (18), wobei das Kabel mittels der Ausgleichsvorrichtung gelagert ist, indem es an einem Spitzenende der Ausgleichsvorrichtung über das Lagerelement fixiert ist.
     
    3. Roboter gemäß Anspruch 1 oder 2,
    wobei die Drehbasis eine Verbindungseinheit (12b) hat, welche ein Untersetzungsgetriebe (G1) aufnimmt, so dass das Untersetzungsgetriebe mit der Armeinheit verbunden ist in einer drehbaren Weise,
    wobei die Verbindungseinheit einen Servomotor (M1) lagert, welcher angepasst ist, um eine Drehantriebskraft auf die Armeinheit aufzubringen, und
    wobei der Servomotor mit dem Untersetzungsgetriebe, welches in der Verbindungseinheit untergebracht ist, verbunden ist, um in der Lage zu sein, eine Antriebskraft auf das Untersetzungsgetriebe zu übertragen.
     
    4. Roboter gemäß Anspruch 3, wobei ein Loch (12ba), in welches ein mit dem Servomotor zu verbindendes Kabel (19) eingeführt ist, an der Verbindungseinheit bereitgestellt ist.
     
    5. Roboter gemäß Anspruch 4,
    wobei die Haltestelle-Einheit und die Drehbasis über ein Drehelement (G2) verbunden sind, welches ein Hohlloch (G21) entlang der Drehachse hat,
    wobei das mit dem Servomotor zu verbindende Kabel und das Kabel durch das Hohlloch hindurch und von der Haltestelle-Einheit zu einem oberen Teil der Drehbasis verlegt und an dem oberen Teil der Drehbasis verzweigt sind,
    wobei das verzweigte mit dem Servomotor zu verbindende Kabel mit dem Servomotor durch das Loch der Anschlusseinheit hindurch verbunden ist, und
    wobei das Kabel mit einem anderen Kabel zusammengeführt und entlang der Ausgleichsvorrichtung verlegt ist.
     
    6. Roboter gemäß einem der Ansprüche 1 bis 5 ferner aufweisend:

    eine erste Befestigungseinheit (12a), welche an der Drehbasis bereitgestellt ist, welche in einer Drehradiusrichtung an einer Außenseite der Drehbasis und näher an der Haltestelle-Einheit als an der ersten Drehungsachse angeordnet ist, und

    eine zweite Befestigungseinheit (13aa), welche an der Armeinheit bereitgestellt ist,

    wobei ein Basisende der Ausgleichsvorrichtung an der ersten Befestigungseinheit befestigt ist in einer drehbaren Weise um eine erste Lagerachse (AX1), welche im Wesentlichen parallel zur ersten Drehungsachse ist, und

    wobei ein Spitzenende der Ausgleichsvorrichtung an der zweiten Befestigungseinheit befestigt ist in einer drehbaren Weise um eine zweite Lagerachse (AX2), welche im Wesentlichen parallel zu der ersten Drehungsachse ist.


     
    7. Roboter gemäß einem der Ansprüche 1 bis 6, wobei die Ausgleichsvorrichtung ein Abdeckelement (16c) hat, welches die Ausgleichsvorrichtung abdeckt.
     
    8. Roboter gemäß Anspruch 1 ferner aufweisend:

    eine Schwenkeinheit (14), welche mit dem zweiten Arm verbunden ist in einer drehbaren Weise um eine zweite Drehungsachse (B), welche im Wesentlichen parallel zu der ersten Drehungsachse verläuft,

    eine Flanscheinheit (15), welche um eine dritte Drehungsachse (T) drehbar ist, welche im Wesentlichen orthogonal zu der zweiten Drehungsachse ist, und

    eine Endeffektor-Befestigungseinheit (15b), welche an der Flanscheinheit bereitgestellt ist und das Befestigen eines Endeffektors ermöglicht.


     
    9. Roboter gemäß Anspruch 8, wobei der Endeffektor eine Punktschweißpistole (20) ist.
     


    Revendications

    1. Robot, comprenant :

    une unité d'étage (11) ;

    une base de rotation (12) connectée à l'unité d'étage de manière rotative autour d'un axe de rotation prédéterminé (S) ;

    une unité de bras (13) connectée à la base de rotation et ayant une extrémité de base rotative autour d'un premier axe de rotation (L) sensiblement orthogonal à l'axe de rotation ;

    un équilibreur (16) connecté à la fois à la base de rotation et à l'unité de bras ; et

    un câble (17) disposé le long de l'unité de bras à l'extérieur de l'équilibreur, étant supporté par l'équilibreur,

    dans lequel

    l'unité de bras (13) présente

    un premier bras (13a) ayant une extrémité de base connectée à la base de rotation (12), et

    un deuxième bras (13b) ayant une extrémité de base connectée à une extrémité de pointe du premier bras (13a) de manière rotative autour d'un axe parallèle sensiblement parallèle au premier axe de rotation (L) ;

    où le câble (17) est acheminé par rapport au deuxième bras (13b) de manière à s'arrondir à l'extérieur d'une extrémité de base du deuxième bras et être guidé vers une extrémité de pointe du deuxième bras ;

    où l'équilibreur (16) comprend une unité de cylindre (16a) remplie d'un fluide et une unité de tige (16b) qui est dilatée et contractée au moyen d'une pression du fluide ;

    où le robot (10) comprend en outre une entretoise (18), l'entretoise (18) est prévue le long de l'équilibreur (16) et fixée en deux points à l'unité de cylindre (16a) au moyen d'un élément de support, et où le câble (17) est supporté par l'équilibreur (16) en étant fixé à l'extrémité de pointe de l'équilibreur (16) via l'entretoise (18).


     
    2. Robot selon la revendication 1, comprenant en outre un élément de support (18),
    dans lequel le câble est supporté par l'équilibreur en étant fixé à une extrémité de pointe de l'équilibreur via l'élément de support.
     
    3. Robot selon la revendication 1 ou 2,

    dans lequel la base de rotation comprend une unité de connexion (12b) qui loge un réducteur (G1) de sorte que le réducteur est connecté à ladite unité de bras de manière rotative,

    dans lequel l'unité de connexion supporte un servomoteur (M1) adapté pour appliquer une force d'entraînement en rotation à l'unité de bras, et

    dans lequel le servomoteur est connecté au réducteur logé dans l'unité de connexion de manière à être capable de transmettre une force motrice au réducteur.


     
    4. Robot selon la revendication 3, dans lequel un trou (12ba) dans lequel un câble (19) à connecter au servomoteur est inséré est prévu sur l'unité de connexion.
     
    5. Robot selon la revendication 4,

    dans lequel l'unité d'étage et la base de rotation sont connectées par un élément de rotation (G2) ayant un trou creux (G21) le long de l'axe de rotation,

    dans lequel le câble à connecter au servomoteur et le câble sont acheminés à travers le trou creux et de l'unité d'étage à une partie supérieure de la base de rotation et sont ramifiés à la partie supérieure de la base de rotation,

    dans lequel le câble ramifié à connecter au servomoteur est connecté au servomoteur par le trou de l'unité de connexion, et

    dans lequel le câble est regroupé avec un autre câble et acheminé le long de l'équilibreur.


     
    6. Robot selon l'une quelconque des revendications 1 à 5, comprenant en outre :

    une première unité de fixation (12a) prévue sur la base de rotation, disposée dans un sens de rayon de rotation à un extérieur de la base de rotation et plus près de l'unité d'étage que du premier axe de rotation, et

    une deuxième unité de fixation (13aa) prévue sur l'unité de bras,

    où une extrémité de base de l'équilibreur est fixée à la première unité de fixation de manière rotative autour d'un premier axe de support (AX1) qui est sensiblement parallèle au premier axe de rotation, et

    où une extrémité de pointe de l'équilibreur est fixée à la deuxième unité de fixation de manière rotative autour d'un deuxième axe de support (AX2) qui est sensiblement parallèle au premier axe de rotation.


     
    7. Robot selon l'une quelconque des revendications 1 à 6, dans lequel l'équilibreur présente un élément de couverture (16c) qui recouvre l'équilibreur.
     
    8. Robot selon la revendication 1, comprenant en outre :

    une unité de pivot (14) connectée au deuxième bras de manière rotative autour d'un deuxième axe de rotation (B) sensiblement parallèle au premier axe de rotation ;

    une unité de bride (15) rotative autour d'un troisième axe de rotation (T) sensiblement orthogonal au deuxième axe de rotation, et

    une unité de fixation d'effecteur terminal (15b) prévue sur l'unité de bride et permettant la fixation d'un effecteur terminal.


     
    9. Robot selon la revendication 8, dans lequel l'effecteur terminal est un pistolet de soudage par points (20) .
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description