(19)
(11)EP 2 833 500 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 12873319.3

(22)Date of filing:  14.05.2012
(51)International Patent Classification (IPC): 
H02H 7/18(2006.01)
H02J 7/02(2016.01)
H02J 50/12(2016.01)
(86)International application number:
PCT/CN2012/075469
(87)International publication number:
WO 2013/143207 (03.10.2013 Gazette  2013/40)

(54)

CHARGING PROTECTION CIRCUIT

LADESCHUTZSCHALTUNG

CIRCUIT DE PROTECTION DE CHARGE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 31.03.2012 CN 201220146863 U

(43)Date of publication of application:
04.02.2015 Bulletin 2015/06

(73)Proprietor: ZTE Corporation
Shenzhen, Guangdong 518057 (CN)

(72)Inventors:
  • LUO, Yibao
    Shenzhen Guangdong 518057 (CN)
  • GUO, Shuai
    Shenzhen Guangdong 518057 (CN)

(74)Representative: Novagraaf Technologies et al
Bâtiment O2 2, rue Sarah Bernhardt CS90017
92665 Asnières-sur-Seine Cedex
92665 Asnières-sur-Seine Cedex (FR)


(56)References cited: : 
WO-A1-2008/133388
CN-A- 102 097 668
US-A1- 2008 197 711
US-A1- 2011 057 606
US-A1- 2012 242 163
CN-A- 101 841 173
CN-A- 102 179 003
US-A1- 2010 156 343
US-A1- 2011 115 429
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present invention relates to the communication field, and in particular, to a charging protection circuit.

    Background



    [0002] With the development of mobile communication technologies, mobile phones have become necessary communication tools in our daily life. When using a mobile phone, the user often feels inconvenient when using the wired charging of the mobile phone. Currently, in the relevant art, many wireless mobile phone charging solutions have been proposed. Among these wireless mobile phone charging solutions, 13.56 MHz induction charging solution has been mature relatively. This solution merely requires to place a mobile phone on an induction base of a charger and can charge the mobile phone by means of induction without plugging. This convenient and rapid charging method has been appreciated by many mobile phone manufacturers. However, the design defect of the above wireless charging solution lies in that during mass manufacture, the key part in this solution, i.e., high permeability material, is easy to fail after long-term use, which brings risks into the charging process of the mobile phone. Therefore, although the wireless charging solution is much appreciated, it also makes many manufacturers have to take into account the quality problem of the product when employing the wireless charging solution.

    [0003] Fig. 1 is a schematic diagram of a wireless charging protection circuit in the relevant art. As shown in Fig. 1, the wireless charging protection circuit includes: a wireless charging base 1 and a charging receiving circuit 2. The charging receiving circuit 2 may include: a high-permeability magnetic core 20. For the consideration of receiving antenna area, a receiving antenna is usually placed directly under the battery, and the antenna plane covers the battery. In order to prevent the influence on the battery from the alternating magnetic field generated during wireless charging and at the same time increase the magnetic flux of the receiving antenna coils, a layer of high-permeability ferrite is usually added between the battery and the receiving antenna coils. This layer of ferrite material is very important for the entire wireless charger. In fact, wireless charging technology generates an alternating magnetic field using a charging base, which magnetic field is coupled to the receiving coils at the back surface of the mobile phone by means of the coil antenna on the base, like an active power transmission transformer, and the high-permeability material is equivalent to a ferrite magnetic core of the transformer. With this high-permeability material, the magnetic flux of the receiving coils can be increased, thus improving the charging efficiency. In addition, if there is no high-permeability material layer, the alternating magnetic field will directly act on the surface of the battery of the mobile phone by transmitting through the receiving antenna. The surface layer of the battery is a metal layer, the metal layer will generate eddy current effects in the alternating magnetic field, that is, an eddy current is generated on the metal surface layer to generate an opposite magnetic field, which thus reduces the magnetic flux of the coils and severely affects the charging efficiency. Moreover, when the eddy current generated on the metal surface layer of the battery by the alternating magnetic field is big enough, it will bring hazards to the safety of the battery. In addition, the wiring on the main board of the mobile phone on the back of the battery will also be affected by the alternating magnetic field, for example, electromagnetic compatibility (EMC in short) problem will be very significant. Therefore, using a high-permeability magnetic core in the wireless charging solution of the mobile phone is a necessary option.

    [0004] However, the problems existing in the relevant art lie in that when this layer of ferrite material has failed or itself has some quality problem during production, it will significantly reduce the charging efficiency of the charging protection circuit, and even may cause the battery of the mobile phone to explode. Although there is very small possibility for such an incident to occur, once it happens, it will damage the brand appearance of the product, and cause the mobile phone user to contradict when purchasing and using this product. Therefore, when using a wireless charger, how to avoid the severe consequence resulted from the continuous charging of the wireless charger when the high-permeability magnetic core has failed is an urgent problem to be solved.

    [0005] D1 (US2008/197711A1) describes an electronic device having at least a loop-shaped electric conductor generating electric power by electromagnetic induction; D2 (US2012242163A1) which has a filing date before the present application but a publication date after the filing date of the present application describes a wireless power receiving device which includes: a secondary core configured to receive a wireless power signal from a primary core of a wireless power transmission apparatus; a magnetic sensor configured to detect a magnetic field generated from the primary core: and a receiving controller configured to transmit an error code to the wireless power transmission apparatus via the secondary core if a measured magnetic field value from the magnetic sensor is lower than a reference magnetic value and the communication with the wireless power transmission apparatus is available.

    Summary



    [0006] The embodiments of the present invention provide a charging protection circuit, so as to solve the problem in the relevant art that whether the high-permeability magnetic core has failed cannot be detected.

    [0007] According to an embodiment of the present invention, a charging protection circuit is proposed.

    [0008] The charging protection circuit according to the embodiment of the present invention includes a wireless charging base and a charging receiving circuit, the charging receiving circuit including: first receiving coils which are configured to receive electromagnetic waves from the wireless charging base; a power supply circuit which is configured to convert electromagnetic energy generated by the electromagnetic waves received by the first receiving coils into electric energy to supply power to a power receiving device, the charging receiving circuit further comprises a high-permeability magnetic core which is coupled to the first receiving coils and the power supply circuit and is configured to block electromagnetic waves opposite to the electromagnetic waves from the wireless charging base; a detection circuit which is coupled to the high-permeability magnetic core and is provided between the high-permeability magnetic core and a power receiving device, wherein the detection circuit is configured to compare the electromagnetic waves received from the wireless charging base while the high-permeability magnetic core is operating normally and while the high-permeability magnetic core has failed in order to detect whether the high-permeability magnetic core has failed.

    [0009] The detection circuit may include: second receiving coils which are configured to receive the electromagnetic waves from the wireless charging base; a converter which is coupled to the second receiving coils and configured to convert electromagnetic energy generated by the electromagnetic waves received by the second receiving coils into an induction current a first detection sensor which is coupled to the converter and configured to detect magnitude of the induction current; and a second comparator which is coupled to the first detection sensor and configured to compare the detected induction current with a preset induction current threshold and determine that the high-permeability magnetic core has failed when the detected induction current is greater than the preset induction current threshold.

    [0010] The detection circuit may include: third receiving coils which are configured to receive the electromagnetic waves from the wireless charging base; a second detection sensor which is coupled to the third receiving coils and configured to detect a coupling power of the electromagnetic waves received by the third receiving coils; and a third comparator which is coupled to the second detection sensor and configured to compare the detected coupling power with a preset power threshold and determine that the high-permeability magnetic core has failed when the detected coupling power is greater than the preset power threshold.

    [0011] The charging receiving circuit may include: a first alarm which is configured to give an alarm when the detection circuit detects that the high-permeability magnetic core has failed.

    [0012] The charging receiving circuit may include: a near field communication (NFC) communication circuit which is coupled to the detection circuit and configured to issue an NFC shutdown charging signal when the detection circuit detects that the high-permeability magnetic core has failed.

    [0013] The wireless charging base may include: an amplitude wave detection circuit which is configured to detect a signal from the NFC communication circuit; an NFC demodulation circuit which is coupled to the amplitude wave detection circuit and configured to demodulate the signal detected by the amplitude wave detection circuit; and a control circuit which is coupled to the NFC demodulation circuit and configured to cut off a power supply switch when a signal obtained by the demodulation is the NFC shutdown charging signal.

    [0014] The wireless charging base may include: a second alarm which is configured to give an alarm when the signal obtained by the demodulation is the NFC shutdown charging signal.

    [0015] A coupling resonant frequency of the detection circuit may be a frequency of the electromagnetic waves from the wireless charging base, or a receiving frequency of the detection circuit is high-order harmonics of the frequency of the electromagnetic waves from the wi reless chargi ng base.
    A coupling area of the detection circuit and the high-permeability magnetic core may be the same as an area of the high-permeability magnetic core.

    [0016] An LC circuit may be provided between the second receiving coils or between the third receiving coils, wherein the LC circuit is configured to fine tune a resonant frequency of the detection circuit.

    [0017] With the embodiment of the present invention, a detection circuit is added between a high-permeability magnetic core and a power receiving device in a charging receiving circuit to compare the electromagnetic waves received when the high-permeability magnetic core operates normally and the electromagnetic waves received when the high-permeability magnetic core has failed, so as to determi ne whether the high-permeability magnetic core has failed. The problem in the relevant art that whether the high-permeability magnetic core has failed cannot be detected is solved, and the serious result caused by continuous charging of a wireless charger after a high-permeability magnetic core has failed is avoided.

    Brief Description of the Drawings



    [0018] Drawings are used to provide for further understanding of the present invention and forming a part of the present application, and the schematic embodiments of the present invention and the description thereof are configured to explain the present invention rather than to limit the present invention. In the drawings:

    Fig. 1 is a schematic diagram of a wireless charging protection circuit in the relevant art;

    Fig. 2 is a schematic diagram of a wireless charging protection circuit according to an embodiment of the present invention;

    Fig. 3 is a schematic diagram of a detection circuit according to embodiment I of the present invention;

    Fig. 4 is a schematic diagram of a detection circuit according to embodiment II of the present invention; and

    Fig. 5 is a schematic diagram of a charging protection circuit according to an example embodiment of the present invention.


    Detailed Description of the Embodiments



    [0019] The present invention is described below with reference to the accompanying drawings and embodiments in detail. Note that, the embodiments of the disclosure and the features of the embodiments can be combined with each other if there is no conflict.

    [0020] Fig. 2 is a schematic diagram of a wireless charging protection circuit according to an embodiment of the present invention. As shown in Fig. 2, the charging protection circuit may include a wireless charging base 1 and a charging receiving circuit 2, wherein the charging receiving circuit 2 may include first receiving coils 20 which are configured to receive electromagnetic waves from the wireless charging base; a high-permeability magnetic core 22 which is coupled to the first receiving coils and is configured to block electromagnetic waves opposite to the electromagnetic waves from the wireless charging base; a detection circuit 24 which is coupled to the high-permeability magnetic core and is configured to detect whether the high-permeability magnetic core has failed; and a power supply circuit 26 which is coupled to the high-permeability magnetic core and is configured to convert the electromagnetic energy generated by the electromagnetic waves into electric energy to supply power to a power receiving device.

    [0021] In the relevant art, whether the high-permeability magnetic core has failed cannot be detected. With the charging protection circuit shown in Fig. 2, a detection circuit is added between a high-permeability magnetic core and a power receiving device in a charging receiving circuit to compare the electromagnetic waves received when the high-permeability magnetic core operates normally and the electromagnetic waves received when the high-permeability magnetic core has failed, so as to determine whether the high-permeability magnetic core has failed. The problem in the relevant art that whether the high-permeability magnetic core has failed cannot be detected is solved, and the serious result caused by continuous charging of a wireless charger after a high-permeability magnetic core has failed is avoided.

    [0022] In an example embodiment of the present invention, as shown in Fig. 3, the detection circuit 24 may include: second receiving coils 240 which are configured to receive electromagnetic waves from the wireless charging base; a converter 242 which is coupled to the second receiving coils and configured to convert the electromagnetic energy generated by the electromagnetic waves received by the second receiving coils into an induction current; a first detection sensor 244 which is coupled to the converter and configured to detect the magnitude of the induction current; and a second comparator 246 which is coupled to the first detection sensor and configured to compare the detected induction current with a preset induction current threshold and determine that the high-permeability magnetic core has failed when the detected induction current is greater than the preset induction current threshold.

    [0023] In an example embodiment, when the high-permeability magnetic core operates normally, due to the blocking of the high-permeability magnetic core, there are very few magnetic fluxes passing through the detection circuit, and the detection circuit almost cannot sense the charging alternating magnetic field, and therefore, the induction current on this detection circuit is also very small. However, when the high-permeability magnetic core has failed or itself malfunctions, the magnetic flux induced by the detection circuit will increase, and an induction current will be generated on the detection circuit. An induction current threshold is preset, and it is determined that the high-permeability magnetic core has failed when the detected induction current is greater than the set threshold.

    [0024] In an example embodiment, a load resistor can be added on the first detection sensor. At this moment, the leaked alternating magnetic field will generate an induction current in the closed circuit, and the digital information of the induction current is read by the first detection sensor.

    [0025] In an example embodiment of the present invention, as shown in Fig. 4, the detection circuit 24 may include: third receiving coils 248 which are configured to receive electromagnetic waves from the wireless charging base; a second detection sensor 250 which is coupled to the third receiving coils and configured to detect a coupling power of the electromagnetic waves received by the third receiving coils; a second detection sensor 252 which is coupled to the third receiving coils and configured to detect a coupling power of the electromagnetic waves received by the third receiving coils; a third comparator which is coupled to the second detection sensor and configured to compare the detected coupling power with a preset power threshold and determine that the high-permeability magnetic core has failed when the detected coupling power is greater than the preset power threshold.

    [0026] In an example embodiment, when the high-permeability magnetic core operates normally, due to the blocking of the high-permeability magnetic core, there are very few magnetic fluxes passing through the detection circuit, and therefore, the coupling power of the electromagnetic waves on this detection circuit will be very small. However, when the high-permeability magnetic core has failed or itself malfunctions, the magnetic flux induced by the detection circuit will increase, and the coupling power of the electromagnetic waves on this detection circuit will increase. A detection amplitude threshold is preset, and it is determined that the high-permeability magnetic core has failed when the detected coupling power is greater than the set threshold.

    [0027] During implementation, as shown in Fig. 5, the charging receiving circuit 2 may further include: a first alarm 28 which is configured to give an alarm when the detection circuit detects that the high-permeability magnetic core has failed.

    [0028] In an example embodiment, the mobile phone will give an alarm and notify the charging base to stop discharging, so as to avoid the severe consequence caused by the continuous charging of the wireless charger when the high-permeability magnetic core has failed.

    [0029] In an example embodiment of the present invention, as shown in Fig. 5, the charging receiving circuit 2 may further include: a near field communication (NFC in short) communication circuit 30 which is coupled to the detection circuit and configured to issue an NFC shutdown charging signal when the detection circuit detects that the high-permeability magnetic core has failed.

    [0030] The NFC is a basic function for many mobile terminals currently. In an example embodiment, since the frequency of NFC communication is the same as the frequency of wireless charging, many manufacturers currently make a design whereby wireless charging and NFC share the same antenna, and the NFC near field communication function is used to send protection shutdown information to the charging base so as to shut down the charging circuit to stop charging.

    [0031] In an example embodiment of the present invention, as shown in Fig. 5, the wireless charging base 1 may include: an amplitude wave detection circuit 10 which is configured to detect the signal from the NFC communication circuit; an NFC demodulation circuit 12 which is coupled to the amplitude wave detection circuit and configured to demodulate the signal detected by the amplitude wave detection circuit; a control circuit 14 which is coupled to the NFC demodulation circuit and configured to cut off the power supply switch when a signal obtained by the demodulation is the NFC shutdown charging signal.

    [0032] In an example embodiment, the characteristics that the coupling frequency of the NFC of the mobile phone and the frequency of wireless charging are the same are utilized. The NFC communication circuit of the mobile terminal gives an instruction to stop charging, and the base of the mobile phone receives an NFC signal to execute a process of shutting down charging. However, since the frequency of wireless charging is the same as the communication frequency of NFC, effective NFC signals will be immersed in the signals of wireless charging. Therefore, the amplitude modulation function of the NFC communication circuit may be needed, information is transmitted via the amplitude carriers of the signals, that is, by way of adding a bigger energy reservation and load circuit on the conventional NFC communication circuit, the signal amplitude of wireless charging can be modulated. At the same time, an amplitude wave detection circuit is added on the charging base to read the rising edges and falling edges of amplitude variations and identify the shutdown information transmitted from the mobile terminal, thereby achieving the purpose of shutdown control.

    [0033] In an example embodiment of the present invention, as shown in Fig. 5, the wireless charging base 1 may further include: a second alarm 16 which is configured to give an alarm when a signal obtained by the demodulation is the NFC shutdown charging signal.

    [0034] During specific implementation, the coupling resonant frequency of the detection circuit is the frequency of the electromagnetic waves from the wireless charging base or the receiving frequency of the detection circuit is the high-order harmonics of the frequency of the electromagnetic waves from the wireless charging base. As such, it can be ensured that the detection circuit sensitively detects the alternating magnetic field leaked due to the high-permeability magnetic core being failed.

    [0035] During specific implementation, the coupling area of the detection circuit and the high-permeability magnetic core is the same as the area of the high-permeability magnetic core. As such, the detection circuit will not miss the magnetic leakage resulted from local failure of the high-permeability magnetic core. Of course, the coupling area of the detection circuit and the high-permeability magnetic core can also be greater than the area of the high-permeability magnetic core, as long as magnetic leaking phenomena can be prevented during the detection process of the detection circuit.

    [0036] During specific implementation, an LC circuit is provided between the second receiving coils or between the third receiving coils, wherein the LC circuit is configured to fine tune the resonant frequency of the detection circuit. The main frequency of the detection circuit is decided by the number of turns of the coils and the coil spacing, and the antenna uses flexible printed circuit (FPC) microstrip line process.

    [0037] It can be seen from the above description that the above embodiments realize the following technical effects (it should be noted that these effects are effects that can be realized by some example embodiments): it can be realized that the detection circuit located behind the receiving charging coils during wireless charging will be triggered in the situation where the high-permeability magnetic core has failed or the performance thereof degrades, and first, the failure induction antenna adhered to the back of the high-permeability magnetic core induces the leaked charging magnetic field, and then an induction current is generated or the coupling power of the electromagnetic waves received by the detection circuit changes. When the induction current or the coupling power exceeds the preset threshold, the power receiving device will give an alarm, and transmit the alarm information to the wireless charging base via the NFC communication circuit. After receiving the alarm information, the wireless charging base rapidly cuts off charging and gives an alarm to notify the user to prevent the safety hazard caused by continuous charging and protect the safety of the power receiving device.

    [0038] Obviously, those skilled in the art should know that each of the mentioned modules or steps of the disclosure can be realized by universal computing devices; the modules or steps can be focused on single computing device, or distributed on the network formed by multiple computing devices; selectively, they can be realized by the program codes which can be executed by the computing device; thereby, the modules or steps can be stored in the storage device and executed by the computing device; and under some circumstances, the shown or described steps can be executed in different orders, or can be independently manufactured as each integrated circuit module, or multiple modules or steps thereof can be manufactured to be single integrated circuit module, thus to be realized. In this way, the present invention is not restricted to any particular hardware and software combination.

    [0039] The descriptions above are only the preferable embodiment of the present invention, which are not used to restrict the present invention, for those skilled in the art, the present invention may have various changes and variations. Any amendments, equivalent substitutions, improvements, etc. within the principle of the present invention are all included in the scope of the protection as defined in the appended claims of the present invention.


    Claims

    1. A charging protection circuit comprising: a wireless charging base (1) and a chargi ng receiving circuit (2), the charging receiving circuit comprising:

    first receiving coils (20) which are configured to receive electromagnetic waves from the wi reless chargi ng base; and

    a power supply circuit (26) configured to convert electromagnetic energy generated by the electromagnetic waves received by the first receiving coils into electric energy to supply power to a power receiving devic and

    a high-permeability magnetic core (22) which is coupled to the first receiving coils and the power supply circuit and is configured to block electromagnetic waves opposite to the electromagnetic waves from the wireless charging base;

    characterized in that the charge receiving circuit further comprises:
    a detection circuit (24) which is coupled to the high-permeability magnetic core and is provided between the high-permeability magnetic core and the power receiving device, wherein the detection circuit is configured to compare the electromagnetic waves received from the wireless charging base while the high-permeability magnetic core is operating normally and while the high-permeability magnetic core has failed in order to detect whether the high-permeability magnetic core has failed.


     
    2. The charging protection circuit according to claim 1, characterized in that the detection circuit comprises:

    second receiving coils (240) which are configured to receive the electromagnetic waves from the wi reless chargi ng base;

    a converter (242) which is coupled to the second receiving coils and configured to convert electromagnetic energy generated by the electromagnetic waves received by the second receiving coils into an induction current;

    a first detection sensor (244) which is coupled to the converter and configured to detect magnitude of the induction current; and

    a second comparator (246) which is coupled to the first detection sensor and configured to compare the detected induction current with a preset induction current threshold and determine that the high-permeability magnetic core has failed when the detected induction current is greater than the preset induction current threshold.


     
    3. The charging protection circuit according to claim 1, characterized in that the detection circuit comprises:

    third receiving coils (248) which are configured to receive the electromagnetic waves from the wi reless chargi ng base;

    a second detection sensor (250) which is coupled to the third receiving coils and configured to detect a coupling power of the electromagnetic waves received by the third receiving coils; and

    a third comparator which is coupled to the second detection sensor and configured to compare the detected coupling power with a preset power threshold and determi ne that the high-permeability magnetic core has failed when the detected coupling power is greater than the preset power threshold.


     
    4. The charging protection circuit according to any one of claims 1 to 3, characterized in that the chargi ng receiving circuit further comprises:
    a first alarm (28) which is configured to give an alarm when the detection circuit detects that the high-permeability magnetic core has failed.
     
    5. The charging protection circuit according to any one of claims 1 to 3, characterized in that the chargi ng receiving circuit further comprises:
    a near field communication (NFC) communication circuit (30) which is coupled to the detection circuit and configured to issue an NFC shutdown charging signal when the detection circuit detects that the high-permeability magnetic core has failed.
     
    6. The charging protection circuit according to claim 5, characterized in that the wireless charging base comprises:

    an amplitude wave detection circuit (10) which is configured to detect a signal from the NFC communication circuit;

    an NFC demodulation circuit (12) which is coupled to the amplitude wave detection circuit and configured to demodulate the signal detected by the amplitude wave detection circuit; and

    a control circuit (14) which is coupled to the NFC demodulation circuit and configured to cut off a power supply switch when a signal obtained by the demodulation is the NFC shutdown charging signal.


     
    7. The charging protection circuit according to claim 6, characterized in that the wireless charging base further comprises:
    a second alarm (16) which is configured to give an alarm when the signal obtained by the demodulation is the NFC shutdown charging signal.
     
    8. The charging protection circuit according to any one of claims 1 to 3, characterized in that a coupling resonant frequency of the detection circuit is a frequency of the electromagnetic waves from the wireless charging base, or a receiving frequency of the detection circuit is high-order harmonics of the frequency of the electromagnetic waves from the wireless charging base.
     
    9. The charging protection circuit according to any one of claims 1 to 3, characterized in that a coupling area of the detection circuit and the high-permeability magnetic core is the same as an area of the high-permeability magnetic core.
     
    10. The charging protection circuit according to any one of claims 1 to 3, characterized in that an LC circuit is provided between the second receiving coils or between the third receiving coils, wherein the LC circuit is configured to fine tune a resonant frequency of the detection circuit.
     


    Ansprüche

    1. Ladeschutzschaltung, Folgendes umfassend: eine drahtlose Ladestation (1) und eine Ladeempfangsschaltung (2), wobei die Ladeempfangsschaltung Folgendes umfasst:

    erste Empfangsspulen (20), die konfiguriert sind, um elektromagnetische Wellen von der drahtlosen Ladestation zu empfangen; und

    eine Stromversorgungsschaltung (26), die konfiguriert ist, um elektromagnetische Energie, die durch die elektromagnetischen Wellen generiert wird, die durch die ersten Empfangsspulen empfangen werden, in elektrische Energie umzuwandeln, um eine Stromempfangsvorrichtung und einen Magnetkern (22) mit hoher Permeabilität, der an die ersten Empfangsspulen und die Stromversorgungsschaltung gekoppelt ist, mit Strom zu versorgen, und konfiguriert ist, um elektromagnetische Wellen, entgegengesetzt zu den elektromagnetischen Wellen aus der drahtlosen Ladestation zu blockieren;

    dadurch gekennzeichnet, dass die Ladeempfangsschaltung weiter Folgendes umfasst:
    eine Detektionsschaltung (24), die an den Magnetkern mit hoher Permeabilität gekoppelt ist, und zwischen dem Magnetkern mit hoher Permeabilität und der Stromempfangsvorrichtung bereitgestellt ist, wobei die Detektionsschaltung konfiguriert ist, um die elektromagnetischen Wellen, die aus der drahtlosen Ladestation empfangen werden, während der Magnetkern mit hoher Permeabilität normal arbeitet und während der Magnetkern mit hoher Permeabilität ausgefallen ist, zu vergleichen, um zu detektieren, ob der Magnetkern mit hoher Permeabilität ausgefallen ist.


     
    2. Ladeschutzschaltung nach Anspruch 1, dadurch gekennzeichnet, dass die Detektionsschaltung Folgendes umfasst:

    zweite Empfangsspulen (240), die konfiguriert sind, um die elektromagnetischen Wellen von der drahtlosen Ladestation zu empfangen;

    einen Wandler (242), der an die zweiten Empfangsspulen gekoppelt ist und konfiguriert ist, um elektromagnetische Energie, die durch die elektromagnetischen Wellen generiert wird, die durch die zweiten Empfangsspulen empfangen werden in einen Induktionsstrom umzuwandeln;

    einen ersten Detektionssensor (244), der an den Wandler gekoppelt ist und konfiguriert ist, um die Stärke des Induktionsstroms zu detektieren; und

    einen zweiten Vergleicher (246), der an den ersten Detektionssensor gekoppelt ist und konfiguriert ist, um den detektieren Induktionsstrom mit einem voreingestellten Induktionsstromschwellenwert zu vergleichen und zu bestimmen, dass der Magnetkern mit hoher Permeabilität ausgefallen ist, wenn der detektierte Induktionsstrom höher als der voreingestellte Induktionsstromschwellenwert ist.


     
    3. Ladeschutzschaltung nach Anspruch 1, dadurch gekennzeichnet, dass die Detektionsschaltung Folgendes umfasst:

    dritte Empfangsspulen (248), die konfiguriert sind, um die elektromagnetischen Wellen aus der drahtlosen Ladestation zu empfangen;

    einen zweiten Detektionssensor (250), der an die dritten Empfangsspulen gekoppelt ist und konfiguriert ist, um einen Kopplungsstrom der elektromagnetischen Wellen zu detektieren, die von den dritten Empfangsspulen empfangen werden; und

    einen dritten Vergleicher, der an den zweiten Dtetektionssensor gekoppelt ist und konfiguriert ist, um den detektierten Kopplungsstrom mit einem voreingestellten Stromschwellenwert zu vergleichen und zu bestimmen, dass der Magnetkern mit hoher Permeabilität ausgefallen ist, wenn der detektierte Kopplungsstrom höher als der voreingestellte Stromschwellenwert ist.


     
    4. Ladeschutzschaltung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Ladeempfangsschaltung weiter Folgendes umfasst:
    einen ersten Alarm (28), der konfiguriert ist, um einen Alarm auszugeben, wenn die Detektionsschaltung detektiert, dass der Magnetkern mit hoher Permeabilität ausgefallen ist.
     
    5. Ladeschutzschaltung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Ladeempfangsschaltung weiter Folgendes umfasst:
    eine Nahfeldkommunikations-, (NFC)-Kommunikationsschaltung (30), die an die Detektionsschaltung gekoppelt ist und konfiguriert ist, um ein NFC-Ladeabschaltsignal auszugeben, wenn die Detektionsschaltung detektiert, dass der Magnetkern mit hoher Permeabilität ausgefallen ist.
     
    6. Ladeschutzschaltung nach Anspruch 5, dadurch gekennzeichnet, dass die drahtlose Ladestation Folgendes umfasst:

    eine Amplitudenwellendetektionsschaltung (10), die konfiguriert ist, um ein Signals von der NFC-Kommunikationsschaltung zu detektieren;

    eine NFC-Demodulierungsschaltung (12), die an die Amplitudenwellendetektionsschaltung gekoppelt ist und konfiguriert ist, um das Signal zu demodulieren, das durch die Amplitudenwellendetektionsschaltung detektiert wird; und

    eine Steuerschaltung (14), die an die NFC-Demodulierungsschaltung gekoppelt ist und konfiguriert ist, um einen Stromversorgungsschalter zu unterbrechen, wenn ein Signal, das von der Demodulierung empfangen wird, das NFC-Ladeabschaltsignal ist.


     
    7. Ladeschutzschaltung nach Anspruch 6, dadurch gekennzeichnet, dass die drahtlose Ladestation weiter Folgendes umfasst:
    einen zweiten Alarm (16), der konfiguriert ist, um einen Alarm auszugeben, wenn das Signal, das von der Demodulierung empfangen wird, das NFC-Ladeabschaltsignal ist.
     
    8. Ladeschutzschaltung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine Kopplungsresonanzfrequenz der Detektionsschaltung eine Frequenz der elektromagnetischen Wellen von der drahtlosen Ladestation ist, oder eine Empfangsfrequenz der Detektionsschaltung Oberwellen hoher Ordnung der Frequenz der elektromagnetischen Wellen von der drahtlosen Ladestation sind.
     
    9. Ladeschutzschaltung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein Kopplungsbereich der Detektionsschaltung und des Magnetkerns mit hoher Permeabilität derselbe ist wie ein Bereich des Magnetkerns mit hoher Permeabilität.
     
    10. Ladeschutzschaltung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine LC-Schaltung zwischen den zweiten Empfangsspulen oder zwischen den dritten Empfangsspulen bereitgestellt ist, wobei die LC-Schaltung konfiguriert ist, um eine Resonanzfrequenz der Detektionsschaltung fein abzustimmen.
     


    Revendications

    1. Circuit de protection de charge comprenant : une base de charge sans fil (1) et un circuit de réception de charge (2), le circuit de réception de charge comprenant :

    des premières bobines de réception (20) qui sont configurées pour recevoir des ondes électromagnétiques provenant de la base de charge sans fil ; et

    un circuit d'alimentation en puissance (26) configuré pour convertir l'énergie électromagnétique générée par les ondes électromagnétiques reçues par les premières bobines de réception en énergie électrique pour alimenter en puissance un dispositif de réception de puissance et un noyau magnétique à perméabilité élevée (22) qui est couplé aux premières bobines de réception et au circuit d'alimentation en puissance et est configuré pour bloquer des ondes électromagnétiques opposées aux ondes électromagnétiques provenant de la base de charge sans fil ;

    caractérisé en ce que le circuit de réception de charge comprend en outre :
    un circuit de détection (24) qui est couplé au noyau magnétique à perméabilité élevée et se situe entre le noyau magnétique à perméabilité élevée et le dispositif de réception de puissance, dans lequel le circuit de détection est configuré pour comparer les ondes électromagnétiques reçues en provenance de la base de charge sans fil tandis que le noyau magnétique à perméabilité élevée fonctionne normalement et tandis que le noyau magnétique à perméabilité élevée a échoué afin de détecter si le noyau magnétique à perméabilité élevée a échoué.


     
    2. Circuit de protection de charge selon la revendication 1, caractérisé en ce que le circuit de détection comprend :

    des deuxièmes bobines de réception (240) qui sont configurées pour recevoir les ondes électromagnétiques provenant de la base de charge sans fil ;

    un convertisseur (242) qui est couplé aux deuxièmes bobines de réception et configuré pour convertir l'énergie électromagnétique générée par les ondes électromagnétiques reçues par les deuxièmes bobines de réception en un courant d'induction ;

    un premier capteur de détection (244) qui est couplé au convertisseur et configuré pour détecter la grandeur du courant d'induction ; et

    un deuxième comparateur (246) qui est couplé au premier capteur de détection et configuré pour comparer le courant d'induction détecté à un seuil de courant d'induction prédéfini et déterminer que le noyau magnétique à perméabilité élevée a échoué quand le courant d'induction détecté est supérieur au seuil de courant d'induction prédéfini.


     
    3. Circuit de protection de charge selon la revendication 1, caractérisé en ce que le circuit de détection comprend :

    des troisièmes bobines de réception (248) qui sont configurées pour recevoir les ondes électromagnétiques provenant de la base de charge sans fil ;

    un deuxième capteur de détection (250) qui est couplé aux troisièmes bobines de réception et configuré pour détecter une puissance de couplage des ondes électromagnétiques reçues par les troisièmes bobines de réception ; et

    un troisième comparateur qui est couplé au deuxième capteur de détection et configuré pour comparer la puissance de couplage détectée à un seuil de puissance prédéfinie et déterminer que le noyau magnétique à perméabilité élevée a échoué quand la puissance de couplage détectée est supérieure au seuil de puissance prédéfinie.


     
    4. Circuit de protection de charge selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le circuit de réception de charge comprend en outre :
    une première alarme (28) qui est configurée pour donner une alarme quand le circuit de détection détecte que le noyau magnétique à perméabilité élevée a échoué.
     
    5. Circuit de protection de charge selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le circuit de réception de charge comprend en outre :
    un circuit de communication à communication en champ proche (NFC) (30) qui est couplé au circuit de détection et configuré pour émettre un signal de charge d'interruption de NFC quand le circuit de détection détecte que le noyau magnétique à perméabilité élevée a échoué.
     
    6. Circuit de protection de charge selon la revendication 5, caractérisé en ce que la base de charge sans fil comprend :

    un circuit de détection d'onde d'amplitude (10) qui est configuré pour détecter un signal provenant du circuit de communication à NFC ;

    un circuit de démodulation de NFC (12) qui est couplé au circuit de détection d'onde d'amplitude et configuré pour démoduler le signal détecté par le circuit de détection d'onde d'amplitude ; et

    un circuit de commande (14) qui est couplé au circuit de démodulation de NFC et configuré pour couper un commutateur d'alimentation quand un signal obtenu par la démodulation est le signal de charge d'interruption de NFC.


     
    7. Circuit de protection de charge selon la revendication 6, caractérisé en ce que la base de charge sans fil comprend en outre :
    une deuxième alarme (16) qui est configurée pour donner une alarme quand le signal obtenu par la démodulation est le signal de charge d'interruption de NFC.
     
    8. Circuit de protection de charge selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'une fréquence de résonance de couplage du circuit de détection est une fréquence des ondes électromagnétiques provenant de la base de charge sans fil, ou une fréquence de réception du circuit de détection est de l'harmonique d'ordre élevé de la fréquence des ondes électromagnétiques provenant de la base de charge sans fil.
     
    9. Circuit de protection de charge selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'une superficie de couplage du circuit de détection et du noyau électromagnétique à perméabilité élevée est la même qu'une superficie du noyau magnétique à perméabilité élevée.
     
    10. Circuit de protection de charge selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'un circuit LC se situe entre les deuxièmes bobines de réception ou entre les troisièmes bobines de réception, dans lequel le circuit LC est configuré pour accorder précisément une fréquence de résonance du circuit de détection.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description