(19)
(11)EP 2 835 040 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
08.05.2019 Bulletin 2019/19

(21)Application number: 13702677.9

(22)Date of filing:  14.01.2013
(51)International Patent Classification (IPC): 
H05H 1/34(2006.01)
(86)International application number:
PCT/US2013/021364
(87)International publication number:
WO 2013/151602 (10.10.2013 Gazette  2013/41)

(54)

OPTIMIZATION AND CONTROL OF MATERIAL PROCESSING USING A THERMAL PROCESSING TORCH

OPTIMIERUNG UND STEUERUNG EINER MATERIALVERARBEITUNG MITHILFE EINES WÄRMEBEHANDLUNGSBRENNERS

OPTIMISATION ET CONTRÔLE DU TRAITEMENT DE MATÉRIAU À L'AIDE D'UNE TORCHE DE TRAITEMENT THERMIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 04.04.2012 US 201213439259

(43)Date of publication of application:
11.02.2015 Bulletin 2015/07

(73)Proprietor: Hypertherm, Inc.
Hanover, NH 03755 (US)

(72)Inventors:
  • SHIPULSKI, E., Michael
    Etna, NH 03750 (US)
  • ANDERSON, Richard
    Grantham, NH 03753 (US)
  • BRAHAN, Peter
    North Sutton, NH 03260 (US)
  • CHIN, Wayne
    Lebanon, NH 03766 (US)
  • LIEBOLD, Stephen
    Grantham, NH 03753 (US)
  • BEST, Guy
    Bethel, VT 05032 (US)
  • LINDSAY, Jon
    Hanover, NH 03755 (US)

(74)Representative: Barker Brettell LLP 
100 Hagley Road Edgbaston
Birmingham B16 8QQ
Birmingham B16 8QQ (GB)


(56)References cited: : 
EP-A1- 1 117 279
EP-A1- 1 522 371
EP-A1- 1 516 688
US-A1- 2005 109 738
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates generally to controlling and optimizing material processing using signals associated with consumables of a thermal processing torch.

    BACKGROUND OF THE INVENTION



    [0002] Thermal processing torches, such as plasma arc torches, are widely used in the heating, cutting, gouging and marking of materials. A plasma arc torch generally includes an electrode, a nozzle having a central exit orifice mounted within a torch body, electrical connections, passages for cooling, and passages for arc control fluids (e.g., plasma gas). Optionally, a swirl ring is employed to control fluid flow patterns in the plasma chamber formed between the electrode and the nozzle. In some torches, a retaining cap can be used to maintain the nozzle and/or swirl ring in the plasma arc torch. In operation, the torch produces a plasma arc, which is a constricted jet of an ionized gas with high temperature and sufficient momentum to assist with removal of molten metal.

    [0003] Typically, a plasma arc torch includes multiple consumables. Each consumable can be selected to achieve optimal performance (e.g., an optimal current level, maximum lifespan, etc.) in view of specific processing constraints, such as the type of material being cut and/or the cut shape desired. Installing incorrect consumables into a torch can result in poor cut quality and decreased cut speed. In addition, incorrect consumables can reduce consumable life and lead to premature consumable failure. Even when correct consumables are installed in a torch, it can be difficult for an operator to manually configure and optimize torch operating parameters corresponding to the selected consumable set. Moreover, it can be difficult for a torch component manufacturer to guarantee performance if aftermarket consumables are used in a torch system. EP1117279 discloses a torch head fitted to a plasma torch body may be checked for suitability by embedding an identifying element in the head such that after fitting the torch head to the torch body a connection is made through the body to a processor which determines suitability of the torch head type to proposed work and current to be used. EP1522371 discloses a system and method for a plasma cutting system including a plasma cutting power source and a plasma torch operationally connected to the plasma cutting power source. A processing unit is disposed within the plasma torch and is configured to control the plasma cutting power source during a plasma cutting process based on operational feedback gathered of the plasma cutting process. EP1516688 discloses an apparatus for automatically determining a consumable type when a consumable is disposed within an electrode holder of a welding-type system. Disclosed is a detector assembly that measures a physical characteristic of a connected consumable and provides feedback regarding that which is measured. From the feedback, the operating parameters of a welding-type process may be automatically prescribed.

    SUMMARY OF THE INVENTION



    [0004] Thus, systems and methods are needed to detect incompatible consumables in a plasma arc torch. In addition, systems and methods are needed to automatically adjust torch operating parameters to enhance cutting quality and prolong consumable life. Specifically, systems and methods are needed to efficiently convey information among various components of a torch system to facilitate operation control and optimization.

    [0005] Disclosed is, a consumable component of a thermal processing torch. The consumable component includes a consumable component body and a signal device located on or inside of the consumable component body for transmitting a signal associated with the consumable component. The signal is independent of a detectable physical characteristic of the consumable component.

    [0006] Disclosed is, a method for conveying information about a consumable component of a thermal processing torch that includes a signal receiver. The method includes installing into the torch the signal receiver and the consumable component. The consumable component has a signal device attached thereto. The signal device is adapted to generate a signal conveying the information about the consumable component. The method also includes passing the signal from the signal device to the signal receiver.

    [0007] Disclosed is, a system for conveying information about a thermal processing torch. The system includes a signal receiver and at least one consumable selected from a group including an electrode, a nozzle, a shield, a retaining cap, a welding tip, and a swirl ring. The system also includes at least one signal device attached to the at least one consumable for conveying information about the at least one consumable to the signal receiver. The system further includes a controller coupled to the signal detector for i) receiving the information from the at least one signal device, and ii) transmitting a least a portion of the information to at least one of a processor, a gas console, nesting software, a height controller, and a drive motor. At least one of the processor, the gas console, the nesting software, the height controller, and the drive motor adjusts torch operation based on the information.

    [0008] In other examples, any of the disclosures above can include one or more of the following features. The signal device is a radio-frequency identification (RFID) tag for storing information assigned to the consumable component. In some embodiments, the signal is one of a radio signal, a pneumatic signal, a magnetic signal, an optical signal, or a hydraulic signal. In some embodiments, the torch is a plasma arc torch.

    [0009] In some embodiments, the signal transmitted by the signal device identifies at least one feature unique to a type of the consumable component. The type of the consumable component can include a nozzle, a shield, an electrode, an inner retaining cap, an outer retaining cap, a swirl ring, a welding tip or a replaceable torch body. The signal transmitted by the signal device can also identify at least one feature unique to the consumable component.

    [0010] In some embodiments, the signal device is located at a surface of the body to minimize heat exposure during torch operation. This surface can be adjacent to a cooling mechanism of the torch, remote from a plasma arc of the torch, or in an o-ring channel of the torch, or a combination thereof. The signal device can be shielded by another torch component to minimize exposure of the signal device to at least one of thermal energy, radiation, damaging gases, or high-frequency energy.

    [0011] In some embodiments, the signal device is adapted to transmit the signal before, during or after plasma arc ignition, or a combination thereof. In some embodiments, the signal transmitted by the signal device is readable from inside of the torch after the consumable component is installed in the torch. The signal transmitted by the signal device can also be readable from outside of the torch after the consumable component is installed in the torch.

    [0012] In some embodiments, the signal device includes a sensor for measuring a physical modification of the consumable component. The physical modification can include modification of the consumable component to restrict a flow rate of a gas therethrough.

    [0013] Disclosed is, a method for identifying consumables in a thermal processing system including a torch. The method includes providing a first consumable having a first characteristic and a second consumable having a second characteristic. The second characteristic is different from the first characteristic and at least one of the first or second characteristics is independent of a detectable physical property of the corresponding consumable. The method also includes installing at least one of the first and second consumables into the torch. The method further includes communicating information about at least one of the first characteristic of the first consumable or the second characteristic of the second consumable to a controller by a first methodology.

    [0014] In some embodiments, the method includes communicating information about the first characteristic of the first consumable and the second characteristic of the consumable to the controller by the first methodology.

    [0015] In some embodiments, the method further includes communicating information about the first characteristic of the first consumable to the controller by the first methodology and communicating information about the second characteristic of the second consumable to the controller by a second methodology. The second methodology is different from the first methodology. The first methodology can include using a first signal device coupled to the first consumable to transmit the first characteristic as a first signal. The second methodology can include using a second signal device coupled to the second consumable to transmit the second characteristic as a second signal. The first or second signal includes a pneumatic signal, a radio signal, a light signal, a magnetic signal or a hydraulic signal.

    [0016] In some embodiments, the first consumable and the second consumable are substantially the same. In some embodiments, the first methodology includes using a signal device coupled to at least one of the first consumable or the second consumable to communicate the information as a signal. The signal can be a pneumatic signal, a radio signal, a light signal, a magnetic signal or a hydraulic signal.

    [0017] The invention provides a system for conveying information about a consumable component of a thermal processing torch, the system includes:

    a signal receiver disposed inside of the thermal processing torch; and

    a consumable component comprising:

    a consumable component body;

    a signal device, comprising a radio-frequency identification (RFID) tag for storing the information assigned to the consumable component,, the signal device is attached to the consumable component body and configured for transmitting a signal conveying information associated with the consumable component, the information being independent of a detectable physical characteristic of the consumable component; and

    the signal device being located inside of the thermal processing torch when the consumable component is installed in the thermal processing torch and the signal device being configured to allow the signal to be readable by the signal receiver inside the thermal processing torch.
    The invention further provides a method for conveying information about a consumable component of a thermal processing torch including a signal receiver, the method comprising:

    installing into the torch the signal receiver and the consumable component, wherein the consumable component has a signal device attached thereto, the signal device comprising a radio-frequency identification (RFID) tag for storing the information assigned to the consumable component and being adapted to generate a signal conveying the information about the consumable component;

    locating the signal device inside of the thermal processing torch when the consumable component is installed in the thermal processing torch;

    communicating the signal from the signal device to the signal receiver, the signal being readable by the signal receiver inside the thermal processing torch; and

    updating information encoded into the signal device after an operation of the torch.



    [0018] It should also be understood that various aspects and embodiments of the invention can be combined in various ways. Based on the teachings of this specification, a person of ordinary skill in the art can readily determine how to combine these various embodiments. For example, in some embodiments, any of the aspects above can include one or more of the above features. One embodiment of the invention can provide all of the above features and advantages.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0019] The advantages of the invention described above, together with further advantages, may be better understood by referring to the following description taken in conjunction with the accompanying drawings. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention.

    FIG. 1 shows a cross-sectional view of an exemplary plasma arc torch.

    FIG. 2 shows an exemplary communication network.

    FIG. 3 shows altered geometry of various consumables.

    FIG. 4 shows an exemplary thermal processing system using the communication network of FIG. 2 to control the operation of a plasma arc torch.


    DETAILED DESCRIPTION OF THE INVENTION



    [0020] FIG. 1 is a cross-sectional view of an exemplary plasma arc torch 100 including a torch body 102 and a torch tip 104. The torch tip 104 includes multiple consumables, for example, an electrode 105, a nozzle 110, a retaining cap 115, a swirl ring 120, and a shield 125. The torch body 102, which has a generally cylindrical shape, supports the electrode 105 and the nozzle 110. The nozzle 110 is spaced from the electrode 105 and has a central exit orifice mounted within the torch body 102. The swirl ring 120 is mounted to the torch body 102 and has a set of radially offset or canted gas distribution holes 127 that impart a tangential velocity component to the plasma gas flow, causing the plasma gas flow to swirl. The shield 125, which also includes an exit orifice, is connected (e.g., threaded) to the retaining cap 115. The retaining cap 115 as shown is an inner retaining cap securely connected (e.g., threaded) to the nozzle 110. In some embodiments, an outer retaining cap (not shown) is secured relative to the shield 125. The torch 100 can additionally include electrical connections, passages for cooling, passages for arc control fluids (e.g., plasma gas), and a power supply. In some embodiments, the consumables include a welding tip, which is a nozzle for passing an ignited welding gas.

    [0021] In operation, plasma gas flows through a gas inlet tube (not shown) and the gas distribution holes 127 in the swirl ring 120. From there, the plasma gas flows into a plasma chamber 128 and out of the torch 100 through the exit orifice of the nozzle 110 and the shield 125. A pilot arc is first generated between the electrode 105 and the nozzle 110. The pilot arc ionizes the gas passing through the nozzle exit orifice and the shield exit orifice. The arc then transfers from the nozzle 110 to a workpiece (not shown) for thermally processing (e.g., cutting or welding) the workpiece. It is noted that the illustrated details of the torch 100, including the arrangement of the components, the direction of gas and cooling fluid flows, and the electrical connections, can take a variety of forms.

    [0022] Different operating processes often require different shield and/or plasma gas flow rates, which require different sets of consumables. This leads to a variety of consumables being used in the field. Using the correct consumables and matching them appropriately is necessary to achieve optimal cutting performance. Consumable mismatch (e.g., using a consumable made for operation at 65 Amps in a torch that is being operated at 105 Amps) can result in poor consumable life and/or poor performance of the plasma arc torch.

    [0023] FIG. 2 shows an exemplary communication network 200 of the present invention. The communication network 200 includes one or more signal devices 202, each assigned to a consumable of a thermal processing torch, such as the plasma arc torch 100 of FIG. 1. Exemplary consumables include the electrode 105, the nozzle 110, the retaining cap 115, the swirl ring 120, and the shield 125. In some embodiments, a signal device 202 is an electrically writable device configured to transmit information about a consumable in the form of one or more signals. The signal device 202 is a radio-frequency identification (RFID) tag. In other examples can be a card, bar code label or tag, integrated circuit (IC) plate, or the like. In some embodiments, a signal device 202 is a detector (e.g., a sensor) for detecting a physical characteristic of the consumable and transmitting the detected information in the form of one or more signals. In the present invention the signal device (202) comprises a radio-frequency identification (RFID) tag for storing the information assigned to the consumable component. The communication network 200 also includes at least one receiver 204 for i) receiving signals transmitted by the signal devices 202, ii) extracting data conveyed by the signals, and iii) providing the extracted data to a processor 206 for analysis and further action. The processor 206 can be a digital signal processor (DSP), microprocessor, microcontroller, computer, computer numeric controller (CNC) machine tool, programmable logic controller (PLC), application-specific integrated circuit (ASIC), or the like.

    [0024] In some embodiments, each signal device 202 is encoded with information pertaining to the consumable to which the signal device 202 is assigned. The encoded information can be generic or fixed information such as the consumable's name, trademark, manufacturer, serial number, and/or type. The encoded information, for example, can include a model number to generally indicate that the consumable is a nozzle. In some embodiments, the encoded information is unique to the consumable, such as metal composition of the consumable, weight of the consumable, date, time and/or location at which the consumable was manufactured, personnel responsible for the consumable, and the like. As an example, the encoded information can provide a serial number, which is unique to each torch component manufactured, to distinguish, for example, nozzle Type A, Serial #1 from nozzle Type A, Serial #2.

    [0025] In some embodiments, information is encoded to a signal device 202 at the time of manufacture of the corresponding consumable. Information can also be encoded to a signal device 202 during the lifetime of the consumable, such as after each consumable use. Such information can include the date, time and location of consumable use, any abnormalities detected during use, and/or consumable conditions after use so that a log can be created to predict a failure event or end-of-life event associated with the consumable.

    [0026] Information encoded to a signal device 202 can also specify operating parameters. For example, for a signal device 202 associated with the shield 125, data encoded to the signal device 202 can indicate the type of shield gas and/or the appropriate gas flow rate for the shield 125. In some embodiments, encoded data of a signal device 202 provides information about other related torch components. For example, encoded data can identify other torch components that are compatible with the assigned consumable, assisting with installation of the entire consumable set in a torch to achieve certain performance metrics.

    [0027] A signal device 202 includes information about the corresponding consumable independent of a detectable physical characteristic of the consumable. Examples of detectable physical characteristics of the consumable include magnetic properties, surface reflectivity, density, acoustic properties and other tactile features of the consumable measured by a detector installed in the torch. Therefore, examples of consumable data independent of a detectable physical characteristic of the consumable can include consumable name, type, manufacturer, manufacturing date, manufacturing location, serial number, or other non-tactile features of a consumable. In some embodiments, the signal device 202 stores pre-collected information of the consumable, including physical characteristics, before it is installed into the torch, but the signal device 202 is not configured to actively measure or detect the physical characteristics. However, the signal device 202 can store physical characteristics about the consumable measured or detected by another device, such as by a sensor. Generally, the signal device 202 is used mainly for data storage purposes.

    [0028] Disclosed is that, the signal device 202 is located inside or on the torch 100. In the present invention the signal device (202) is located inside the torch (100). For example, the signal device 202 can be attached to a surface of a consumable that is ultimately installed inside of the torch tip 104. Disclosed is that the signal device 202 can also be attached to a component inside of the torch 100 other than the assigned consumable. For example, while a signal device 202 is assigned to store data about the electrode 105, the signal device 202 can be affixed to a surface of the retaining cap 115. Disclosed is that, the signal device 202 is coupled to an external source that is not physically associated with the torch 100. For example, the signal device 202 can be attached to a package used to store the consumable and is remote from the consumable once it is installed in the torch 100. If a signal device 202 is located inside of the torch 100, the surface to which the signal device 202 is attached can be selected to reduce or otherwise minimize heat exposure during operation of the torch 100. For example, the signal device 202 can be located near a cooling mechanism, away from the plasma arc, and/or in an o-ring channel of the torch 100 to reduce or minimize heat exposure. In addition, the signal device 202 can be coated with a heat protective material to prevent the device from overheating during torch operation. Generally, the signal device 202 can be situated, such as being shielded by another torch component, to minimize exposure to thermal energy, radiation, damaging gases (e.g., ozone), and/or high-frequency energy.

    [0029] In some embodiments, a signal device 202 is designed to be durable, i.e., functional during and after one or more torch ignitions. In some embodiments, a signal device 202 is disposable after each torch use or after several uses. In some embodiments, a signal device 202 is writable once, for example, to encode information about a consumable when the consumable is first manufactured. In some embodiments, a signal device 202 is writable multiple times, such as throughout the lifespan of the corresponding consumable.

    [0030] In the communication network 200, the signal device 202 can wirelessly transmit its stored information to the receiver 204 in the form of one or more signals. The receiver 204 is adapted to process these signals to extract pertinent data about the consumable and forward the data to the processor 206 for analysis. Disclosed is that, the receiver 204 is located in or on the plasma arc torch 100. In the present invention, the receiver 204 is located in the torch body 102. Disclosed is that, the receiver 204 is at a location external to the torch 100, such as attached to a power supply module, a gas console, the processor 206, etc.

    [0031] In some embodiments, at least one of the signal devices 202 is an RFID tag and the receiver 204 is a reader used to interrogate the RFID tag. In such embodiments, the RFID tag includes a microchip for storing information and an antenna for receiving and transmitting RF signals. The reader can include 1) an antenna for transmitting RF signals to the RFID tag to interrogate the tag and 2) components for decoding a response transmitted by the RFID tag before forwarding the response to the processor 206. The RFID tag can be either active or passive. An active RFID tag includes a battery to produce a stronger electromagnetic return signal to the reader, thereby increasing the possible transmission distance between the RFID tag and the reader. The distance between an RFID tag and a reader can be from less than one inch to 100 feet or more, depending on the power output, the radio frequency used and the type of material through which the RF signals need to travel. In one example, the distance between an RFID tag and an antenna of a corresponding reader can be about 2-4cm. A reader antenna and remaining reader components do not need be in the same packaging. For example, the reader antenna can be located on or inside of the torch body 102 while the remaining reader components are external to the torch 100. Using an RFID tag is advantageous because it does not require direct contact (e.g., via wires) or direct line of sight (e.g., via optical signals) with the reader and is well suited for use in harsh environments.

    [0032] In some embodiments, a signal device 202 is a detector (e.g., a sensor) for detecting at least one physical marker of the consumable for uniquely identifying the consumable by its type or individually. The physical marker can be a physical alteration of the consumable, for example. As shown in FIG. 3, identification of a consumable is achieved by altering the geometry of the consumable such that, when it is installed in the torch 100, it affects the wall of an adjacent coolant passageway 402, which in turn alters the rate of a coolant flowing therethrough. Specifically, the altered section of the coolant passageway 402 can restrict the rate of the coolant flow. A signal device 202 can be used to measure the pressure change as a function of the coolant flow rate. Hence, the measured coolant pressure change serves as an identification of the consumable. In another example as shown in FIG. 3, an auxiliary vent line 404 that is connected to a valve and a flow meter is attached to the nozzle 110 to identify the nozzle 110. The valve is opened prior to plasma arc ignition and the auxiliary vent line flow rate is measured by a signal device 202 as a function of plasma pressure during a purge cycle. Therefore, the measured flow rate serves as an identification of the nozzle 110. In another example, one or more uniquely sized metering holes (not shown) can be drilled into the outer retain cap to identify the cap once it is installed in the torch 100. The size of each metering hole is configured to uniquely affect the off-valve pressure and/or the flow rate of the shield gas. Therefore, these measurements, taken by a signal device 202 in a pre-flow routine prior to pilot arc ignition, serve to identify the outer retaining cap.

    [0033] In yet another example, the shield 125 can be identified by measuring the consumable's length relative to a reference torch datum. In an exemplary measurement process, a torch height controller is used to determine the height at which a known torch fires and begins to cut a workpiece. This height can serve as the reference torch datum. Then, after installing an unidentified consumable into the torch, the height relative to the reference datum is determined. Therefore, simple calculations involving the two heights can be used to determine the relative length of the unidentified consumable. In turn, the relative consumable length can be used to identify the consumable by, for example, referencing a looking-up table that correlates relative consumable lengths to consumable parts.

    [0034] In some embodiments, a signal device 202 is a barcode that provides optical machine-representation of data about the corresponding consumable. A barcode can be read by the receiver 204 in the form of a barcode reader. Generally, a signal device 202 can convey data about a consumable in the form of any machine readable signals, including radio signals, optical or other light-based signals (e.g., infrared signals or ultraviolet signals), magnetic signals, pneumatic signals, or hydraulic signals.

    [0035] In some embodiments, a single signal device 202 is assigned to each consumable of a torch to transmit pertinent information about the corresponding consumable. In some embodiments, two or more signal devices 202 are assigned to the same consumable to transmit different information about that consumable. For example, one signal device 202 can transmit information unique to the consumable type, such as the model number and operating parameters for the consumable type, while another signal device 202 can transmit information unique to the consumable itself, such as weight and usage history of the consumable. In some embodiments, the signal devices 202 in the communication network 200 employ different modes of data transmission. For example, while one signal device 202 transmits data as RF signals, another signal device 202 transmits data as optical signals. In some embodiments, the network 200 includes multiple receivers 204. Each receiver 204 is configured (e.g., tuned) to read signals from one or more of the signal devices 202 and transmit the extracted data to the processor 206. In some embodiments, a single receiver 204 is used to read signals from all signal devices 202 in the communication network 200. The processor 206 thus can simultaneously process data associated with multiple consumables.

    [0036] FIG. 4 is an exemplary thermal processing system 300 using the communication network of FIG. 2 to control the operation of a thermal processing torch, such as the plasma arc torch 100 of FIG. 1. The plasma arc torch 100 can include one or more consumables including the nozzle 110, the electrode 105, the shield 125, the inner retaining cap 115 and an outer retaining cap 302. At least one signal device 202 is assigned to at least one of the consumables for transmitting information about the corresponding consumable to the processor 206 via the receiver 204. The system 300 also includes a power supply 304 for providing the electrical current necessary to generate plasma arc in the torch 100. Data collected from the signal devices 202 about the respective consumables can be used by the processor 206 to control and optimize the operation of at least one of the plasma power supply 304, the motors and drivers 306, the gas console 308, the height controller 310 and the nesting software 312.

    [0037] The processor 206 can be located inside or outside of the plasma arc torch 100. In some embodiments, the processor 206 is housed in the power supply 304. In some embodiments, each of the plasma power supply 304, the motors and drivers 306, the gas console 308, the height controller 310 and the nesting software 312 houses at least one processor for processing data from the signal devices 202 to control the functions of the respective module 304, 306, 308 or 310.

    [0038] Based on the information collected from the signal devices 202, the processor 206 can regulate many plasma system functions simultaneously or near simultaneously and in real-time or near real-time. These system functions include, but not limited to, start sequence, CNC interface functions, gas and operating parameters, and shut off sequences. In some embodiments, the processor 206 uses consumable information to automatically set various parameters of the system 300. In some embodiments, the processor 206 uses consumable information to verify whether certain preset parameters of the system 300 are compatible with the consumables inside of the torch 100. As an example, based on the data collected about the multiple consumables of the torch 100, the processor 206 can control and verify one or more of the following system components: i) settings of the power supply 304 for regulating power to the torch 100, ii) settings of the nesting software 312 for processing a workpiece, iii) settings of the gas console 308 for controlling shield and/or plasma gases supplied to the torch 100, iv) settings of the height controller 310 for adjusting the height between the torch 100 and the workpiece, and v) settings of various motors and drivers 306.

    [0039] In some embodiments, based on the data collected from one or more signal devices 202, the processor 206 interacts with the nesting software 312 to automatically select a cutting program that sets parameters for processing a workpiece, such as the cutting speed, direction, paths, nesting sequences, etc. The cutting program can also define the gas types, gas pressure and/or flow settings and height control settings for the torch in view of the collected consumable data. Traditionally, when a set of consumables is assembled into a torch, an operator needs to manually configure the nesting software 312 to create the cutting program for the torch by supplying information to the software including the type and thickness of the workpiece material being processed, the type of gas being used, and the current rating of the consumable set. In particular, the operator needs to manually input into the processor 206 the current rating of the consumable set. In the present invention, because the current rating information for each consumable is stored in at least one signal device 202, the processor 206 can electronically collect such information from the one or more signal devices 202 and automatically determine the appropriate current setting without user input.

    [0040] In some embodiments, based on the collected consumable data, the processor 206 selects a suitable cutting program from the nesting software 312 by taking into consideration of consumable data from the signal devices 202 and user-input operating parameters, including the characteristics of the workpeice being cut and the desired cut shape. For example, an operator can first send a generic program file to the nesting software 312. The generic program file specifies, for each workpiece thickness, variable cut speeds, gas flows, kerf compensations, torch heights, etc. that change with different consumable parts. Thus, after identifying the consumables using the signal devices 202, the processor 206 interacts with the generic program file to configure a cutting program for the torch. In some embodiments, after a cutting program is created, the processor 206 uses consumable data collected from the signal devices 202 to verify whether correct consumables are installed into the torch that are appropriate for the program. In addition, the processor 206 can instruct the nesting software 312 to automatically set or correct parameters of the program to enhance compatibility with the consumables loaded into the torch. For example, a consumable requiring 400A current has larger kerfs and lead-ins in comparison to a consumable requiring 130A current. Accordingly, the nesting software 312 can select fewer parts to fit on a nest of the program if the 400A consumable is loaded into a torch.

    [0041] In some embodiments, based on the data collected from one or more signal devices 202, the processor 206 can manipulate a gas console 308 to control flow of plasma and shield gases to the torch 100 by verifying and adjusting the gas console settings. The gas console 308 houses solenoid valves, flow meters, pressure gauges, and switches used for plasma and shield gas flow control. For example, the flow meters are used to set the pre-flow rates and cut flow rates for the plasma and shield gases. The gas console 308 can also have a multi-inlet gas supply area where the plasma and shield gases are connected. A toggle switch can be used to select the desired gases. The plasma and shield gases are monitored by gas pressure gauges. In one example, a signal device 202 associated with the shield 125 of the plasma arc torch 100 can store information about the type and composition of one or more shield gases suitable for use with the shield 125, along with the optimal flow rate setting of the shield gases. Based on this data, the processor 206 can interact with the gas console 308 to provide the plasma arc torch 100 with the appropriate shield gas at the optimal flow rate.

    [0042] In some embodiments, based on the data collected from one or more signal devices 202, the processor 206 manipulates the torch height controller 310, which sets the height of the torch 100 relative to the workpiece. The torch height controller 310 can include a control module to control an arc voltage during cutting by adjusting the standoff (i.e., the distance between the torch 100 and the work piece) to maintain a predetermined arc voltage value. The torch height controller 310 can also include an external control module to control the standoff. The torch height controller 310 can further include a lifter, which is controlled by the control module through a motor or driver 306, to slide the torch 100 in a vertical direction relative to the workpiece to maintain the desired voltage during cutting. In one example, based on the data collected from the consumables of a torch, the torch height controller 310 can automatically determine the height to position the torch relative to the top of a workpiece. Therefore, the torch height controller 310 does not need to perform a height sense in order to set an appropriate pierce height and cut height before beginning arc voltage control.

    [0043] In some embodiments, the processor 206 is configured to prevent the thermal processing system 300 from commencing an operation on the workpiece if it determines that the consumables installed in the torch 100 are mismatched with each other, not compatible with the thermal processing system 300 or inconsistent with other pre-selected operating parameters input by an operator. If such a determination is made, the processor 206 can trigger an audio or visual alert indicating to the operator that one or more of the connected consumables are unsupported and that the consumables should be replaced or operator inputs should be revised. Additionally, the processor 206 can prevent initiation of an operation if an alert is triggered. For example, the processor 206 can stop torch operation if the current setting of the shield 125, which is conveyed to the processor 206 by a signal device 202 assigned to the shield 125, is different from the current setting of the nozzle 110, which is conveyed to the processor 206 by a different or the same signal device 202 corresponding to the nozzle 110.

    [0044] In some embodiments, the processor 206 is configured to prevent the thermal processing system 300 from operating if it determines that at least one of the consumables installed in the torch 100 is not manufactured or otherwise supported by an accepted manufacturer. For example, the processor 206 can stop torch operation if it does not recognize the manufacturer identification, serial number and/or parts number conveyed by a signal device of a consumable. Hence, the thermal processing system 300 can be used to detect and prevent the use of inferior or counterfeit consumables.

    [0045] In some embodiments, the processor 206 recommends one or more remedial actions to the operator to address alarm situations. For example, the processor 206 can suggest one or more consumables to install in the torch 100 to avoid potential mismatch with other components of thermal processing system 300. The processor 206 can suggest suitable types of workpiece for processing based on the ratings of the installed consumable set. The processor 206 can recommend a cutting sequence that reconciles the settings of the installed consumables with settings provided by the operator.

    [0046] Generally, the signal devices 204 can store information about torch components other than consumables. For example, the signal devices 204 can store information about the torch body 102 or about one or more leads. Therefore, as one in the art will fully appreciate, the exemplary communication network 200 of FIG. 2 and the configuration of FIG. 3 can be easily adapted to store information about any torch component.

    [0047] In addition, as one in the art will fully appreciate, the invention described herein is not only applicable to plasma cutting devices, but also welding-type systems and other thermal processing systems. In some embodiments, the invention described herein is configured to operate with a variety of cutting technologies, including, but not limited to, plasma arc, laser, oxy fuel, and/or water-jet technologies. For example, the signal devices 202 can be coupled to one or more consumables configured to operate with one or more of the cutting technologies. The processor 206, using information transmitted by the signal devices 202, can determine whether the consumables installed in a torch are compatible with the specific cutting technology. In some embodiments, based on the selected cutting technology and the consumable information, the processor 206 can set or adjust operating parameters accordingly, such as the height of the cutting head above the workpiece, which can vary depending on the cutting technology and the consumables.

    [0048] As an example, it is known to use water-jet systems that produce high pressure, high-velocity water jets for cutting various materials. These systems typically function by pressurizing water or another suitable fluid to a high pressure (e.g., up to 90,000 pounds per square inch or more) and force the fluid through a small nozzle orifice at high velocity to concentrate a large amount of energy on a small area. An abrasive jet is a type of water jet, which can include abrasive materials within the fluid jet for cutting harder materials. In some embodiments, the signal devices 202 are attached to consumables of a water-jet system, such as to a water-jet nozzle, an abrasive-jet nozzle, a mixing tube used to mix abrasive particles with fluid, and/or one or more valves and filters. A signal device 202 associated with an abrasive-jet nozzle can identify, for example, the types of abrasives suitable for use with the nozzle, the amount of pressure in the pressurized fluid that can be fed to the nozzle, and can also indicate other consumables that are suitable for use with a particular nozzle. Identification of particular consumable set combinations for a given water-jet system can also be performed, to verify compatibility with a given system or to limit operating conditions and parameters, such as maximum pressure or flow settings, or abrasive types or amounts.

    [0049] It should also be understood that various aspects and embodiments of the invention can be combined in various ways. Based on the teachings of this specification, a person of ordinary skill in the art can readily determine how to combine these various embodiments. In addition, modifications may occur to those skilled in the art upon reading the specification. The present application includes such modifications and is limited only by the scope of the claims.


    Claims

    1. A system for conveying information about a consumable component of a thermal processing torch (100), the system includes:

    a signal receiver (204) disposed inside of the thermal processing torch; and

    a consumable component comprising:

    a consumable component body;

    a signal device (202), comprising a radio-frequency identification (RFID) tag for storing the information assigned to the consumable component, the signal device is attached to the consumable component body and configured for transmitting a signal conveying information associated with the consumable component, the information being independent of a detectable physical characteristic of the consumable component; and

    the signal device being located inside of the thermal processing torch when the consumable component is installed in the thermal processing torch and the signal device being configured to allow the signal to be readable by the signal receiver inside the thermal processing torch.


     
    2. The system of claim 1 wherein the signal transmitted by the signal device identifies at least one feature unique to the type of the consumable component, wherein the type of the consumable component comprises at least one of a nozzle (110), a shield (125), an electrode (105), an inner retaining cap (115), an outer retaining cap (302), a swirl ring (120) or a welding tip.
     
    3. The system of claim 1, wherein any one or more of the following applies,

    a) the signal transmitted by the signal device identifies at least one feature unique to the consumable component that is capable of distinguishing the consumable component from another consumable component of the same type; or

    b) the signal device is adapted to transmit the signal before, during or after plasma arc ignition, or a combination thereof.


     
    4. The system of claim 1 wherein the signal device is located at a surface of the body to minimize heat exposure during torch operation, wherein,

    a) the surface is adjacent to a cooling mechanism of the torch, spaced away from a plasma arc of the torch, or in an O-ring channel of the torch, or a combination thereof, and/or

    b) the signal device is shielded by another torch component to minimize exposure of the signal device to at least one of thermal energy, radiation, damaging gases, or high-frequency energy.


     
    5. The system of claim 1 wherein the torch comprises a plasma arc torch.
     
    6. A method for conveying information about a consumable component (105, 110, 115, 120, 125, 302) of a thermal processing torch (100) including a signal receiver (204), the method comprising:

    installing into the torch the signal receiver and the consumable component, wherein the consumable component has a signal device (202) attached thereto, the signal device comprising a radio-frequency identification (RFID) tag for storing the information assigned to the consumable component and being adapted to generate a signal conveying the information about the consumable component;

    locating the signal device inside of the thermal processing torch when the consumable component is installed in the thermal processing torch;

    communicating the signal from the signal device to the signal receiver, the signal being readable by the signal receiver inside the thermal processing torch; and updating information encoded into the signal device after an operation of the torch.


     
    7. The method of claim 6 wherein any one or more of the following applies,

    a) the consumable component comprises one of an electrode (105), a nozzle (110), a shield (125), a swirl ring (120), a retaining cap (115, 302) or a replaceable torch body (102); or

    b) updating information encoded into the signal device comprises writing to the signal device data related to a date, time, or location of use of the consumable component after the torch operation, wherein the method further comprises detecting a failure or end-of-life event of the consumable component based on the updated information.


     
    8. The system of claim 1,
    wherein the signal device is configured to encode information identifying at least one operating parameter of the torch and a value for the at least one operating parameter, the system further comprising:
    a controller coupled to the signal receiver for i) receiving the information from the at least one signal device, and ii) transmitting at least a portion of the information to at least one of a processor (206), a gas console (308), nesting software (312), a height controller (310), and a drive motor (306), wherein at least one of the processor, the gas console, the nesting software, the height controller, and the drive motor is configured to adjust torch operation based on the value of the at least one operating parameter.
     
    9. The method of claim 6, wherein the method is for identifying consumables in a thermal processing system including the torch, the method comprising:

    providing a first consumable (105, 110, 115, 120, 125, 302) having a first characteristic and a second consumable (105, 110, 115, 120, 125, 302) having a second characteristic, wherein the second characteristic is different from the first characteristic and at least one of the first or second characteristics is independent of a detectable physical property of the corresponding consumable, the first consumable comprising the first signal device and the second consumable comprising a second signal device, each comprising a radio-frequency identification (RFID) tag, attached thereto for transmitting information about the first and the second characteristic of the first and second consumable;

    installing the first and second consumables into the torch such that the signal device is located inside of the thermal processing torch and readable inside the thermal processing torch; and

    communicating information about at least one of the first characteristic of the first consumable or the second characteristic of the second consumable to a controller by a first methodology.


     
    10. The method of claim 9 wherein,

    a) the first methodology comprises communicating the information as a signal, the signal comprising a radio signal; and/or

    b) the method, further comprises:
    communicating the information about the first characteristic of the first consumable and information about the second characteristic of the second consumable to the controller by the first methodology.


     
    11. The method of claim 9, further comprising:

    communicating information about the first characteristic of the first consumable to the controller by the first methodology; and

    communicating information about the second characteristic of the second consumable to the controller by a second methodology, wherein the second methodology is different from the first methodology, wherein the first methodology comprises using the signal device coupled to the first consumable to transmit the first characteristic as a first signal, the second methodology comprises using a second signal device coupled to the second consumable to transmit the second characteristic as a second signal, the first or second signal comprising a pneumatic signal, a radio signal, a light signal, a magnetic signal or a hydraulic signal.


     
    12. The method of claim 6, wherein the signal receiver is an RFID reader, the method comprising:

    storing, into the RFID tag, information corresponding to one or more of the consumable component's name, trademark, manufacturer, serial number, type, usage history and at least one operating parameter, wherein at least a portion of the information identifies a feature unique to the consumable component;

    updating the information stored in the RFID tag after a torch operation to include information related to usage of the consumable component.


     
    13. The method of claim 12, wherein any one or more of the following applies,

    a) the information identifies at least one feature unique to the type of the consumable component;

    b) the type of the consumable component comprises a nozzle (110), a shield (125), an electrode (105), an inner retaining cap (115), an outer retaining cap (302), a swirl ring (120) or a welding tip;

    c) the at least one feature unique to the consumable component is capable of distinguishing the consumable component from another consumable component of the same type;

    d) the signal device (202) is shielded by another torch component to minimize exposure of the RIFD device or RFID reader to at least one of thermal energy, radiation, damaging gases, or high-frequency energy; or

    e) the method further comprises predicting a failure or end-of-life event of the consumable component based on the information related to the usage of the consumable component.


     
    14. The method of claim 12, wherein the signal device (202) is located at a surface of the body to minimize heat exposure during torch operation, wherein the surface is adjacent to a cooling mechanism of the torch, remote from a plasma arc of the torch, or in an O-ring channel of the torch, or a combination thereof.
     
    15. The method of claim 12, wherein said portion of the information that identifies a feature unique to the consumable component is encoded at the time of manufacture and comprises the consumable component's serial number and wherein a second portion of the information of the RFID tag relating to consumable component conditions after use is encoded during the lifetime of the consumable component.
     


    Ansprüche

    1. System zum Übertragen von Informationen über eine Verbrauchskomponente eines Wärmebehandlungsbrenners (100), wobei das System beinhaltet:

    einen Signalempfänger (204), der innerhalb des Wärmebehandlungsbrenners angeordnet ist; und

    eine Verbrauchskomponente, umfassend:

    einen Verbrauchskomponentenkörper;

    eine Signalvorrichtung (202), umfassend einen Funkfrequenzidentifikation (RFID)-Tag zum Speichern der Informationen, die der Verbrauchskomponente zugewiesen sind, wobei die Signalvorrichtung mit dem Verbrauchskomponentenkörper verknüpft ist und zum Übertragen von Signalübertragungsinformationen konfiguriert ist, die der Verbrauchskomponente zugeordnet sind, wobei die Informationen unabhängig von einer erkennbaren physikalischen Eigenschaft der Verbrauchskomponente sind; und

    die Signalvorrichtung sich innerhalb des Wärmebehandlungsbrenners befindet, wenn die Verbrauchskomponente in dem Wärmebehandlungsbrenner installiert ist und die Signalvorrichtung konfiguriert ist, damit das Signal von dem Signalempfänger innerhalb des Wärmebehandlungsbrenners gelesen werden kann.


     
    2. System nach Anspruch 1, wobei das Signal, das von der Signalvorrichtung übertragen wird, mindestens ein für die Art der Verbrauchskomponente spezielles Merkmal identifiziert, wobei die Art der Verbrauchskomponente mindestens eines aus einer Düse (110), einer Blende (125), einer Elektrode (105), einer inneren Haltekappe (115), einer äußeren Haltekappe (302), einem Wirbelring (120) oder einer Schweißspitze umfasst.
     
    3. System nach Anspruch 1, wobei eines oder mehreres des Folgenden zutrifft:

    a) das von der Signalvorrichtung übertragene Signal identifiziert mindestens ein für die Verbrauchskomponente spezielles Merkmal, durch das die Verbrauchskomponente von einer anderen Verbrauchskomponente derselben Art unterschieden werden kann; oder

    b) die Signalvorrichtung ist geeignet, um das Signal vor, während oder nach dem Zünden eines Plasmalichtbogens oder einer Kombination davon zu übertragen.


     
    4. System nach Anspruch 1, wobei die Signalvorrichtung sich auf einer Fläche des Körpers befindet, um eine Wärmeeinwirkung während des Brennerbetriebs auf ein Mindestmaß zu senken, wobei

    a) die Fläche sich benachbart zu einem Kühlmechanismus des Brenners, beabstandet von einem Plasmalichtbogen des Brenners oder in einem O-Ringkanal des Brenners oder einer Kombination davon befindet, und/oder

    b) die Signalvorrichtung von einer anderen Brennerkomponente geschützt ist, um ein Aussetzen der Signalvorrichtung gegenüber mindestens einem aus Wärmeenergie, Strahlung, schädlichen Gasen oder Hochfrequenzenergie auf ein Mindestmaß zu verringern.


     
    5. System nach Anspruch 1, wobei der Brenner einen Plasma-Lichtbogenbrenner umfasst.
     
    6. Verfahren zum Übertragen von Informationen über eine Verbrauchskomponente (105, 110, 115, 120, 125, 302) eines Wärmebehandlungsbrenners (100), der einen Signalempfänger (204) beinhaltet, das Verfahren umfassend:

    Installieren des Signalempfängers und der Verbrauchskomponente in dem Brenner, wobei die Verbrauchskomponente eine damit verknüpfte Signalvorrichtung (202) aufweist, die Signalvorrichtung ein Funkfrequenzidentifikation (RFID)-Tag zum Speichern der Informationen, die der Verbrauchskomponente zugewiesen sind, umfasst und geeignet ist, um ein Signal zu erzeugen, das die Informationen über die Verbrauchskomponente überträgt;

    Anordnen der Signalvorrichtung innerhalb des Wärmebehandlungsbrenners, wenn die Verbrauchskomponente in dem Wärmebehandlungsbrenner installiert ist;

    Kommunizieren des Signals von der Signalvorrichtung an den Signalempfänger, wobei das Signal von dem Signalempfänger innerhalb des Wärmebehandlungsbrenners gelesen werden kann; und

    Aktualisieren von Informationen, die in der Signalvorrichtung kodiert sind, nach einem Betrieb des Brenners.


     
    7. Verfahren nach Anspruch 6, wobei eines oder mehreres des Folgenden zutrifft:

    a) die Verbrauchskomponente umfasst eines aus einer Elektrode (105), einer Düse (110), einer Blende (125), einem Wirbelring (120), einer Haltekappe (115, 302) oder einem austauschbaren Brennerkörper (102); oder

    b) das Aktualisieren von Informationen, die in der Signalvorrichtung kodiert sind, umfasst das Schreiben von Daten betreffend ein Datum, einen Zeitpunkt oder einen Ort der Nutzung der Verbrauchskomponente in die Signalvorrichtung nach dem Betrieb des Brenners, wobei das Verfahren ferner das Erkennen eines Ausfalls oder eines Ereignisses des Endes des Lebenszyklus der Verbrauchskomponente basierend auf den aktualisierten Informationen umfasst.


     
    8. System nach Anspruch 1,
    wobei die Signalvorrichtung konfiguriert ist, um Informationen, die mindestens einen Betriebsparameter des Brenners und einen Wert für den mindestens einen Betriebsparameter identifizieren, zu kodieren, wobei das System ferner umfasst:
    eine Steuerung, die mit dem Signalempfänger gekoppelt ist, zum i) Empfangen der Informationen von der mindestens einen Signalvorrichtung und ii) Übertragen von mindestens einem Abschnitt der Informationen an mindestens eines aus einem Prozessor (206), einer Gaskonsole (308), Nestingsoftware (312), einer Höhensteuerung (310) und einem Antriebsmotor (306), wobei mindestens eines aus dem Prozessor, der Gaskonsole, der Nestingsoftware, der Höhensteuerung und dem Antriebsmotor konfiguriert ist, um einen Brennerbetrieb basierend auf dem Wert des mindestens einen Betriebsparameters einzustellen.
     
    9. Verfahren nach Anspruch 6, wobei das Verfahren zum Identifizieren von Verbrauchsmaterialien in einem Wärmebehandlungssystem, das den Brenner beinhaltet, dient, das Verfahren umfassend:

    Bereitstellen eines ersten Verbrauchsmaterials (105, 110, 115, 120, 125, 302), das ein erstes Merkmal aufweist, und eines zweiten Verbrauchsmaterials (105, 110, 115, 120, 125, 302), das ein zweites Merkmal aufweist, wobei das zweite Merkmal sich von dem ersten Merkmal unterscheidet und mindestens eines des ersten oder zweiten Merkmals unabhängig von einer erkennbaren physikalischen Eigenschaft des entsprechenden Verbrauchsmaterials ist, wobei das erste Verbrauchsmaterial die erste Signalvorrichtung umfasst und das zweite Verbrauchsmaterial eine zweite Signalvorrichtung umfasst, von denen jede ein Funkfrequenzidentifikation (RFID)-Tag umfasst, das damit verknüpft ist, um Informationen über das erste und das zweite Merkmal des ersten und des zweiten Verbrauchsmaterials zu übertragen;

    Installieren des ersten und des zweiten Verbrauchsmaterials in dem Brenner, sodass die Signalvorrichtung sich innerhalb des Wärmebehandlungsbrenners befindet und innerhalb des Wärmebehandlungsbrenners gelesen werden kann; und

    Kommunizieren von Informationen über mindestens eines aus dem ersten Merkmal des ersten Verbrauchsmaterials oder dem zweiten Merkmal des zweiten Verbrauchsmaterials an eine Steuerung über ein erstes Verfahren.


     
    10. Verfahren nach Anspruch 9, wobei

    a) das erste Verfahren das Kommunizieren der Informationen als Signal umfasst, wobei das Signal ein Funksignal umfasst; und/oder

    b) das Verfahren ferner umfasst:
    Kommunizieren der Informationen über das erste Merkmal des ersten Verbrauchsmaterials und Informationen über das zweite Merkmal des zweiten Verbrauchsmaterials an die Steuerung über das erste Verfahren.


     
    11. Verfahren nach Anspruch 9, ferner umfassend:

    Kommunizieren von Informationen über das erste Merkmal des ersten Verbrauchsmaterials an die Steuerung über das erste Verfahren; und

    Kommunizieren von Informationen über das zweite Merkmal des ersten Verbrauchsmaterials an die Steuerung über ein zweites Verfahren, wobei das zweite Verfahren sich von dem ersten Verfahren unterscheidet, wobei das erste Verfahren das Verwenden der Signalvorrichtung umfasst, die mit dem ersten Verbrauchsmaterial gekoppelt ist, um das erste Merkmal als erstes Signal zu übertragen, das zweite erste Verfahren das Verwenden einer zweiten Signalvorrichtung umfasst, die mit dem zweiten Verbrauchsmaterial gekoppelt ist, um das zweite Merkmal als zweites Signal zu übertragen, wobei das erste oder das zweite Signal ein pneumatisches Signal, ein Funksignal, ein Lichtsignal, ein magnetisches Signal oder ein hydraulisches Signal umfassen.


     
    12. Verfahren nach Anspruch 6, wobei der Signalempfänger ein RFID-Lesegerät ist, das Verfahren umfassend:
    Speichern von Informationen in dem RFID-Tag, die einem oder mehreren aus dem Namen, dem Warenzeichen, dem Hersteller, der Seriennummer, dem Typ, dem Nutzungsverlauf und mindestens einem Betriebsparameter der Verbrauchskomponente entsprechen, wobei mindestens ein Abschnitt der Informationen ein für die Verbrauchskomponente spezielles Merkmal identifiziert, Aktualisieren der Informationen, die in dem RFID-Tag gespeichert sind, nach einem Betrieb des Brenners, um Informationen hinsichtlich der Verwendung der Verbrauchskomponente aufzunehmen.
     
    13. Verfahren nach Anspruch 12, wobei eines oder mehreres des Folgenden zutrifft:

    a) die Informationen identifizieren mindestens ein für die Art der Verbrauchskomponente spezielles Merkmal;

    b) die Art der Verbrauchskomponente umfasst eine Düse (110), eine Blende (125), eine Elektrode (105), eine innere Haltekappe (115), eine äußere Haltekappe (302), einen Wirbelring (120) oder eine Schweißspitze;

    c) durch das mindestens eine für die Verbrauchskomponente spezielle Merkmal lässt sich die Verbrauchskomponente von einer anderen Verbrauchskomponente derselben Art unterscheiden;

    d) die Signalvorrichtung (202) ist durch eine andere Brennerkomponente geschützt, um ein Aussetzen der RFID-Vorrichtung oder des RFID-Lesegeräts gegenüber mindestens einem aus Wärmeenergie, Strahlung, schädlichen Gasen oder Hochfrequenzenergie auf ein Mindestmaß zu verringern; oder

    e) das Verfahren umfasst ferner das Vorhersagen eines Ausfalls oder eines Ereignisses des Endes des Lebenszyklus der Verbrauchskomponente basierend auf den Informationen betreffend die Verwendung der Verbrauchskomponente.


     
    14. Verfahren nach Anspruch 12, wobei die Signalvorrichtung (202) sich auf einer Fläche des Körpers befindet, um eine Wärmeeinwirkung während des Brennerbetriebs auf ein Mindestmaß zu senken, wobei die Fläche sich benachbart zu einem Kühlmechanismus des Brenners, entfernt von einem Plasmalichtbogen des Brenners oder in einem O-Ringkanal des Brenners oder einer Kombination davon befindet.
     
    15. Verfahren nach Anspruch 12, wobei der Abschnitt der Informationen, der ein für die Verbrauchskomponente spezielles Merkmal identifiziert, zum Zeitpunkt der Herstellung kodiert wird und die Seriennummer der Verbrauchskomponente umfasst und wobei ein zweiter Abschnitt der Informationen des RFID-Tags betreffend Verbrauchskomponentenbedingungen nach der Verwendung während der Lebensdauer der Verbrauchskomponente kodiert wird.
     


    Revendications

    1. Système pour transporter informations concernant un composant consommable d'une torche de traitement thermique (100), le système comprenant :

    un récepteur de signal (204) disposé à l'intérieur de la torche de traitement thermique ; et

    un composant consommable comprenant :

    un corps de composant consommable ;

    un dispositif de signal (202), comprenant une étiquette d'identification par radiofréquence (RFID) pour stocker les informations attribuées au composant consommable, le dispositif de signal étant fixé au corps de composant consommable et configuré pour émettre un signal transportant des informations associées au composant consommable, les informations étant indépendantes d'une caractéristique physique détectable du composant consommable ; et

    le dispositif de signal étant situé à l'intérieur de la torche de traitement thermique lorsque le composant consommable est installé dans la torche de traitement thermique et le dispositif de signal étant configuré pour permettre au signal d'être lisible par le récepteur de signal à l'intérieur de la torche de traitement thermique.


     
    2. Système selon la revendication 1, dans lequel le signal émis par le dispositif de signal identifie au moins un élément unique au type du composant consommable, le type du composant consommable comprenant au moins un parmi une buse (110), une gaine (125), une électrode (105), un capuchon de retenue interne (115), un capuchon de retenue externe (302), un anneau de tourbillonnement (120) ou un bec de soudage.
     
    3. Système selon la revendication 1, dans lequel un ou plusieurs de ce qui suit s'appliquent :

    a) le signal émis par le dispositif de signal identifie au moins un élément unique au composant consommable qui est capable de distinguer le composant consommable d'un autre composant consommable du même type ; ou

    b) le dispositif de signal est adapté pour émettre le signal avant, pendant ou après un allumage à arc de plasma, ou une combinaison de ceux-ci.


     
    4. Système selon la revendication 1, dans lequel le dispositif de signal est situé à une surface du corps pour rendre minimale une exposition à la chaleur pendant le fonctionnement de la torche,

    a) la surface étant adjacente à un mécanisme de refroidissement de la torche, espacée d'un arc de plasma de la torche, ou dans un canal torique de la torche, ou une combinaison de ceux-ci, et/ou

    b) le dispositif de signal étant protégé par un autre composant de torche pour rendre minimale une exposition du dispositif de signal à au moins un parmi une énergie thermique, un rayonnement, des gaz nuisibles ou une énergie haute-fréquence.


     
    5. Système selon la revendication 1, dans lequel la torche comprend une torche à arc de plasma.
     
    6. Procédé pour transporter des informations concernant un composant consommable (105, 110, 115, 120, 125, 302) d'une torche de traitement thermique (100) comprenant un récepteur de signal (204), le procédé comprenant :

    installer, dans la torche, le récepteur de signal et le composant consommable, le composant consommable ayant un dispositif de signal (202) fixé à celui-ci, le dispositif de signal comprenant une étiquette d'identification par radiofréquence (RFID) pour stocker les informations attribuées au composant consommable et étant adapté pour générer un signal transportant les informations concernant le composant consommable ;

    placer le dispositif de signal à l'intérieur de la torche de traitement thermique lorsque le composant consommable est installé dans la torche de traitement thermique ;

    communiquer le signal du dispositif de signal au récepteur de signal, le signal étant lisible par le récepteur de signal à l'intérieur de la torche de traitement thermique ; et

    mettre à jour des informations codées dans le dispositif de signal après un actionnement de la torche.


     
    7. Procédé selon la revendication 6, dans lequel un ou plusieurs de ce qui suit s'appliquent :

    a) le composant consommable comprend au moins un parmi une électrode (105), une buse (110), une gaine (125), un anneau de tourbillonnement (120), un capuchon de retenue (115, 302) ou un corps de torche remplaçable (102) ; ou

    b) la mise à jour d'informations codées dans le dispositif de signal comprend écrire, dans le dispositif de signal, des données liées à une date, une heure ou un emplacement d'utilisation du composant consommable après l'actionnement de la torche, le procédé comprenant en outre détecter un événement de défaillance ou de fin de vie du composant consommable sur la base des informations mises à jour.


     
    8. Système selon la revendication 1,
    dans lequel le dispositif de signal est configuré pour coder des informations identifiant au moins un paramètre de fonctionnement de la torche et une valeur pour l'au moins un paramètre de fonctionnement, le système comprenant en outre :
    un dispositif de commande couplé au récepteur de signal pour i) recevoir les informations à partir de l'au moins un dispositif de signal, et ii) transmettre au moins une partie des informations à au moins un parmi un processeur (206), une console de gaz (308), un logiciel d'imbrication (312), un dispositif de commande de hauteur (310) et un moteur d'entraînement (306), au moins un parmi le processeur, la console de gaz, le logiciel d'imbrication, le dispositif de commande de hauteur et le moteur d'entraînement étant configuré pour ajuster le fonctionnement de torche sur la base de la valeur de l'au moins un paramètre de fonctionnement.
     
    9. Procédé selon la revendication 6, dans lequel le procédé est pour une identification des consommables dans un système de traitement thermique comprenant la torche, le procédé comprenant :

    fournir un premier consommable (105, 110, 115, 120, 125, 302) ayant une première caractéristique et un second consommable (105, 110, 115, 120, 125, 302) ayant une seconde caractéristique, la seconde caractéristique étant différente de la première caractéristique et au moins une parmi les première et seconde caractéristiques étant indépendante d'une propriété physique détectable du consommable correspondant, le premier consommable comprenant le premier dispositif de signal et le second consommable comprenant un second dispositif de signal, chacun comprenant une étiquette d'identification par radiofréquence (RFID) fixée à celui-ci pour transmettre des informations concernant les première et seconde caractéristiques des premier et second consommables ;

    installer les premier et second consommables dans la torche de telle sorte que le dispositif de signal est situé à l'intérieur de la torche de traitement thermique et lisible à l'intérieur de la torche de traitement thermique ; et

    communiquer des informations concernant au moins une parmi la première caractéristique du premier consommable et la seconde caractéristique du second consommable à un dispositif de commande par une première méthodologie.


     
    10. Procédé selon la revendication 9, dans lequel

    a) la première méthodologie comprend communiquer les informations sous la forme d'un signal, le signal comprenant un signal radio ; et/ou

    b) le procédé comprend en outre :
    communiquer les informations concernant la première caractéristique du premier consommable et les informations concernant la seconde caractéristique du second consommable au dispositif de commande par la première méthodologie.


     
    11. Procédé selon la revendication 9, comprenant en outre :

    communiquer des informations concernant la première caractéristique du premier consommable au dispositif de commande par la première méthodologie ; et

    communiquer des informations concernant la seconde caractéristique du second consommable au dispositif de commande par une seconde méthodologie, la seconde méthodologie étant différente de la première méthodologie, la première méthodologie comprenant utiliser le dispositif de signal couplé au premier consommable pour transmettre la première caractéristique sous la forme d'un premier signal, la seconde méthodologie comprenant utiliser un second dispositif de signal couplé au second consommable pour transmettre la seconde caractéristique sous la forme d'un second signal, le premier ou second signal comprenant un signal pneumatique, un signal radio, un signal lumineux, un signal magnétique ou un signal hydraulique.


     
    12. Procédé selon la revendication 6, dans lequel le récepteur de signal est un lecteur RFID, le procédé comprenant :

    stocker, dans l'étiquette RFID, des informations correspondant à un ou plusieurs parmi un nom, une marque, un fabricant, un numéro de série, un type, un historique d'utilisation et au moins un paramètre de fonctionnement du composant consommable, au moins une partie des informations identifiant un élément unique au composant consommable ;

    mettre à jour les informations stockées dans l'étiquette RFID après un actionnement de la torche pour inclure des informations liées à l'utilisation du composant consommable.


     
    13. Procédé selon la revendication 12, dans lequel un ou plusieurs de ce qui suit s'appliquent :

    a) les informations identifient au moins un élément unique au type du composant consommable ;

    b) le type du composant consommable comprend une buse (110), une gaine (125), une électrode (105), un capuchon de retenue interne (115), un capuchon de retenue externe (302), un anneau de tourbillonnement (120) ou un bec de soudage ;

    c) l'au moins un élément unique au composant consommable est capable de distinguer le composant consommable d'un autre composant consommable du même type ;

    d) le dispositif de signal (202) est protégé par un autre composant de torche pour rendre minimale une exposition du dispositif RFID ou du lecteur RFID à au moins un parmi une énergie thermique, un rayonnement, des gaz nuisibles ou une énergie haute-fréquence ; ou

    e) le procédé comprend en outre prédire un événement de défaillance ou de fin de vie du composant consommable sur la base des informations liées à l'utilisation du composant consommable.


     
    14. Procédé selon la revendication 12, dans lequel le dispositif de signal (202) est situé à une surface du corps pour rendre minimale une exposition à la chaleur pendant le fonctionnement de la torche, la surface étant adjacente à un mécanisme de refroidissement de la torche, espacée d'un arc de plasma de la torche, ou dans un canal torique de la torche, ou une combinaison de ceux-ci.
     
    15. Procédé selon la revendication 12, dans lequel ladite partie des informations qui identifient un élément unique au composant consommable est codée au moment de la fabrication et comprend le numéro de série du composant consommable, et une seconde partie des informations de l'étiquette RFID se rapportant aux conditions de composant consommable après utilisation est codée pendant la durée de vie du composant consommable.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description