(19)
(11)EP 2 834 612 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.05.2020 Bulletin 2020/20

(21)Application number: 13772654.3

(22)Date of filing:  27.02.2013
(51)Int. Cl.: 
G01M 1/36  (2006.01)
G01M 1/30  (2006.01)
F16F 15/32  (2006.01)
F01D 25/00  (2006.01)
(86)International application number:
PCT/US2013/027893
(87)International publication number:
WO 2013/151636 (10.10.2013 Gazette  2013/41)

(54)

PASSIVE DYNAMIC INERTIAL ROTOR BALANCE SYSTEM FOR TURBOMACHINERY AND THE CORRESPONDING METHOD OF BALANCING USING SAID SYSTEM.

PASSIVES DYNAMISCHES TRÄGHEITSROTOR-AUSGLEICHSSYSTEM FÜR TURBOMASCHINEN UND DAS ENTSPRECHENDE AUSGLEICHSVERFAHREN DURCH DIE VERWENDUNG SOLCHES SYSTEMS.

SYSTÈME D'ÉQUILIBRE DE ROTOR INERTIEL DYNAMIQUE PASSIF POUR TURBOMACHINE ET LA PROCÉDURE D'EQUILIBRAGE EN EMPLOYANT LE MENTIONÉ SYSTÈME.


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME

(30)Priority: 04.04.2012 US 201213438922

(43)Date of publication of application:
11.02.2015 Bulletin 2015/07

(73)Proprietor: Elliott Company
Jeannette, PA 15644 (US)

(72)Inventor:
  • JOSEFCZYK, Ronald, John
    Sarver, Pennsylvania 16055 (US)

(74)Representative: Duxbury, Stephen et al
Arnold & Siedsma Bavariaring 17
80336 München
80336 München (DE)


(56)References cited: : 
KR-B1- 100 759 597
US-A- 1 776 125
US-A- 5 715 731
US-B1- 6 212 973
KR-B1- 100 974 525
US-A- 5 214 585
US-A- 5 845 542
US-B2- 6 481 969
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    Field of the Invention



    [0001] This invention relates generally to a balancing system for a rotor, such as a rotor for use in turbomachinery. More particularly, the present invention relates to a dynamic balance system for a rotor which passively self corrects for unbalance while the rotor is in operation thereby reducing or eliminating the problems of unbalance and vibration.

    Description of Related Art



    [0002] Various balancing systems have been employed for balancing rotating bodies. One type of balancing system for use with semi-truck wheels includes the placement of a granular powder inside large truck tires to provide balancing by inertial resistance to movement.

    [0003] Another type of balancing system for a rotating member includes a fluid damper for internal combustion engine crankshafts. This system includes a crankshaft vibration damper consisting of a dense rubberized ring suspended in a closed ring filled with a viscous fluid. The damper is attached to the end of crank shaft to minimize shaft vibration cause by combustion and rotational unbalance. Various systems and methods for passive dynamic balancing of rotating members are shown, for example, in United States Patent Number 1,776,125 to Linn; United States Patent No. 2,659,243 to Darrieus; United States Patent No. 2,771,240 to Nielsen; United States Patent Number 5,593,281 to Tai and United States Patent Application Publication Number US 2010/0021303 to Nielsen et al.

    [0004] Moreover, the Patent Application Number US 5 845 542 A, which is considered as the closest prior art and discloses a passive dynamic inertial rotor balance system comprising two balancing members fitted onto a rotor shaft, each of said balancing members including at least one chamber, said at least one chamber of each of said balancing members including a plurality of movable weights and a viscous fluid located therein, wherein as the shaft accelerates toward an unbalance point, the weights move within the at least one chamber to a location which is opposite from the unbalance point.

    [0005] In general, current practices for balancing rotors, such as those used in turbomachinery, include the steps of performing tests to determine a low speed balance, a high speed balance, or both, and then adding or removing mass in a fixed location by grinding, drilling, machining, by the addition of balance weights into a balance ring or threaded weight or resequencing of built up components such as blades and impellers.

    [0006] These methods and systems can be time consuming and expensive, and can result in inconsistent results. Additionally, the system may become unbalanced over time or become unbalanced due to fouling, deposition, erosion or foreign object damage. Changes in system stiffness, such as but not limited to oil film stiffness, pedestal stiffness and foundation stiffness, between the balancing device and actual operational conditions of the machine may result in variation of the critical speed, amplitude and mode shape. These variations could require differing amount of mass correction at a polar location inconsistent with the balance correction performed by traditional methods of adding or removing mass which is described in detail above. Corrections to restore balance would typically require removal of the rotor from the operating machine and rebalancing in either a low or high speed bunker. Accordingly, there is a need for a consistent and inexpensive system and method for dynamically balancing a rotor which passively self corrects for unbalance while the rotor is in operation.

    SUMMARY OF THE INVENTION



    [0007] The present invention is directed to a dynamic balance system for a rotor which passively self corrects for unbalance while the rotor is in operation. The system includes a plurality of rings having an enclosed hollow chamber therein, fitted onto a rotor shaft in the location of predicted maximum shaft modal deflection, wherein each rings contains heavy metal ball bearings along with a viscous non-corrosive fluid.

    [0008] According to a first aspect, the invention is directed to a passive dynamic inertial rotor balance system comprising at least three balancing members fitted onto a rotor shaft at locations of predicted maximum shaft modal deflection, each of said balancing members including at least one chamber, said at least one chamber of each of said balancing members including:a plurality of movable weights; and a viscous fluid located therein, wherein as the shaft accelerates toward an unbalance point, the weights are configured to move within the at least one chamber to a location which is opposite from the unbalance point, wherein at least one balancing member is located near a centre portion for a first mode bending and at least two balancing members are located at approximately quarter spans for a second mode bending. The weights can comprise ball bearings formed from a heavy metal material, such as but not limited to a tungsten alloy. The viscous fluid can comprise a non-corrosive fluid material, such as a petroleum or glycol based substance. The balancing member can be a ring which defines a central open portion configured for placement about the rotor shaft and the at least one chamber can comprise an annular hollow portion extending about the central open portion and defined by walls of the ring. Up to one half of a circumference of the hollow portion of the ring can be covered by the ball bearings depending on a predicted unbalance response and the hollow portion can be fully filled with the viscous fluid. system for self-correcting an unbalance of a turbomachinery rotor during rotation of said rotor, according to any of the preceding claims, said system comprising:at least three rings mounted at predetermined locations along a shaft of the rotor, each of said rings including an enclosed chamber; a plurality of movable weights located within said chamber of each of said rings; and a fluid located within said chamber of each of said rings and surrounding said movable weights, wherein upon the presence of an unbalance during rotation, the weights located within the chambers are configured to move in a direction which is opposite from the location of the unbalance,wherein a first ring is located near a centre portion for a first mode bending, a second ring is located to one side of said first ring, and a third ring is located to an opposite side of said first ring, said second and third rings being located at approximately quarter spans for a second mode bending. According to one embodiment, the movable weights can comprise ball bearings and the fluid can comprise a viscous material capable of providing damping for the movable weights preventing excess movement thereof, and to provide these bearings with lubrication. The rings are located along the shaft of the rotor at locations of predicted maximum shaft modal deflection.

    [0009] According to still another aspect, the invention is directed to a method for balancing a rotor a turbomachinery, said method comprising:providing a plurality of rings, each of said rings including a hollow chamber, said hollow chamber containing movable weights and a viscous fluid material; and positioning said rings along the shaft of said rotor, said rings being positioned at predetermined locations along a longitudinal length of said shaft at locations of predicted maximum shaft modal deflection such that as the shaft accelerates toward an unbalance point, the weights move within the hollow rings in a direction that is opposite to the unbalance point, wherein at least one ring is positioned near the longitudinal centre of the shaft for first mode bending and wherein additional rings are located at locations for second mode bending. As the shaft radially accelerates toward an unbalance point, the weights move within the hollow rings in a direction that is opposite to the unbalance point, such as a location that is approximately 180° away from the unbalance point. The weights can comprise ball bearings, such as those formed from a heavy metal material, and the fluid material can comprise a material, such as a non-corrosive viscous material, capable of providing damping for the bearings to prevent excess movement thereof and to provide lubrication for the ball bearings.

    [0010] These and other features and characteristics of the present invention, as well as the methods of operation and functions of the related elements of structures and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures.

    BRIEF DESCRIPTION OF THE DRAWING(S)



    [0011] 

    Fig. 1 shows a side perspective view of a shaft including the balance members of the invention;

    Fig. 2A shows a schematic rendering of a first critical bending mode maximum deflection of which the shaft would experience during an unbalance;

    Fig. 2B shows a schematic rendering of a second critical bending mode maximum deflection of which the shaft would experience during an unbalance;

    Fig. 2C shows a schematic side view of a rotor shaft and an example of predicted rotordynamic bending modes;

    Fig. 3A shows a schematic cross-sectional view of the balance ring of the invention wherein the balance weights are at a balanced or resting position; and

    Fig. 3B shows a schematic cross-sectional view of the balance member of the invention wherein the balance weights are moving to counteract an unbalance point.


    DESCRIPTION OF THE PREFERRED EMBODIMENT(S)



    [0012] For purposes of the description hereinafter, the terms "upper", "lower", "right", "left", "vertical", "horizontal", "top", "bottom", "lateral", "longitudinal" and derivatives thereof shall relate to the invention as it is oriented in the drawing figures. However, it is to be understood that the invention may assume various alternative variations, except where expressly specified to the contrary. It is also to be understood that the specific devices illustrated in the attached drawings, and described in the following specification, are simply exemplary embodiments of the invention. Hence, specific dimensions and other physical characteristics related to the embodiments disclosed herein are not to be considered as limiting.

    [0013] Reference is now made to Fig. 1 which shows a side perspective view of a rotor shaft 10 including the balance members 12 of the invention. The balance members 12 can be in the form of rings which define a central open portion 14 configured for placement about the rotor shaft 10. It can be appreciated that these balance members 12 can be located on any type of rotating shaft for use in various types of machinery, including turbomachinery and the like. The balancing members 12 are fitted onto the rotor shaft 10 at locations of predicted maximum shaft modal deflection.

    [0014] Referring now to Figs. 2A, there is shown a schematic rendering of a first critical bending mode maximum deflection, as generally indicated by 16, for which the shaft would experience during an unbalance. Fig. 2B shows a schematic rendering of second critical bending mode maximum deflection, as generally indicated by 18, for which the shaft would experience during an unbalance. Fig. 2C shows a schematic side view of the rotor shaft 10 and an example of predicted rotordynamic first critical bending mode 16 and the second critical bending mode 18 of Figs. 2A and 2B, respectively. The balancing members 12 are positioned at locations of predicted maximum shaft modal deflection. For example, as shown in Figs. 2A and 2B, the plurality of balancing members 12 can be at least three balancing members wherein a first balancing member 20 can be located near a center portion 22 at the location of maximum deflection for a first mode bending 16. The second mode bending 18 produces two locations of maximum deflection 30, 32 at opposite sides of the first mode bending location 22 at approximately quarter spans for a second mode bending 18. A second balancing member 34 and a third balancing member 36 can be located to either side of the first balancing member 20 at these points of maximum deflection 30, 32 for the second mode bending 18.

    [0015] Fig. 2C represents a rotordynamic lateral analysis for a typical centrifugal compressor rotor comprised of a shaft 10 and four impellers 60. The lateral analysis predicts the mode shapes, crititcal speeds, and location of points of maximum deflection amplitude for each mode shape. The position of balancing devices 12 are to be located at points of predicted maximum deflection 64 for the first bending mode 16 and maximum deflection 62 of the second bending mode 18. It can be appreciated that any number of balancing members can be positioned along the longitudinal length of the rotor shaft 10, depending upon the length of the rotor shaft 10 and number of predicted bending modes.

    [0016] Referring now to Figs. 3A and 3B, there is shown a balancing member 12 wherein the balancing member 12 includes at least one chamber 40. The balancing member 12 can be a ring which defines a central open portion 14 configured for placement about the rotor shaft 10. The at least one chamber 40 can comprise an annular hollow portion extending about the central open portion 14 and defined by and inner wall 41a and an outer wall 41b of the ring. The chambers 40 include therein a plurality of movable weights 42 and a viscous fluid 44. During rotation, as shown by arrow 55 in Fig. 3B, and as the rotor shaft 10 accelerates toward an unbalance point 46, as depicted by arrow 48 in Fig. 3B, the weights 42 move within the chamber 40 in a direction, as depicted by arrows 50, toward a location 52 which is opposite from the unbalance point 46. This location can be approximately 180° away from the unbalance point 46. The weights 42 can comprise ball bearings formed from a heavy metal material, such as a tungsten alloy. The viscous fluid 44 can comprise a non-corrosive fluid material, such as a petroleum or glycol based substance. Up to one quarter of a circumference 54 of the annular hollow portion or chamber 40 of the balancing member of ring 12 can be covered by the ball bearings 42. The annular hollow portion or chamber 40 can be fully filled with the viscous fluid.

    [0017] The present invention relies on Newton's laws and the basic laws of inertia. An unbalance of a rotor shaft causes a force accelerating radially outward in the direction of the unbalance. The inertia of the ball bearings causes them to want to stay at rest, so as the shaft accelerates toward the unbalance, the ball bearings move 180° away from the unbalance point (and acceleration vector) moving the center of mass coincident with the axis of rotation. The viscous fluid provides the dual function of damping for the bearings to prevent excessive movement of the bearings and to provide lubrication for the bearings as they move within the chamber of the balance member. By theory, the bearings will settle to a location that results in no net radial acceleration of the shaft and therefore no vibration. If the balance of the rotor shaft changes, such as by rotor dynamic bending, fouling and the like, the bearings passively dynamically adjust, returning the system to a state of zero acceleration and therefore no unbalance.

    [0018] Referring back to Figs. 2A and 2B, a method for balancing a rotor, such as a rotor in turbomachinery comprises determining the locations of predicted maximum shaft modal deflection according to a first critical bending mode 16 and a second critical bending mode 18. The method further includes providing a plurality of balance members 12, such as in the form of rings. As discussed above in relation to Figs. 3A and 3B, each of the rings 12 includes a hollow chamber 40 and the hollow chamber 40 contains movable weights 42 and a viscous fluid 44 material. The method further comprises positioning the rings 12 along the shaft 10 of the rotor such that the rings 12 are positioned at predetermined locations along a longitudinal length of the shaft at locations of predicted maximum shaft modal deflection such that as the shaft accelerates toward an unbalance point 46, the weights move within the hollow rings 12 in a direction that is opposite to the unbalance point 46, such as a location 52 which is approximately 180° away from the unbalance point 46, as depicted by arrow 50. As discussed above, according to one embodiment, at least a first balancing member or ring 22 is positioned near the longitudinal center 22 of the shaft 10 for first mode bending and additional balancing members or rings, such as a second balancing member or ring 34 and a third balancing member or ring 36 are located at locations 30, 32 for second mode bending.

    [0019] Referring again to Figs. 3A and 3B, the movable weights 42 can comprise ball bearings, such as those formed from a heavy metal material, and the fluid material 44 can comprise a non-corrosive viscous material such as a petroleum or glycol based substance. This viscous material can be any known type of non-corrosive material which is capable of providing damping for the bearings to prevent excess movement thereof and to provide lubrication for the ball bearings.

    [0020] Although the invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose, and that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the scope of this description. For example, it is to be understood that the present invention contemplates that, to the extent possible, one or more features of any embodiment can be combined with one or more features of any other embodiment.


    Claims

    1. A passive dynamic inertial rotor balance system comprising: at least three balancing members (12) fitted onto a rotor shaft (10) at locations of predicted maximum shaft modal deflection, each of said balancing members including at least one chamber (40), said at least one chamber of each of said balancing members including: a plurality of movable weights (42); and a viscous fluid located therein, wherein as the shaft accelerates toward an unbalance point, the weights are configured to move within the at least one chamber to a location which is opposite from the unbalance point, wherein at least one balancing member is located near a center portion (22) for a first mode bending and at least two balancing members are located at approximately quarter spans (30,32) for a second mode bending.
     
    2. The system of claim 1, wherein the weights comprise ball bearings formed from a heavy metal material, preferably, wherein the heavy metal material comprises a tungsten alloy.
     
    3. The system of claim 1 or 2, wherein the viscous fluid comprises a non-corrosive fluid material, preferably wherein the viscous fluid comprises a petroleum or glycol based substance.
     
    4. The system of any of the preceding claims wherein the balancing member is a ring defining a central open portion configured for placement about the rotor shaft and the at least one chamber comprises an annular hollow portion extending about the central open portion and defined by walls of the ring, preferably wherein up to one half of a circumference of the hollow portion of the ring is covered by the ball bearings and the hollow portion is fully filled with the viscous fluid.
     
    5. A system for self-correcting an unbalance of a turbomachinery rotor during rotation of said rotor (10), according to any of the preceding claims, said system comprising:at least three rings (12) mounted at predetermined locations along a shaft of the rotor, each of said rings including an enclosed chamber (40);a plurality of movable weights (42) located within said chamber of each of said rings; and a fluid located within said chamber of each of said rings and surrounding said movable weights, wherein upon the presence of an unbalance during rotation, the weights located within the chambers are configured to move in a direction which is opposite from the location of the unbalance,wherein a first ring is located near a center portion (22) for a first mode bending, a second ring is located to one side of said first ring, and a third ring is located to an opposite side of said first ring, said second and third rings being located at approximately quarter spans (30,32) for a second mode bending.
     
    6. The system of claim 5 wherein the movable weights comprise ball bearings and the fluid comprises a viscous material capable of providing damping for the movable weights to prevent excess movement and to provide lubrication.
     
    7. The system of claim 5 or 6 wherein the rings are located along the shaft of the rotor at locations of predicted maximum shaft modal deflection.
     
    8. The system of any of the claims 5-7 wherein a first ring is located near a center portion for a first mode bending, a second ring is located to one side of said first ring, and a third ring is located to an opposite side of said first ring, said second and third rings being located at approximately quarter spans for a second mode bending.
     
    9. A method for balancing a rotor a turbomachinery, said method comprising: providing a plurality of rings (12), each of said rings including a hollow chamber (40), said hollow chamber containing movable weights (42) and a viscous fluid material; and positioning said rings along the shaft of said rotor, said rings being positioned at predetermined locations along a longitudinal length of said shaft at locations of predicted maximum shaft modal deflection such that as the shaft accelerates toward an unbalance point, the weights move within the hollow rings in a direction that is opposite to the unbalance point, wherein at least one ring is positioned near the longitudinal centre of the shaft (22) for first mode bending and wherein additional rings are located at locations for second mode bending.
     
    10. The method of claim 9, wherein at least one ring is positioned near the longitudinal center of the shaft for first mode bending and wherein additional rings are located at locations for second mode bending.
     
    11. The method of claim 9 or 10 wherein the weights comprise ball bearings and the fluid material comprises a material capable of providing damping for the bearings to prevent excess movement thereof and to provide lubrication for the ball bearings, preferably wherein the ball bearings are formed from a heavy metal material and the fluid material comprises a non-corrosive viscous material.
     
    12. The method of any of the claims 9-11 wherein the movable weights move to a location which is approximately 180° away from the unbalance point.
     
    13. Use of a system according to any of the claims 1-8, in a method according to any of the claims 9-12.
     


    Ansprüche

    1. Passives dynamisches Trägheitsrotor-Ausgleichssystem, umfassend zumindest drei Ausgleichselemente (12), welche auf einer Rotorwelle (10) an Stellen von vorhergesagter maximaler Modalbiegung montiert sind, wobei jedes von den Ausgleichselementen zumindest eine Kammer (40) umfasst, wobei die zumindest eine Kammer von jedem von den Ausgleichselementen enthält: eine Vielzahl von bewegbaren Gewichten (42); und ein viskoses Fluid, welches darin angeordnet ist, wobei, wenn die Welle in Richtung zu einem unausgeglichenen Punkt beschleunigt, die Gewichte konfiguriert sind, um sich innerhalb der zumindest einen Kammer zu einer Stelle zu bewegen, welche gegenüberliegend zu dem unausgeglichenen Punkt ist, wobei zumindest ein Ausgleichselement nahe an einem mittleren Bereich (22) für ein Biegen in einem ersten Modus angeordnet ist, und zumindest zwei Ausgleichselemente an ungefähr Viertelabständen (30, 32) für ein Biegen in einem zweiten Modus angeordnet sind.
     
    2. System gemäß Anspruch 1, wobei die Gewichte Kugellager umfassen, welche aus einem schweren Metallmaterial gebildet sind, wobei das schwere Metallmaterial vorzugsweise eine Wolframlegierung umfasst.
     
    3. System gemäß Anspruch 1 oder 2, wobei das viskose Fluid eine Petroleum- oder Glykol-basierte Substanz umfasst.
     
    4. System gemäß irgendeinem der vorhergehenden Ansprüche, wobei das Ausgleichselement ein Ring ist, welcher einen zentralen Öffnungsabschnitt definiert, welcher zur Anordnung um die Rotorwelle herum konfiguriert ist, und wobei die zumindest eine Kammer einen ringförmigen hohlen Abschnitt umfasst, welcher sich um den zentralen offenen Abschnitt herum erstreckt, und welcher durch Wände von dem Ring definiert wird, wobei vorzugsweise bis zu der Hälfte von dem Umfang von dem hohlen Abschnitt des Rings durch die Kugellager abgedeckt ist und der hohle Abschnitt vollständig mit der viskosen Flüssigkeit gefüllt ist.
     
    5. System zum selbstständigen Korrigieren einer Unwucht von einem Turbomaschinen-Rotor während einer Rotation des Rotors (10) gemäß irgendeinem der vorhergehenden Ansprüche, wobei das System umfasst: zumindest drei Ringe (12), welche an vorbestimmten Stellen entlang einer Welle von dem Rotor montiert sind, wobei jeder von den Ringen eine eingeschlossene Kammer (40) und ein Fluid enthält, welches innerhalb der Kammer von jedem von den Ringen angeordnet ist und die bewegbaren Gewichte umgibt, wobei auf eine Unwucht während einer Rotation hin, die Gewichte, welche innerhalb der Kammern angeordnet sind, konfiguriert sind, um sich in einer Richtung zu bewegen, welche entgegengesetzt zu der Stelle der Unwucht ist, wobei ein erster Ring nahe zu einem mittleren Abschnitt (22) für ein Biegen in einem ersten Modus angeordnet ist, ein zweiter Ring an einer Seite von dem ersten Ring angeordnet ist, und ein dritter Ring an einer gegenüberliegenden Seite von dem ersten Ring angeordnet ist, wobei die zweiten und dritten Ringe an ungefähr Viertelabständen (30, 32) für ein Biegen in einem zweiten Modus angeordnet sind.
     
    6. System gemäß Anspruch 5, wobei die bewegbaren Gewichte Kugellager umfassen, und wobei das Fluid ein viskoses Material umfasst, welches in der Lage ist, eine Dämpfung für die bewegbaren Gewichte vorzusehen, um eine überschüssige Bewegung zu verhindern, und um eine Lubrikation vorzusehen.
     
    7. System gemäß Anspruch 5 oder 6, wobei die Ringe entlang der Welle von dem Rotor an Stellen einer vorhergesagten maximalen Modalbiegung der Welle angeordnet sind.
     
    8. System gemäß irgendeinem der Ansprüche 5 - 7, wobei ein erster Ring nahe einem mittleren Abschnitt für ein Biegen in einem ersten Modus angeordnet ist, ein zweiter Ring an einer Seite von dem ersten Ring angeordnet ist, und ein dritter Ring an der gegenüberliegenden Seite von dem ersten Ring angeordnet ist, wobei zweite und dritte Ringe an ungefähr Viertelabständen für ein Biegen in einem zweiten Modus angeordnet sind.
     
    9. Verfahren zum Ausgleichen eines Rotors einer Turbomaschine, wobei das Verfahren umfasst: Vorsehen einer Vielzahl von Ringen (12), wobei jeder von den Ringen eine hohle Kammer (40) umfasst, wobei die hohle Kammer die Ringe entlang der Welle von dem Rotor enthält, wobei die Ringe an vorbestimmten Stellen entlang einer longitudinalen Länge von der Welle an Stellen von vorhergesagter maximaler Modalbiegung der Welle positioniert sind, so dass, wenn die Welle in Richtung zu einem unausgeglichenen Punkt beschleunigt, die Gewichte sich innerhalb der hohlen Ringe in einer Richtung bewegen, welche entgegengesetzt zu dem unausgeglichenen Punkt ist, wobei zumindest ein Ring nahe des longitudinalen Zentrums von der Welle (22) für ein Biegen in einem ersten Modus positioniert ist, und wobei zusätzliche Ringe an Stellen für ein Biegen in einem zweiten Modus angeordnet sind.
     
    10. Verfahren gemäß Anspruch 9, wobei zumindest ein Ring nahe des longitudinalen Zentrums von der Welle für ein Biegen in einem ersten Modus positioniert ist, und wobei zusätzliche Ringe an Stellen für ein Biegen in einem zweiten Modus angeordnet sind.
     
    11. Verfahren gemäß Anspruch 9 oder 10, wobei die Gewichte Kugellager umfassen, und wobei das Fluidmaterial ein Material umfasst, welches in der Lage ist, die Lager zu dämpfen, um eine überschüssige Bewegung davon zu verhindern, und um eine Lubrikation für die Kugellager vorzusehen, wobei die Kugellager vorzugsweise aus einem schweren Metallmaterial hergestellt sind, und wobei das Fluidmaterial ein nicht korrosives viskoses Material umfasst.
     
    12. Verfahren gemäß irgendeinem der Ansprüche 9 - 11, wobei die bewegbaren Gewichte sich zu einer Stelle bewegen, welche ungefähr 180° weg von dem Unwuchtpunkt ist.
     
    13. Verwendung eines Systems gemäß irgendeinem der Ansprüche 1 - 8 in einem Verfahren gemäß irgendeinem der Ansprüche 9 - 12.
     


    Revendications

    1. Système d'équilibre de rotor inertiel dynamique passif comprenant : au moins trois organes d'équilibrage (12) ajustés sur un arbre de rotor (10) à des emplacements de déflexion modale d'arbre maximale prédite, chacun desdits organes d'équilibrage comportant au moins une chambre (40), ladite au moins une chambre de chacun desdits organes d'équilibrage comportant : une pluralité de poids mobiles (42) ; et un fluide visqueux situé à l'intérieur de ceux-ci, dans lequel à mesure que l'arbre accélère vers un point de déséquilibre, les poids sont configurés pour se déplacer au sein de l'au moins une chambre jusqu'à un emplacement qui est opposé au point de déséquilibre, dans lequel au moins un organe d'équilibrage est situé près d'une portion centrale (22) pour une flexion de premier mode et au moins deux organes d'équilibrage sont situés à des intervalles d'approximativement un quart (30, 32) pour une flexion de second mode.
     
    2. Système selon la revendication 1, dans lequel les poids comprennent des roulements à billes formés à partir d'un matériau en métal lourd, de préférence, dans lequel le matériau en métal lourd comprend un alliage de tungstène.
     
    3. Système selon la revendication 1 ou 2, dans lequel le fluide visqueux comprend un matériau de fluide non corrosif, de préférence dans lequel le fluide visqueux comprend une substance à base de pétrole ou de glycol.
     
    4. Système selon l'une quelconque des revendications précédentes, dans lequel l'organe d'équilibrage est une bague définissant une portion ouverte centrale configurée pour être placée autour de l'arbre de rotor et l'au moins une chambre comprend une portion creuse annulaire s'étendant autour de la portion ouverte centrale et définie par des parois de la bague, de préférence dans lequel jusqu'à une moitié d'une circonférence de la portion creuse de la bague est couverte par les roulements à billes et la portion creuse est totalement remplie du fluide visqueux.
     
    5. Système d'auto-correction d'un déséquilibre d'un rotor de turbomachine pendant une rotation dudit rotor (10), selon l'une quelconque des revendications précédentes, ledit système comprenant : au moins trois bagues (12) montées à des emplacements prédéterminés le long d'un arbre du rotor, chacune desdites bagues comportant une chambre ceinte (40) ; une pluralité de poids mobiles (42) situés au sein de ladite chambre de chacune desdites bagues ; et un fluide situé au sein de ladite chambre de chacune desdites bagues et entourant lesdits poids mobiles, dans lequel lors de la présence d'un déséquilibre pendant une rotation, les poids situés au sein des chambres sont configurés pour se déplacer dans une direction qui est opposée à l'emplacement du déséquilibre, dans lequel une première bague est située près d'une portion centrale (22) pour une flexion de premier mode, une deuxième bague est située sur un côté de ladite première bague, et une troisième bague est située sur un côté opposé de ladite première bague, lesdites deuxième et troisième bagues étant situées à des intervalles d'approximativement un quart (30, 32) pour une flexion de second mode.
     
    6. Système selon la revendication 5, dans lequel les poids mobiles comprennent des roulements à billes et le fluide comprend un matériau visqueux capable de fournir un amortissement pour les poids mobiles pour empêcher un déplacement excessif et pour fournir une lubrification.
     
    7. Système selon la revendication 5 ou 6, dans lequel les bagues sont situées le long de l'arbre du rotor à des emplacements de déflexion modale d'arbre maximale prédite.
     
    8. Système selon l'une quelconque des revendications 5 à 7, dans lequel une première bague est située près d'une portion centrale pour une flexion de premier mode, une deuxième bague est située sur un côté de ladite première bague, et une troisième bague est située sur un côté opposé de ladite première bague, lesdites deuxième et troisième bagues étant situées à des intervalles d'approximativement un quart pour une flexion de second mode.
     
    9. Procédé d'équilibrage d'un rotor d'une turbomachine, ledit procédé comprenant : la fourniture d'une pluralité de bagues (12), chacune desdites bagues comportant une chambre creuse (40), ladite chambre creuse contenant des poids mobiles (42) et un matériau de fluide visqueux ; et le positionnement desdites bagues le long de l'arbre dudit rotor, lesdites bagues étant positionnées à des emplacements prédéterminés suivant une longueur longitudinale dudit arbre à des emplacements de déflexion modale d'arbre maximale prédite de sorte que, à mesure que l'arbre accélère vers un point de déséquilibre, les poids se déplacent au sein des bagues creuses dans une direction qui est opposée au point de déséquilibre, dans lequel au moins une bague est positionnée près du centre longitudinal de l'arbre (22) pour une flexion de premier mode et dans lequel des bagues supplémentaires sont situées à des emplacements pour une flexion de second mode.
     
    10. Procédé selon la revendication 9, dans lequel au moins une bague est positionnée près du centre longitudinal de l'arbre pour une flexion de premier mode et dans lequel des bagues supplémentaires sont situées à des emplacements pour une flexion de second mode.
     
    11. Procédé selon la revendication 9 ou 10, dans lequel les poids comprennent des roulements à billes et le matériau de fluide comprennent un matériau capable de fournir un amortissement pour les roulements pour empêcher leur déplacement excessif et pour fournir une lubrification pour les roulements à billes, de préférence dans lequel les roulements à billes sont formés à partir d'un matériau en métal lourd et le matériau de fluide comprend un matériau visqueux non corrosif.
     
    12. Procédé selon l'une quelconque des revendications 9 à 11, dans lequel les poids mobiles se déplacent jusqu'à un emplacement qui est éloigné d'approximativement 180° du point de déséquilibre.
     
    13. Utilisation d'un système selon l'une quelconque des revendications 1 à 8, dans un procédé selon l'une quelconque des revendications 9 à 12.
     




    Drawing












    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description