(19)
(11)EP 2 833 157 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 14178818.2

(22)Date of filing:  28.07.2014
(51)International Patent Classification (IPC): 
G01R 31/02(2006.01)

(54)

Identifying defective electrical cables

Identifizierung defekter Stromkabel

Identification de câbles électriques défectueux


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 29.07.2013 US 201313952759

(43)Date of publication of application:
04.02.2015 Bulletin 2015/06

(73)Proprietor: Biosense Webster (Israel) Ltd.
Yokneam 2066717 (IL)

(72)Inventor:
  • Dulger, Oleg
    3095333 Zichron Yaacov (IL)

(74)Representative: Carpmaels & Ransford LLP 
One Southampton Row
London WC1B 5HA
London WC1B 5HA (GB)


(56)References cited: : 
US-A- 3 944 914
US-A- 5 420 512
US-A- 4 578 636
US-A1- 2003 141 875
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates generally to electrical cables, and particularly to methods for identifying defective electrical cables.

    BACKGROUND OF THE INVENTION



    [0002] Various methods and systems for testing electrical cables are known in the art. For example, European Patent EP0403547 describes an automatic tester for a multi-wire cable having a remote unit to connect one end of a cable to directly loop together wires to form paired forward and return wires and a local unit connected to the other end of the cable.

    [0003] U.S. Patent 5,155,440describes a hand-held apparatus for testing cable harness for faults and performance impairments comprises three sets of voltage references, CMOS comparator circuitry, programmable DIP switches, an LED status display for error detection, an LED for indication of overall system condition, and a power source.

    [0004] U.S. Patent 5,420,512 describes an electronic cable testing system for determining open-circuit, short-circuit, and cross-over mapping between the wires of a cable, use being made of a far end unit connected with one end of the cable and operable between resistive and frequency signal modes, and a near end unit connected with the near end of the unit for determining open and short circuit conditions of the wires during the resistive mode, and for mapping cross-over between the wires during the frequency signal mode.

    SUMMARY OF THE INVENTION



    [0005] An embodiment of the present invention described herein provides a method including coupling an electrical cable, including multiple wires, to circuitry including a resistor bank by coupling first ends of the wires to respective first resistors, and second ends of the wires to respective second resistors. An input voltage is applied to the circuitry including the cable. A gain of the circuitry is measured including the cable. The resistor values in the resistor bank are chosen so that each expected defect in the electrical cable will translate to a different value of the measured gain. Based on the measured gain, one or more of the wires in the cable that are defective are identified. An indication of the defective wires is output

    [0006] In some embodiments, the first resistors have resistances that are odd multiples of a resistance R, and the second resistors have the resistances that are even multiples of R. In yet other embodiments, identifying the one or more defective wires includes identifying an open circuit in one or more of the wires upon detecting that the measured gain is smaller than an expected gain for a non-defective cable.

    [0007] In some embodiments, identifying the one or more defective wires includes identifying a short circuit between two or more of the wires upon detecting that the measured gain is larger than an expected gain for a nondefective cable. In other embodiments, identifying the one or more defective wires includes storing a predefined list of gains for respective expected defects in the cable, and determining the one or more defective wires by finding on the list an expected defect that matches the measured gain. In yet other embodiments, measuring the gain includes measuring the gain of an inverting operational amplifier with a feedback resistance and an equivalent input resistance, the equivalent input resistance including the multiple wires in the cable.

    [0008] There is additionally provided herein, in accordance with an embodiment of the present invention, an apparatus including circuitry and an interface for coupling to an electrical cable including multiple wires. The circuitry includes first resistors (100) coupled to respective first ends of the wires, and second resistors (105) coupled to respective second ends of the wires, and is configured to measure a gain of the circuitry including the cable upon application of an input voltage thereto. The resistor values in the resistor bank are chosen so that each expected defect in the electrical cable (20) will translate to a different value of the measured gain. The circuitry is configured to identify
    one or more of the wires in the cable that are defective, based on the measured gain, and to output an indication of the defective wires.

    [0009] The present invention will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings in which:

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0010] 

    Fig. 1 is a block diagram that schematically illustrates a cable test set, in accordance with an embodiment of the present invention;

    Fig. 2 is a diagram that schematically illustrates a cable test circuit, in accordance with an embodiment of the present invention; and

    Fig. 3 is a flow chart that schematically illustrates a method for identifying defective wires in an electrical cable, in accordance with an embodiment of the present invention.


    DETAILED DESCRIPTION OF EMBODIMENTS


    OVERVIEW



    [0011] Embodiments of the present invention described herein provide improved methods and systems for identifying defective electrical cables. In the disclosed embodiments, a cable with multiple wires is coupled to a cable test set, which measures the gain of a test circuit including the cable. The test circuit comprises a resistor bank, i.e., multiple resistors that are coupled to the respective wires of the cable under test. If one or more wires in the cable are defective, the measured gain of the test circuit will differ from the expected gain for a non-defective cable.

    [0012] Moreover, with a properly designed test circuit, the measured gain is unambiguously indicative of the actual
    defect. The measured gain may indicate, for example, which of the wires are broken or which pair of wires are shorted. Thus, the test set is able to detect both open-circuit and short-circuit defects in a multi-wire cable, using only a single gain measurement.

    SYSTEM DESCRIPTION



    [0013] Fig. 1 is a block diagram that schematically illustrates a cable test set (CTS) 10, in accordance with an embodiment of the present invention. A cable under test 20 comprising N wires, where N is an integer, is coupled to CTS 10 through a cable-to-test-circuit interface 23. In some embodiments, cable 20 comprises N wires that are coupled to CTS 10 through a first connector 13 at a first end of cable 20, and through a second connector 16 at a second end of cable 20. The first and second connectors couple the multiple wires to interface 23.

    [0014] Interface 23 is configured to route the N wires in cable 20 from first connector 13 to a first set 25 of interconnects in CTS 10, and from second connector 16 to a second set 30 of interconnects in CTS 10. The first and second sets of interconnects can be formed on any suitable substrate using any suitable conductor, or may be internal wires in CTS 10. The first and second sets of interconnects are coupled into a cable test circuit 35. The output of CTS 10 is subsequently coupled to an analog-to-digital converter (A/D) 40 and a processor 45.

    [0015] Processor 45 is configured to identify which of the N wires in cable 20 are defective from gain measurements made by cable test circuit 35. The value of the gain measurement is subsequently digitized in A/D 40 and relayed to processor 45. In some embodiments, processor 45 uses data stored in a lookup table (LUT) 50 which correlates predefined defective wire configurations to the measured gain so as to identify the one or more defective wires in cable 20. CTS 10 then outputs an indication to a user identifying which wires among the N wires in cable 20 are defective. The output may be provided, for example, to an output display 55.

    [0016] The system configuration as shown in Fig. 1 is an exemplary configuration, which is depicted purely for the sake of conceptual clarity. Alternatively, any other suitable system configuration can be used to perform the functions described herein. Some elements of cable test set 30 may be implemented in hardware, e.g., in one or more Application-Specific Integrated Circuits (ASICs) or Field-Programmable Gate Arrays (FPGAs). Additionally or alternatively, some elements of cable test set 10 can be implemented using software, or using a combination of hardware and software elements. In some embodiments, processor 45 comprises a general-purpose computer, which is programmed in software to carry out the functions described herein. The software may be downloaded to the computer in electronic form, over a network, for example, or it may, alternatively or additionally, be provided and/or stored on non-transitory tangible media, such as magnetic, optical, or electronic memory.

    IDENTIFYING DEFECTIVE WIRES IN A CABLE



    [0017] Fig. 2 is a diagram that schematically illustrates cable test circuit 35, in accordance with an embodiment of the present invention. Cable test circuit 35 comprises an amplifier 110 and a resistor bank, which comprises a first bank of N resistors 100 and a second bank of N resistors 105. In the embodiment of Fig. 2, the N wires in cable 20 connect the N resistors in first bank 100 to the respective N resistors in second bank 105.

    [0018] In some embodiments, first resistor bank 100 comprises resistors with respective values of odd multiples of some baseline resistance R (e.g., R, 3R, 5R, ..., [2N-3]R, and [2N-1]R). Similarly, second resistor bank 105 comprises resistors with respective values of even multiples of resistance R (e.g., 2R, 4R, 6R,..., [2N-2]R, and 2NR) as shown in Fig. 2. The N wires in cable 20 are denoted herein as WIRE(1), WIRE(2), WIRE(3), ...WIRE(N-1), and WIRE(N) with wire indices 1, 2, 3, ...N-1, N, respectively. In other embodiments, any other suitable resistor values can be used in the first and second resistor banks.

    [0019] Connector 13 routes the N multiple wires at the first end of cable 20 to first set 25 of N interconnects exiting interface 23 that couple the N wires to N resistors shown in first resistor bank 100. Similarly, connector 16 routes the N wires at the second end of cable 20 to second set 30 of N interconnects exiting interface 23 that couple the N wires to respective N resistors shown in second resistor bank 105. In this manner, cable 20 with connector 13 and connector 15 is electrically coupled to circuit 35 shown in Fig. 2, and included in the gain measurement of circuit 35.

    [0020] In the exemplary configuration shown in Fig. 2, cable test circuit 35 comprises an inverting operational amplifier. Amplifier 110 is biased with voltages +VB and -VB. The magnitude of the gain G of the inverting operational amplifier circuit is given by:

    where a feedback resistor 115 has resistance value RF. The equivalent input resistance REQ of the resistor bank of the inverting amplifier including the N wires, for a non-defective cable, is given by:



    [0021] An input voltage VIN is applied to circuit 35 including cable 20. The output voltage VOUT from amplifier 110 is measured and is typically used to calculate the measured gain G, (i.e., G=VOUT/VIN), which is equivalent to the gain in Equations (1) and (2) defined by the resistor values shown in the first 100 and second 105 resistor banks shown in Fig. 2 if the cable is non-defective.

    [0022] In the embodiments presented herein, processor 45 identifies defective wire configurations using the measured gain G of cable test circuit 35. When cable 20 has one or more defective wires, the measured gain value of circuit 35 is different from the expected gain value of a non-defective cable. Defect wire configurations can comprise one or more wires among the N wires with an open circuit, a short circuit between the different N multiple wires in the cable, or any other defect resulting in a measured gain value different from the expected gain value for a non-defective cable given by Equations (1) and (2).

    [0023] Each pairing combination of resistors in first bank 100 (e.g., R, 3R,..), wires in cable 20 (e.g., WIRE(1), WIRE (2), ...) and resistors in second bank 105 (e.g., 2R, 4R, ...) contribute differently to REQ in Eqn. (2). Hence, the gain in Eqn. (1) is affected differently for a defect in WIRE(1) as compared to WIRE(N) in the N wires in the cable.

    [0024] The resistor values in the resistor bank are typically chosen so that each expected defect in cable 20 (e.g., open wire or short circuit) will translate to a different gain of the test circuit. With this choice of resistors, the measured gain gives an unambiguous identification of the actual defect.

    [0025] In some embodiments, lookup tables storing the gain computed for various defective wire configurations are calculated and stored in LUT 50. The measured gain can then be compared to the different defective wire configurations so as to specifically identify the wire indices of the one or more defective wires in the cable.

    [0026] The embodiments shown in Figs. 1 and 2 are chosen for conceptual clarity and not by way of limitation of the embodiments of the present invention. In alternative embodiments, any other suitable test set and test circuit configuration can be used. Amplifier 110 may comprise any suitable amplifier configuration. Any suitable measurable parameter of the amplifier can be used to identify the one or more defective wires. The measured gain of the test circuit in test cable set 10 is not limited to the gain measurement of cable test circuit 35.

    [0027] To further illustrate the method described herein of identifying defective wire configurations from the gain measurements, exemplary computations of the gain and output voltages in volts for different defective wire configurations are shown in Tables I-IX. Tables I-III show gain values for open and short circuited wire configurations for a cable with four wires (N=4), Tables IV-VI show gain values for open and short circuited wire configurations for a cable with twenty wires (N=20), and Tables VII-IX show gain values for open and short circuited wire configurations for a cable with eighty wires (N=80). For the wire defect configurations shown in Tables I-IX, the computed gain for a non-defective (normal) cable is 100 for an input voltage VIN=50 mV and RF=100*REQ.

    [0028] Tables I-IX show specific wire defect configurations where one wire is either open circuited (as denoted by "OPEN CIRCUITED WIRE" in Tables I, IV, and VII), or short circuited to another wire among the N multiple wires in the cable (as denoted by "SHORT CIRCUIT PAIRS" in Tables II, III, V, VI, VIII and IX). In Table II, for example, a gain of 100.6010929 is computed when WIRE (1) is shorted to WIRE(2), and this short circuit pair is denoted WIRE(1)/WIRE(2).

    [0029] Parametrically, the value of the gain and output voltage decrease for open circuit wires as shown in Tables I, IV, and VII. Similarly, the value of the gain and output voltage increase for short circuit wires as shown in Tables II, III, V, VI, VIII and IX. When comparing the measured gain of cable test circuit to the calculated gain shown in Tables I-IX, an open circuit wire can be identified by a measured gain smaller than the computed gain. Similarly, a short circuited wire can be identified by a measured gain larger than the computed gain.

    [0030] In the case of wires with open circuit defects in the cable, the value of the N resistors progressively increase in first resistor bank 100 (e.g., R, 3R, 5R, ..., [2N-3]R, and [2N-1]R) and in second resistor bank 105 (e.g., 2R, 4R, 6R,..., [2N-2]R, and 2NR) as can be seen in Fig. 2. As a result, open circuited wires with a low wire index (e.g., WIRE(1) in Table I) have a much larger impact on REQ and gain G since the resistor values in those branches in the resistor bank are lower in contrast to branches with open circuited wires have high wire indices (e.g., WIRE(4) in Table I). These same parametric trends are seen in Tables I, IV and VII.

    [0031] In the case of short circuit wire defects, the gain increases as the REQ decreases as shown in Tables II, III, V, VI, VIII and IX. The impact on the gain is higher for the wire pairs when one of the wires have a low wire index due to the lower resistance values in the resistor banks (e.g., short circuit pairs WIRE(1)/WIRE(2), WIRE(1)/WIRE(3), WIRE(1)/WIRE(4) in Table II), but there is less impact on the gain for the higher index short circuited wire pairs (e.g., WIRE(3)/WIRE(4) in Table II).

    [0032] The data shown in Tables I-IX are calculations for only one open circuit wire, or for one short circuit pair, which is shown here only for conceptual clarity and not by way of limitation of the embodiments of the present invention. The computed gain for any number of defective wires can be calculated for any defect wire configurations and uploaded to LUT 50. The measured gain can then be compared to data in LUT 50 by processor 45 so as to identify the defective wire configuration, and subsequently the wire indices of the one or more defective wires in the cable.
    Table I - Gain and Output Voltage (V) for N=4: Open Circuit
    OPEN CIRCUITED WIREGainOutput (V)
    WIRE (1) 47.40437158 2.3702186
    WIRE (2) 77.45901639 3.8729508
    WIRE (3) 85.6557377 4.2827869
    WIRE (4) 89.48087432 4.4740437
    Table II - Gain for N=4: Short Circuit Pairs
    SHORT CIRCUIT PAIRS: GAINWIRE (2)WIRE (3)WIRE (4)
    WIRE (1) 100.6010929 100.6830601 100.6375228
    WIRE (2) XXX 100.023967 100.0420345
    WIRE (3) XXX XXX 100.0035883
    Table III - Output Voltage (V) for N=4: Short Circuit Pairs
    SHORT CIRCUIT PAIRS: OUTPUT (V)WIRE (2)WIRE (3)WIRE(4)
    WIRE (1) 5.030054645 5.034153005 5.031876138
    WIRE (2) XXX 5.001198351 5.002101723
    WIRE (3) XXX XXX 5.000179415
    Table IV - Gain and Output Voltage (V) for N=20: Open Circuit
    OPEN CIRCUITED WIREGainOutput (V)
    WIRE (1) 67.43294696 3.3716473
    WIRE (2) 86.04269155 4.3021346
    WIRE (19) 98.69731788 4.9348659
    WIRE (20) 98.76327647 4.9381638
    Table V - Gain for N=20: Short Circuit Pairs
    SHORT CIRCUIT PAIRS: GAINWIRE (2)WIRE (18)WIRE (19)WIRE (20)
    WIRE (1) 100.3721949 100.135198 100.1288367 100.1230418
    WIRE (2) XXX 100.0208126 100.0200269 100.0192931
    WIRE (18) XXX XXX 100.0000004 100.0000013
    WIRE (19) XXX XXX XXX 100.0000003
    Table VI - Output Voltage (V) for N=20: Short Circuit Pairs
    SHORT CIRCUIT PAIRS: OUTPUT (V)WIRE (2)WIRE (18)WIRE (19)WIRE (20)
    WIRE (1) 5.018609745 5.006759901 5.006441835 5.00615209
    WIRE (2) XXX 5.001040632 5.001001344 5.000964655
    WIRE (18) XXX XXX 5.000000019 5.000000066
    WIRE (19) XXX XXX XXX 5.000000014
    Table VII - Gain and Output Voltage (V) for N=80: Open Circuit
    OPEN CIRCUITED WIREGainOutput (V)
    WIRE (1) 75.62913737 3.7814569
    WIRE (2) 89.55534459 4.4777672
    WIRE (79) 99.76789655 4.9883948
    WIRE (80) 99.77080693 4.9885403
    Table VIII - Gain for N=80: Short Circuit Pairs
    SHORT CIRCUIT PAIRS: GAINWIRE (2)WIRE (78)WIRE (79)WIRE (80)
    WIRE (1) 100.2785241 100.00254019 100.0250883 100.0247822
    WIRE (2) XXX 100.00044853 100.0044322 100.0043803
    WIRE (78) XXX XXX 100+195e-12 100+755e-12
    WIRE(79) XXX XXX XXX 100+183e-12
    Table IX -Output Voltage (V) for N=80: Short Circuit Pairs
    SHORT CIRCUIT PAIRS: OUTPUT (V)WIRE (2)WIRE (78)WIRE (79)WIRE (80)
    WIRE (1) 5.013926207 5.001270096 5.001254413 5.00615209
    WIRE (2) XXX 5.000224267 5.000221609 5.000964655
    WIRE (78) XXX XXX 5+9.74e-12 5+37.73e-12
    WIRE (79) XXX XXX XXX 5+9.14e-12


    [0033] The relative step size in the changes in the gain and the output voltage as a function of open circuit wire, or short circuit pair decreases significantly with an increasing number of wires N in the cable. The gain, or output voltage, from circuit 35 is detected with A/D 40 and converted to a digital word for use in processor 45. A finer resolution of A/D 40 is needed to resolve the smaller step size in the gain and output voltage as the number of wires N in the cable increases.

    [0034] A summary of the A/D resolution versus the number of wires N and the type of wire defect (open or short) is shown in Table X. Since the gain varies weakly for short circuit wire pair defects as shown in Tables II, V, and VIII, finer A/D resolution is needed to identify short circuit wire defects relative to the open circuit wire defects in the cable. For example, an A/D resolution of 100 µV is needed in CTS 10 to detect one open circuited wire in cable 20 for N=80, but a resolution of 0.1 pV is needed for one short circuit wire in cable 20 for N=80.
    Table X - A/D resolution for different N and Wire Defect
    Number of wires in cable (N)Wire DefectA/D resolution
    4 Open 100 mV
    4 Short 100 µV
    20 Open 1 mV
    20 Short 1 nV
    80 Open 100 µV
    80 Short 0.1 pV


    [0035] Fig. 3 is a flow chart that schematically illustrates a method for identifying defective wires in an electrical cable, in accordance with an embodiment of the present invention. In a connecting step 200, an electrical cable is connected to a test circuit so as to couple multiple wires in the cable to respective resistors in a resistor bank in the test circuit. In a measuring step 210, processor 45 measures the gain of the test circuit including the cable. In an identifying step 220, the processor identifies one or more defective wires in the cable using data correlating defective wire configurations (in LUT 50) to the measured gain. The wire indices of the one or more defective wires and the defect type (e.g., an open or short circuit wire) are identified. In an outputting step 230, processor 45 outputs the defective wire configuration to a user of the test circuit.

    [0036] It will be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention is defined by the claims.


    Claims

    1. A method, comprising:

    coupling an electrical cable (20), comprising multiple wires, to circuitry (35) comprising a resistor bank by coupling first ends of the wires to respective first resistors (100), and second ends of the wires to respective second resistors (105),;

    applying an input voltage to the circuitry (35) including the cable (20);

    measuring a gain of the circuitry (35) including the cable (20);

    based on the measured gain, identifying one or more of the wires in the cable (20) that are defective; and

    outputting an indication of the defective wires;

    wherein the resistor values in the resistor bank are chosen so that each expected defect in the electrical cable (20) will translate to a different value of the measured gain.


     
    2. The method according to claim 1, wherein the first resistors (100) have resistances that are odd multiples of a resistance R, and wherein the second resistors (105) have the resistances that are even multiples of R.
     
    3. The method according to claim 1, wherein identifying the one or more defective wires comprises identifying an open circuit in one or more of the wires upon detecting that the measured gain is smaller than an expected gain for a non-defective cable (20).
     
    4. The method according to claim 1, wherein identifying the one or more defective wires comprises identifying a short circuit between two or more of the wires upon detecting that the measured gain is larger than an expected gain for a non-defective cable (20).
     
    5. The method according to claim 1, wherein identifying the one or more defective wires comprises storing a predefined list of gains for respective expected defects in the cable (20), and determining the one or more defective wires by finding on the list an expected defect that matches the measured gain.
     
    6. The method according to claim 1, wherein measuring the gain comprises measuring the gain of an inverting operational amplifier with a feedback resistance (115) and an equivalent input resistance, the equivalent input resistance including the multiple wires in the cable (20).
     
    7. An apparatus, comprising:

    an interface for coupling to an electrical cable (20) comprising multiple wires; and

    circuitry (35), comprising first resistors (100) coupled to respective first ends of the wires, and second resistors (105) coupled to respective second ends of the wires, and which is configured to measure a gain of the circuitry (35) including the cable (20) upon application of an input voltage thereto, and, based on the measured gain, to identify one or more of the wires in the cable (20) that are defective, and to output an indication of the defective wires;

    wherein the resistor values in the resistor bank are chosen so that each expected defect in the electrical cable (20) will translate to a different value of the measured gain.


     
    8. The apparatus according to claim 7, wherein the first resistors (100) have resistances that are odd multiples of a resistance R, and wherein the second resistors (105) have the resistances that are even multiples of R.
     
    9. The apparatus according to claim 7, wherein the circuitry (35) is configured to identify an open circuit in one or more of the wires upon detecting that the measured gain is smaller than an expected gain for a non-defective cable (20).
     
    10. The apparatus according to claim 7, wherein the circuitry (35) is configured to identify a short circuit between two or more of the wires upon detecting that the measured gain is larger than an expected gain for a non-defective cable (20).
     
    11. The apparatus according to claim 7, wherein the circuitry (35) is configured to store a predefined list of gains for respective expected defects in the cable (20), and to identify the one or more defective wires by finding on the list an expected defect that matches the measured gain.
     
    12. The apparatus according to claim 7, wherein the circuitry (35) comprises an inverting operational amplifier with a feedback resistance (115) and an equivalent input resistance, the equivalent input resistance including the multiple wires in the cable (20), and wherein the circuitry (35) is configured to measure the gain by measuring the gain of an inverting operational amplifier.
     


    Ansprüche

    1. Verfahren, das Folgendes umfasst:

    Koppeln eines Elektrokabels (20), das mehrere Drähte umfasst, an eine Schaltungsanordnung (35), die eine Widerstandsbank umfasst, durch Koppeln erster Enden der Drähte an entsprechende erste Widerstände (100) und zweiter Enden der Drähte an entsprechende zweite Widerstände (105);

    Anlegen einer Eingangsspannung an die Schaltungsanordnung (35), die das Kabel (20) enthält;

    Messen einer Verstärkung der Schaltungsanordnung (35), die das Kabel (20) enthält;

    Identifizieren auf der Grundlage der gemessenen Verstärkung, dass einer oder mehrere der Drähte im Kabel (20) fehlerhaft sind; und

    Ausgeben einer Anzeige der fehlerhaften Drähte; wobei

    die Widerstandswerte in der Widerstandsbank derart gewählt werden, dass jeder erwartete Fehler im Elektrokabel (20) zu einem verschiedenen Wert der gemessenen Verstärkung umgesetzt wird.


     
    2. Verfahren nach Anspruch 1, wobei die ersten Widerstände (100) Widerstandswerte besitzen, die ungeradzahlige Vielfache eines Widerstands R sind, und die zweiten Widerstände (105) die Widerstandswerte besitzen, die geradzahlige Vielfache von R sind.
     
    3. Verfahren nach Anspruch 1, wobei das Identifizieren des einen oder der mehreren fehlerhaften Drähte nach dem Detektieren, dass die gemessene Verstärkung kleiner als eine für ein nicht fehlerhaftes Kabel (20) erwartete Verstärkung ist, das Identifizieren eines Leerlaufs in einem oder mehreren der Drähte umfasst.
     
    4. Verfahren nach Anspruch 1, wobei das Identifizieren des einen oder der mehreren fehlerhaften Drähte nach dem Detektieren, dass die gemessene Verstärkung größer als eine für ein nicht fehlerhaftes Kabel (20) erwartete Verstärkung ist, das Identifizieren eines Kurzschlusses zwischen zwei oder mehreren der Drähte umfasst.
     
    5. Verfahren nach Anspruch 1, wobei das Identifizieren des einen oder der mehreren fehlerhaften Drähte das Speichern einer vordefinierten Liste von Verstärkungen für entsprechende erwartete Fehler im Kabel (20) und das Bestimmen des einen oder der mehreren fehlerhaften Drähte durch Feststellen eines erwarteten Fehlers in der Liste, der mit der gemessenen Verstärkung übereinstimmt, umfasst.
     
    6. Verfahren nach Anspruch 1, wobei das Messen der Verstärkung das Messen der Verstärkung eines invertierenden Operationsverstärkers mit einem Rückkopplungswiderstand (115) und einem Ersatzeingangswiderstand umfasst, wobei der Ersatzeingangswiderstand die mehreren Drähte im Kabel (20) enthält.
     
    7. Vorrichtung, die Folgendes umfasst:

    eine Schnittstelle, um an ein Elektrokabel (20), das mehrere Drähte umfasst, zu koppeln; und

    eine Schaltungsanordnung (35), die erste Widerstände (100), die an entsprechende erste Enden der Drähte gekoppelt sind, und zweite Widerstände (105), die an entsprechende zweite Enden der Drähte gekoppelt sind, umfasst, die konfiguriert ist, eine Verstärkung der Schaltungsanordnung (35), die das Kabel (20) enthält, nach dem Anlegen einer Eingangsspannung an sie zu messen und auf der Grundlage der gemessenen Verstärkung einen oder mehrere der Drähte im Kabel (20) zu identifizieren, die fehlerhaft sind, und eine Anzeige der fehlerhaften Drähte auszugeben; wobei

    die Widerstandswerte in der Widerstandsbank derart gewählt sind, dass jeder erwartete Fehler im Elektrokabel (20) in einen unterschiedlichen Wert der gemessenen Verstärkung umgesetzt wird.


     
    8. Vorrichtung nach Anspruch 7, wobei die ersten Widerstände (100) Widerstandswerte besitzen, die ungeradzahlige Vielfache eines Widerstands R sind, und die zweiten Widerstände (105) die Widerstandswerte besitzen, die geradzahlige Vielfache von R sind.
     
    9. Vorrichtung nach Anspruch 7, wobei die Schaltungsanordnung (35) konfiguriert ist, nach dem Detektieren, dass die gemessene Verstärkung kleiner als eine für ein nicht fehlerhaftes Kabel (20) erwartete Verstärkung ist, einen Leerlauf in einem oder mehreren der Drähte zu identifizieren.
     
    10. Vorrichtung nach Anspruch 7, wobei die Schaltungsanordnung (35) konfiguriert ist, nach dem Detektieren, dass die gemessene Verstärkung größer als eine für ein nicht fehlerhaftes Kabel (20) erwartete Verstärkung ist, einen Kurzschlusses zwischen zwei oder mehreren der Drähte zu identifizieren.
     
    11. Vorrichtung nach Anspruch 7, wobei die Schaltungsanordnung (35) konfiguriert ist, eine vordefinierte Liste von Verstärkungen für entsprechende erwartete Fehler im Kabel (20) zu speichern und den einen oder die mehreren fehlerhaften Drähte durch Feststellen eines erwarteten Fehlers in der Liste, der mit der gemessenen Verstärkung übereinstimmt, zu identifizieren.
     
    12. Vorrichtung nach Anspruch 7, wobei die Schaltungsanordnung (35) einen invertierenden Operationsverstärkers mit einem Rückkopplungswiderstand (115) und einem Ersatzeingangswiderstand umfasst, wobei der Ersatzeingangswiderstand die mehreren Drähte im Kabel (20) enthält, und die Schaltungsanordnung (35) konfiguriert ist, die Verstärkung durch Messen der Verstärkung eines invertierenden Operationsverstärkers zu messen.
     


    Revendications

    1. Procédé, comprenant :

    le couplage d'un câble électrique (20), comprenant de multiples fils, à un circuit (35) comprenant un bloc de résistances en couplant les premières extrémités des fils à des premières résistances respectives (100), et les secondes extrémités des fils à des secondes résistances respectives (105) ;

    l'application d'une tension d'entrée aux circuits (35) incluant le câble (20) ;

    la mesure d'un gain des circuits (35) incluant le câble (20) ;

    sur la base du gain mesuré, l'identification d'un ou plusieurs fils dans le câble (20) qui sont défectueux ; et

    l'émission en sortie d'une indication des fils défectueux ;

    les valeurs de résistance dans le bloc de résistances étant choisies de sorte que chaque défaut attendu dans le câble électrique (20) se traduise par une valeur différente du gain mesuré.


     
    2. Procédé selon la revendication 1, les premières résistances (100) ayant des résistances qui sont des multiples impairs d'une résistance R, et les secondes résistances (105) ayant des résistances qui sont des multiples pairs de R.
     
    3. Procédé selon la revendication 1, l'identification du ou des fils défectueux comprenant l'identification d'un circuit ouvert dans un ou plusieurs des fils lors de la détection que le gain mesuré est inférieur à un gain attendu pour un câble non défectueux (20).
     
    4. Procédé selon la revendication 1, l'identification du ou des fils défectueux comprenant l'identification d'un court-circuit entre deux ou plus des fils lors de la détection que le gain mesuré est supérieur à un gain attendu pour un câble non défectueux (20).
     
    5. Procédé selon la revendication 1, l'identification du ou des fils défectueux comprenant le stockage d'une liste prédéfinie de gains pour des défauts attendus respectifs dans le câble (20), et la détermination du ou des fils défectueux en trouvant dans la liste un défaut attendu qui correspond au gain mesuré.
     
    6. Procédé selon la revendication 1, la mesure du gain comprenant la mesure du gain d'un amplificateur opérationnel inverseur avec une résistance de rétroaction (115) et une résistance d'entrée équivalente, la résistance d'entrée équivalente incluant les multiples fils dans le câble (20).
     
    7. Appareil, comprenant :

    une interface pour le couplage à un câble électrique (20) comprenant de multiples fils ; et

    un circuit (35), comprenant des premières résistances (100) couplées à des premières extrémités respectives des fils, et des secondes résistances (105) couplées à des secondes extrémités respectives des fils, et qui est configuré pour mesurer un gain du circuit (35) incluant le câble (20) lors de l'application d'une tension d'entrée à celui-ci, et, sur la base du gain mesuré, pour identifier un ou plusieurs des fils dans le câble (20) qui sont défectueux et pour émettre en sortie une indication des fils défectueux ;

    les valeurs de résistance dans le bloc de résistances étant choisies de telle sorte que chaque défaut attendu dans le câble électrique (20) se traduise par une valeur différente du gain mesuré.


     
    8. Appareil selon la revendication 7, les premières résistances (100) ayant des résistances qui sont des multiples impairs d'une résistance R, et les secondes résistances (105) ayant des résistances qui sont des multiples pairs de R.
     
    9. Appareil selon la revendication 7, le circuit (35) étant configuré pour identifier un circuit ouvert dans un ou plusieurs des fils lors de la détection que le gain mesuré est inférieur à un gain attendu pour un câble non défectueux (20).
     
    10. Appareil selon la revendication 7, le circuit (35) étant configuré pour identifier un court-circuit entre deux ou plusieurs des fils lors de la détection que le gain mesuré est supérieur à un gain attendu pour un câble non défectueux (20).
     
    11. Appareil selon la revendication 7, le circuit (35) étant configuré pour stocker une liste prédéfinie de gains pour des défauts attendus respectifs dans le câble (20), et pour identifier le ou les fils défectueux en trouvant dans la liste un défaut attendu qui correspond au gain mesuré.
     
    12. Appareil selon la revendication 7, le circuit (35) comprenant un amplificateur opérationnel inverseur avec une résistance de rétroaction (115) et une résistance d'entrée équivalente, la résistance d'entrée équivalente incluant les multiples fils dans le câble (20), et le circuit (35) étant configuré pour mesurer le gain en mesurant le gain d'un amplificateur opérationnel inverseur.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description