(19)
(11)EP 2 844 854 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.12.2019 Bulletin 2019/50

(21)Application number: 13785295.0

(22)Date of filing:  29.04.2013
(51)International Patent Classification (IPC): 
F02C 3/14(2006.01)
F23R 3/42(2006.01)
F23R 3/60(2006.01)
F02C 7/00(2006.01)
F02K 3/00(2006.01)
(86)International application number:
PCT/US2013/038572
(87)International publication number:
WO 2013/165868 (07.11.2013 Gazette  2013/45)

(54)

ANNULAR GAS TURBINE ENGINE COMBUSTOR LINER AND METHOD OF CONTROLLING ITS MOVEMENT

GASTURBINENBRENNKAMMER MIT LINER UND VERFAHREN ZUR EINSCHRÄNKUNG SEINER BEWEGUNG

CHAMBRE DE COMBUSTION DE MOTEUR DE TURBINE A GAZ AVEC UNE CHEMISE ANNULAIRE ET PROCEDE DE COMMANDE DE SON MOUVEMENT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 01.05.2012 US 201213460998

(43)Date of publication of application:
11.03.2015 Bulletin 2015/11

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventors:
  • EASTWOOD, Jonathan Jeffery
    Newington, Connecticut 06111 (US)
  • LOW, Kevin Joseph
    Portland, Connecticut 06480 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
KR-U- 19980 020 073
US-A1- 2006 010 879
US-A1- 2011 120 133
US-B1- 6 397 603
US-A1- 2004 154 303
US-A1- 2007 107 439
US-B1- 6 347 508
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] This disclosure relates to a combustor and, more particularly, to controlling position of a combustor.

    [0002] Combustors, such as those used in gas turbine engines, typically include radially spaced inner and outer liners that define an annular combustion chamber in between. A bulkhead panel is provided at a forward end of the chamber to shield a forward section of the combustor from the relatively high temperatures in the chamber. A plurality of fuel nozzles extend into the combustor through the forward end and into the bulkhead panel to provide fuel to the combustor.

    [0003] US 2007/0107439 discloses a combustor assembly having the features of the preamble of claim 1.

    SUMMARY



    [0004] According to the present invention, there is provided a combustor assembly for a gas turbine engine as claimed in claim 1.

    [0005] In a non-limiting embodiment of the any of the foregoing embodiments, the stop member is axially-forwardly spaced apart by a distance D from the radially-outwardly extending flange such that movement of the annular combustor is limited to an amount equal to the distance D.

    [0006] In a further non-limiting embodiment of the any of the foregoing embodiments, the annular combustor includes a forward end and an aft end, and the radially-outwardly extending flange is located at the aft end.

    [0007] In a further non-limiting embodiment of the any of the foregoing embodiments, the annular combustor includes at least one opening at the forward end through
    which at least one corresponding fuel nozzle is received with a clearance gap distance G between the fuel nozzle and the opening, and D is less than G.

    [0008] In a further non-limiting embodiment of the any of the foregoing embodiments, the stop member is affixed to a vane support ring.

    [0009] In a further non-limiting embodiment of the any of the foregoing embodiments, the stop member is affixed with a fastener and the stop member includes an anti-rotation feature.

    [0010] In a further non-limiting embodiment of the any of the foregoing embodiments, the anti-rotation feature includes an aft-projecting rail.

    [0011] In a further non-limiting embodiment of the any of the foregoing embodiments, the aft-projecting rail includes a rounded end.

    [0012] In a further non-limiting embodiment of the any of the foregoing embodiments, the radially-outwardly extending flange includes a radial slot that is slidingly engaged with a bushing that has a stop member located at an axially forward end thereof.

    [0013] In a further non-limiting embodiment of the any of the foregoing embodiments, the bushing has a polygonal cross-section.

    [0014] In a further non-limiting embodiment of the any of the foregoing embodiments, the stop member is integral with the static structure.

    [0015] In a further non-limiting embodiment of the any of the foregoing embodiments, the stop member includes a circumferentially-extending arm that defines a circumferential slot in which the radially-outwardly extending flange is received.

    [0016] In a further non-limiting embodiment of the any of the foregoing embodiments, the stop member is affixed to a turbine vane platform.

    [0017] In a further non-limiting embodiment of the any of the foregoing embodiments, the stop member includes a ring structure, a tab extending radially inwardly from the ring structure and a circumferential flange extending opposite the tab, the circumferential flange being attached to the static structure.

    [0018] According to another aspect of the present invention, there is provided a gas turbine engine as claimed in claim 14.

    [0019] According to another aspect of of the present invention, there is provided a method for controlling movement of a combustor in a gas turbine engine as claimed in claim 15.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0020] The various features and advantages of the present disclosure will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.

    Figure 1 illustrates an example gas turbine engine.

    Figure 2A illustrates a perspective view of an annular combustor.

    Figure 2B illustrates an expanded view of the annular combustor of Figure 2A.

    Figure 3A illustrates a cross-section of an annular combustor.

    Figure 3B illustrates a perspective view of the annular combustor of Figure 3A.

    Figure 4 illustrates a cross-section of a stop member.

    Figure 5 illustrates an isolated view of a stop member.

    Figure 6 illustrates a perspective view of another example stop member.

    Figure 7A illustrates a cross-section of another example stop member.

    Figure 7B illustrates a perspective view of the stop member of Figure 7A.

    Figure 8A illustrates a cross-section of another example stop member.

    Figure 8B illustrates a perspective view of the stop member of Figure 8A.

    Figure 9A illustrates a perspective view of another example stop member.

    Figure 9B a cross-section of the stop member of Figure 9A.


    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT



    [0021] Figure 1 illustrates an example gas turbine engine 20. The gas turbine engine 20 is disclosed herein as a high bypass, two-spool turbofan that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engines might include an augmentor section (not shown) among other systems or features. The fan section 22 drives air along a bypass flowpath while the compressor section 24 receives air along a core flowpath for compression and presentation into the combustor section 26 then expansion through the turbine section 28. Although depicted as a turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with turbofans and the teachings may be applied to other types of turbine engines, including three-spool architectures and ground-based turbines that do not include the fan section 22.

    [0022] The gas turbine engine 20 generally includes a low spool 30 and a high spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided.

    [0023] The low spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor 44 and a low pressure turbine 46. The inner shaft 40 is connected to the fan 42 through a geared architecture 48 to drive the fan 42 at a lower speed than the low spool 30. The high spool 32 includes an outer shaft 50 that interconnects a high pressure compressor 52 and high pressure turbine 54. It is to be understood that "low pressure" and "high pressure" as used herein are relative terms indicating that the high pressure is greater than the low pressure. An annular combustor 56 is arranged between the high pressure compressor 52 and the high pressure turbine 54. The inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axes.

    [0024] The core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the annular combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46. The turbines 46 and 54 rotationally drive the respective low spool 30 and high spool 32 in response to the expansion.

    [0025] Figure 2A shows a perspective, isolated view of the annular combustor 56, and Figure 2B shows an exploded perspective view of the annular combustor 56. In this example, the annular combustor 56 is a 4-piece construction that includes an annular outer shell 60, an annular inner shell 62 that is radially inwardly spaced from the annular outer shell 60 to define an annular combustion chamber 64 there between, an annular hood 66 and a bulkhead 68 that is secured to the annular outer shell 60, annular inner shell 62 and annular hood 66. The annular outer shell 60, the annular inner shell 62, the annular hood 66 and the bulkhead 68 each extend circumferentially around the engine central longitudinal axis A.

    [0026] Figure 3A shows a cross-section of the annular combustor 56, and Figure 3B shows a sectioned, perspective view of the annular combustor 56. The annular inner shell 62 includes a plurality of radially-inwardly extending flanges 62a (one shown) that rigidly affix the annular combustor 56 within the gas turbine engine 20. A plurality of fuel nozzles 70 (one shown) extend from an outer static structure 72 through corresponding openings 74 in the annular hood 66 that is located at the forward end of the annular combustor 56. It is to be understood that relative positional terms, such as "forward," "aft," "upper," "lower," "above," "below," and the like are relative to the normal operational attitude of the gas turbine engine 20 and should not be considered otherwise limiting.

    [0027] The annular outer shell 60 is free of any rigid attachments directly between the static structure 72 and the annular outer shell 60. In this regard, the annular combustor 56 is "free floating" within the gas turbine engine 20 such that the flanges 62a provide the exclusive rigid support. The term "rigid" and variations thereof as used herein refer to a support that resists deformation under the weight of the annular combustor 56 and under the loads generated in operation of the gas turbine engine 20. Rigid supports, such as the flanges 62a, thus support the weight of the annular combustor 56 under the loads generated in operation, while a flexible or non-rigid support could not bear the weight of the annular combustor 56 under such loads.

    [0028] Certain events in the operation of the gas turbine engine 20 can cause the annular combustor 56 to move axially forward. As an example, a surge event in the gas turbine engine 20 can cause a back pressure that tends to urge the annular combustor 56 forward in a pivot motion about the flanges 62a. At least a component of the pivot motion is in an axially forward direction. If the axially-forward component of the motion is substantial, the fuel nozzle 70 can come into contact with the sides of the openings 74. A plurality of stop members 76 are therefore used in combination with a radially-outwardly extending flange 60a of the annular outer shell 60 to limit axial-forward motion of the annular combustor 56. Because the stop members 76 are used to limit movement, the annular combustor 56 does not need to be made more structurally robust, such as with thicker walls, to resist movement.

    [0029] Figure 4 shows an expanded cross-section of the stop member 76 and the radially-outwardly extending flange 60a. The radially-outwardly extending flange 60 extends completely around the annular outer shell 60. The stop member 76 is rigidly connected with the static structure 72 and is axially-forwardly spaced apart by a distance D, such as 0.010-0.050 inches (0.254 - 1.27 millimeters), from the radially-outwardly extending flange 60a. Thus, the stop member 76 limits the axial-forward movement of the annular combustor 56 by an amount that is equal to the distance D. The annular outer shell 60 of the annular combustor 56 is still free-floating in that it is not rigidly affixed to any other structure, but the stop member 76 limits movement in excess of the distance D to thereby ensure that the sides of the openings 74 do not contact the fuel nozzles 70.

    [0030] As an example, the distance D between the radially-outwardly extending flange 60a and the stop member 76 is selected such that the distance D is less than a gap distance, represented as distance G in Figure 3A, between the fuel nozzle 70 and corresponding sides of the opening 74. Thus, the annular combustor 56 is permitted to move, but only by an amount that avoids contact between the fuel nozzles 70 and the sides of the openings 74.

    [0031] Referring also to Figure 5, the stop member 76 in this example is a distinct piece that is secured onto a vane support ring 80 of the static structure 72 in the gas turbine engine 20. In one example, six stop members 76 are uniformly circumferentially secured around the vane support ring 80, although the number of stop members 76 will vary depending on the weight of the annular combustor 56 and loads generated during operation. Because the stop members 76 are distinct pieces that are secured onto the vane support ring 80, the annular combustor 56 can first be assembled to the vane support ring 80 prior to securing the stop members 76. Thus, the stop members 76 do not hinder assembly of the annular combustor 56 to the vane support ring 80.

    [0032] The stop member 76 includes an opening 76a through which a fastener 81 is received to secure the stop member 76 and the vane support ring 80 together. In a further example, the fastener 81 is a bolt that is received through the opening 76a and a corresponding opening 82a in a boss 82 of the vane support ring 80. The fastener 81 is secured using a nut 84 such that the stop member 76 is rigidly affixed.

    [0033] The stop member 76 includes a radially-extending flange 90 that extends from a boss 92, which includes the opening 76a for securing the stop member 76 as described above. The boss 92 extends between a radially outer side 94, a radially inner side 96, a forward side 98 and an aft side 100. Optionally, the aft side 100 of the stop member 76 includes anti-rotation features 102 that ensure proper orientation of the stop member 76 when it is secured to the boss 82 of the vane support ring 80.

    [0034] In this example, the anti-rotation features 102 include aft-projecting rails 102a and 102b that flank the opening 76a. The rails 102a and 102b extend from the radially inner side 96 of the boss 92 toward the radially outer side 94, but in this example do not extend all the way to the radially outer side 94. The rails 102a and 102b include respective rounded ends 102c that act as sliding surfaces when the stop member 76 is assembled onto the boss 82. That is, the rounded ends 102c receive and guide the boss 82 there between as the stop member 76 is slid onto the boss 82. The rails 102a and 102b thus flank the boss 82 and thereby limit rotation of the stop member 76 about the central axis of the opening 76a as the fastener 81 is tightened to secure the stop member 76.

    [0035] In a further example, the radially-outwardly extending flange 60a, the stop member 76, the fastener 81, the nut 84 and the boss 82 are designed such that, given the expected thermal expansions of each of these components, which are made of a metal alloy or alloys, during engine 20 operation, there is the distance D between the radially-outwardly extending flange 60a and the stop member 76. Further, the radially-outwardly extending flange 60a, the stop member 76, the fastener 81, the nut 84 and the boss 82 may be designed with expansion gaps, such as gap 83, to maintain clearance between moving parts and thus reduce wear.

    [0036] Figure 6 shows another embodiment of a stop member 176. In this disclosure, like reference numerals designate like elements where appropriate and reference numerals with the addition of one-hundred, or multiples thereof, designate modified elements that are understood to incorporate the same features and benefits of the corresponding elements. In this embodiment, the annular outer shell 60 includes a plurality radially-outwardly extending flanges 160a that are discreet tabs. The flanges 160a are uniformly circumferentially spaced about the annular outer shell 60, for example.

    [0037] The stop member 176 is axially-forwardly spaced apart from the radially-outwardly extending flange 160a and extends from a static structure 172, such as a case, that surrounds or partially surrounds the annular combustor 56. In one example, the static structure 172 is a diffuser case. The stop member 176 is integrally formed with the static structure 172. Alternatively, the stop member 176 is a separate and distinct piece that is affixed to the static structure 172.

    [0038] Figure 7A shows a cross-section of another example stop member 276, and Figure 7B shows a perspective view of the stop member 276. In this example, the annular outer shell 60 includes a plurality of radially-outwardly extending flanges 260a that have radial slots 260b. The radial slots 260b of the flanges 260a fit over corresponding bushings 210 that are rigidly affixed to a turbine vane platform 212. Each of the bushings 210 includes a forward end 210a, which includes a corresponding stop member 276. The bushings 210 are secured to the turbine vane platform 212 of static structure 272 using a fastener 282 to provide the axial distance D between the stop member 276 and the flange 260a. Optionally, a clamp member 214 and spring washer 216 (Figure 7A) are provided between the turbine vane platform 212 and the flange 260a.

    [0039] The bushing 210 has a polygonal cross-section 210b. In this example, the polygonal cross-section is rectangular or square such that the sides of the bushing 210 function as a bearing surface for sliding contact with the sides of the radial slots 260b of the flanges 260a. Thus, the sides of the bushing 210 guide axial movement of the annular combustor 56. The stop member 276 has an enlarged cross-section relative to the polygonal cross-section of the bushing 210. Thus, forward movement of the annular combustor causes the flange 260a to butt against the stop member 276 and prevent further axial-forward movement of the annular combustor 56.

    [0040] Figure 8A illustrates a cross-section of another stop member 376, and Figure 8B illustrates a perspective view of the stop member 376. In this example, the stop member 376 is a circumferential arm 376a of static structure 372 that defines a circumferential slot 376b. A radially-outwardly extending flange 360a of the annular outer shell 60 is received into the circumferential slot 376b. As an example, the radial size of the circumferential slot 376b is larger than the axial thickness of the flange 360a such that there is a distance D between the forward side defining the circumferential slot 376b and the flange 360a. Thus, the stop member 376 limits axial-forward movement of the annular combustor 56, as described above.

    [0041] Figure 9A illustrates a perspective, cutaway view of another stop member 476, and Figure 9B illustrates a cross-section of the stop member 476. In this example, the stop member 476 includes tabs 476a (one shown) that extends radially inwardly from the outer static structure 472 such that there is a distance D between the forward side of the flange 460a and the aft side of the tab 476a. Thus, the stop member 476 limits axial-forward movement of the annular combustor 56, as described above.

    [0042] The stop member 476 includes a ring structure 477 from which the tabs 476a extend. The ring structure 477 extends around the engine central axis A and includes a circumferential flange 479 that extends radially in a direction opposite of the tabs 476a. The circumferential flange 479 is secured between a first flange 472a and a second flange 472b of the outer static structure 472. The circumferential flange 479, first flange 472a and second flange 472b include openings 481 that align to receive a fastener 483 (Figure 9A), such as a bolt, there through to secure the circumferential flange 479 between the first flange 472a and the second flange 472b.

    [0043] Although a combination of features is shown in the illustrated examples, not all of them need to be combined to realize the benefits of various embodiments of this disclosure. In other words, a system designed according to an embodiment of this disclosure will not necessarily include all of the features shown in any one of the Figures or all of the portions schematically shown in the Figures. Moreover, selected features of one example embodiment may be combined with selected features of other example embodiments.

    [0044] The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this disclosure. The scope of legal protection given to this disclosure can only be determined by studying the following claims.


    Claims

    1. A combustor assembly for a gas turbine engine, comprising:

    a static structure (72);

    an annular combustor (56) extending around a central axis (A) and being located radially inwards of the static structure (72), the annular combustor (56) including an annular outer shell (60) and an annular inner shell (62) that define an annular combustion chamber (64) therebetween, the annular outer shell (60) including a radially-outwardly extending flange (60a), wherein the annular combustor (56) is free of any rigid attachments directly between the static structure (72) and the annular outer shell (60); and

    a stop member (76) rigidly connected with the static structure (72), characterised in that:
    the stop member (76) is adjacent the radially-outwardly extending flange (60a) such that axial-forward movement of the annular combustor (56) is limited.


     
    2. The combustor assembly as recited in claim 1, wherein the stop member (76) is axially-forwardly spaced apart by a distance D from the radially-outwardly extending flange (60a) such that movement of the annular combustor (56) is limited to an amount equal to the distance D.
     
    3. The combustor assembly as recited in claim 2, wherein the annular combustor (56) includes a forward end and an aft end, and the radially-outwardly extending flange (60a) is located at the aft end.
     
    4. The combustor assembly as recited in claim 3, wherein the annular combustor (56) includes at least one opening (74) at the forward end through which at least one corresponding fuel nozzle (70) is received with a clearance gap distance G between the fuel (70) nozzle and the opening (74), and D is less than G.
     
    5. The combustor assembly as recited in any preceding claim, wherein the radially-outwardly extending flange (260a) includes a radial slot (260b) that is slidingly engaged with a bushing (210) that has a stop member (276) located at an axially forward end thereof, wherein optionally the bushing (210) has a polygonal cross-section.
     
    6. The combustor assembly as recited in any of claims 1-4, wherein the stop member (376) includes a circumferentially-extending arm (376a) that defines a circumferential slot (376b) in which the radially outwardly extending flange (360a) is received.
     
    7. The combustor assembly as recited in any preceding claim, wherein the stop member (76) is affixed to a vane support ring (80).
     
    8. The combustor assembly as recited in claim 7, wherein the stop member (76) is affixed with a fastener (81) and the stop member (76) includes an anti rotation feature (102).
     
    9. The combustor assembly as recited in claim 8, wherein the anti rotation feature includes an aft-projecting rail (102a, 102b).
     
    10. The combustor assembly as recited in claim 9, wherein the aft-projecting rail (102a,102b) includes a rounded end (102c).
     
    11. The combustor assembly as recited in any of claims 1 to 4 and 6 wherein the stop member (76) is integral with the static structure (72).
     
    12. The combustor assembly as recited in any of claims 1 to 6, wherein the stop member (76) is affixed to a turbine vane platform (212).
     
    13. The combustor assembly as recited in any of claims 1 to 4 and 6, wherein the stop member (476) includes a ring structure, a tab (476a) extending radially inwardly from the ring structure and a circumferential flange (460a) extending opposite the tab, the circumferential flange (460a) being attached to the static structure (472).
     
    14. A gas turbine engine (20) comprising:

    a compressor section (24);

    the combustor assembly of any preceding claim wherein the annular combustor (56) is in fluid communication with the compressor section (24); and

    a turbine section (28) in fluid communication with the annular combustor (56).


     
    15. A method for controlling movement of a combustor (56) in a gas turbine engine (20), the method comprising providing the assembly of claim 1 and limiting axial-forward movement of the annular combustor (56) in a gas turbine engine (20) using the stop member (76) that is axially-forwardly spaced apart by a distance D from the radially-outwardly extending flange (60a) on the annular outer shell of the annular combustor (56) such that axial-forward movement of the annular combustor (56) is limited to an amount equal to the distance D.
     


    Ansprüche

    1. Brennkammeranordnung für ein Gasturbinentriebwerk, umfassend:

    eine statische Struktur (72);

    eine ringförmige Brennkammer (56), die um eine Mittelachse (A) verläuft und radial einwärts der statischen Struktur (72) angeordnet ist, wobei die ringförmige Brennkammer (56) einen ringförmigen Außenmantel (60) und einen ringförmigen Innenmantel (62) beinhaltet, die einen ringförmigen Brennraum (64) dazwischen definieren, wobei der ringförmige Außenmantel (60) einen radial nach außen verlaufenden Flansch (60a) beinhaltet, wobei die ringförmige Brennkammer (56) frei von starren Befestigungen direkt zwischen der statischen Struktur (72) und dem ringförmigen Außenmantel (60) ist; und

    ein Anschlagelement (76), das starr mit der statischen Struktur (72) verbunden ist,

    dadurch gekennzeichnet, dass:
    das Anschlagelement (76) an den radial nach außen verlaufenden Flansch (60a) so angrenzt, dass eine Bewegung der ringförmigen Brennkammer (56) axial nach vorne eingeschränkt ist.


     
    2. Brennkammeranordnung nach Anspruch 1, wobei das Anschlagelement (76) axial nach vorne um einen Abstand D von dem radial nach außen verlaufenden Flansch (60a) beabstandet ist, so dass die Bewegung der ringförmigen Brennkammer (56) auf eine Größe, die dem Abstand D entspricht, beschränkt ist.
     
    3. Brennkammeranordnung nach Anspruch 2, wobei die ringförmige Brennkammer (56) ein vorderes Ende und ein hinteres Ende beinhaltet und der radial nach außen verlaufende Flansch (60a) am hinteren Ende angeordnet ist.
     
    4. Brennkammeranordnung nach Anspruch 3, wobei die ringförmige Brennkammer (56) mindestens eine Öffnung (74) am vorderen Ende beinhaltet, durch die mindestens eine entsprechende Kraftstoffdüse (70) mit einem Spaltbreitenabstand G zwischen der Kraftstoffdüse (70) und der Öffnung (74) aufgenommen ist, und wobei D kleiner als G ist.
     
    5. Brennkammeranordnung nach einem der vorstehenden Ansprüche, wobei der radial auswärts verlaufenden Flansch (260a) einen radialen Schlitz (260b) beinhaltet, der verschieblich mit einer Buchse (210) in Eingriff steht, die ein Anschlagelement (276) aufweist, das an einem axial vorderen Ende davon angeordnet ist, wobei die Buchse (210) optional einen polygonalen Querschnitt aufweist.
     
    6. Brennkammeranordnung nach einem der Ansprüche 1-4, wobei das Anschlagelement (376) einen in Umfangsrichtung verlaufenden Arm (376a) beinhaltet, der einen Umfangsschlitz (376b) definiert, in dem der radial nach außen verlaufende Flansch (360a) aufgenommen ist.
     
    7. Brennkammeranordnung nach einem der vorstehenden Ansprüche, wobei das Anschlagelement (76) an einem Leitschaufelträgerring (80) befestigt ist.
     
    8. Brennkammeranordnung nach Anspruch 7, wobei das Anschlagelement (76) mit einer Halterung (81) befestigt ist und das Anschlagelement (76) ein Drehsicherungselement (102) beinhaltet.
     
    9. Brennkammeranordnung nach Anspruch 8, wobei das Drehsicherungselement eine nach hinten vorstehende Schiene (102a, 102b) beinhaltet.
     
    10. Brennkammeranordnung nach Anspruch 9, wobei die nach hinten vorstehende Schiene (102a, 102b) ein gerundetes Ende (102c) beinhaltet.
     
    11. Brennkammeranordnung nach einem der Ansprüche 1 bis 4 und 6, wobei das Anschlagelement (76) in die statische Struktur (72) integriert ist.
     
    12. Brennkammeranordnung nach einem der Ansprüche 1 bis 6, wobei das Anschlagelement (76) an einer Turbinenleitschaufelplattform (212) befestigt ist.
     
    13. Brennkammeranordnung nach einem der vorstehenden Ansprüche 1 bis 4 und 6, wobei das Anschlagelement (476) eine Ringstruktur, eine Lasche (476a), die von der Ringstruktur radial einwärts verläuft, und einen Umfangsflansch (460a), der gegenüber der Lasche verläuft, beinhaltet, wobei der Umfangsflansch (460a) an der statischen Struktur (472) befestigt ist.
     
    14. Gasturbinentriebwerk (20), umfassend:

    einen Verdichterabschnitt (24);

    die Brennkammeranordnung nach einem der vorstehenden Ansprüche, wobei die ringförmige Brennkammer (56) in Fluidverbindung mit dem Verdichterabschnitt (24) steht; und

    einen Turbinenabschnitt (28) in Fluidverbindung mit der ringförmigen Brennkammer (56).


     
    15. Verfahren zum Steuern der Bewegung einer Brennkammer (56) in einem Gasturbinentriebwerk (20), wobei das Verfahren das Bereitstellen der Anordnung nach Anspruch 1 und das Beschränken der Bewegung der ringförmigen Brennkammer (56) axial nach vorne in einem Gasturbinentriebwerk (20) unter Verwendung des Anschlagelements (76) umfasst, das axial nach vorne um einen Abstand D von dem radial nach außen verlaufenden Flansch (60a) an dem ringförmigen Außenmantel der ringförmigen Brennkammer (56) so beabstandet ist, dass die Bewegung der ringförmigen Brennkammer (56) axial nach vorne auf eine Größe beschränkt ist, die dem Abstand D entspricht.
     


    Revendications

    1. Ensemble de chambre de combustion pour un moteur de turbine à gaz, comprenant :

    une structure statique (72) ;

    une chambre de combustion annulaire (56) s'étendant autour d'un axe central (A) et étant située radialement vers l'intérieur de la structure statique (72), la chambre de combustion annulaire (56) comprenant une enveloppe annulaire extérieure (60) et une enveloppe annulaire intérieure (62) qui définissent une chambre de combustion annulaire (64) entre elles, l'enveloppe annulaire extérieure (60) comprenant une bride s'étendant radialement vers l'extérieur (60a), dans lequel la chambre de combustion annulaire (56) est dépourvue de toute fixation rigide directement entre la structure statique (72) et l'enveloppe annulaire extérieure (60) ; et

    un élément de butée (76) relié rigidement à la structure statique (72),

    caractérisé en ce que :
    l'élément de butée (76) est adjacent à la bride s'étendant radialement vers l'extérieur (60a) de sorte que le mouvement axial vers l'avant de la chambre de combustion annulaire (56) est limité.


     
    2. Ensemble de chambre de combustion selon la revendication 1, dans lequel l'élément de butée (76) est espacé axialement vers l'avant d'une distance D par rapport à la bride s'étendant radialement vers l'extérieur (60a), de sorte que le mouvement de la chambre de combustion annulaire (56) est limité à une quantité égale à la distance D.
     
    3. Ensemble de chambre de combustion selon la revendication 2, dans lequel la chambre de combustion annulaire (56) comprend une extrémité avant et une extrémité arrière, et la bride s'étendant radialement vers l'extérieur (60a) est située au niveau de l'extrémité arrière.
     
    4. Ensemble de chambre de combustion selon la revendication 3, dans lequel la chambre de combustion annulaire (56) comprend au moins une ouverture (74) au niveau de l'extrémité avant à travers laquelle au moins une buse de carburant correspondante (70) est reçue avec une distance de jeu G entre la buse de carburant (70) et l'ouverture (74), et D est inférieure à G.
     
    5. Ensemble de chambre de combustion selon une quelconque revendication précédente, dans lequel la bride s'étendant radialement vers l'extérieur (260a) comprend une fente radiale (260b) qui est engagée de manière coulissante dans une bague (210) qui comporte un élément de butée (276) situé au niveau d'une extrémité radialement vers l'avant de celui-ci, dans lequel la bague (210) comporte éventuellement une section transversale polygonale.
     
    6. Ensemble de chambre de combustion selon l'une quelconque des revendications 1 à 4, dans lequel l'élément de butée (376) comprend un bras s'étendant de manière circonférentielle (376a) qui définit une fente circonférentielle (376b) dans laquelle la bride s'étendant radialement vers l'extérieur (360a) est reçue.
     
    7. Ensemble de chambre de combustion selon une quelconque revendication précédente, dans lequel l'élément de butée (76) est fixé à un anneau de support d'aube (80).
     
    8. Ensemble de chambre de combustion selon la revendication 7, dans lequel l'élément de butée (76) est fixé avec un élément de fixation (81) et l'élément de butée (76) comprend un élément anti-rotation (102).
     
    9. Ensemble de chambre de combustion selon la revendication 8, dans lequel l'élément anti-rotation comprend un rail faisant saillie vers l'arrière (102a, 102b).
     
    10. Ensemble de chambre de combustion selon la revendication 9, dans lequel le rail faisant saillie vers l'arrière (102a, 102b) comprend une extrémité arrondie (102c).
     
    11. Ensemble de chambre de combustion selon l'une quelconque des revendications 1 à 4 et 6, dans lequel l'élément de butée (76) fait partie intégrante de la structure statique (72).
     
    12. Ensemble de chambre de combustion selon l'une quelconque des revendications 1 à 6, dans lequel l'élément de butée (76) est fixé à une plateforme d'aube de turbine (212).
     
    13. Ensemble de chambre de combustion selon l'une quelconque des revendications 1 à 4 et 6, dans lequel l'élément de butée (476) comprend une structure en anneau, une patte (476a) s'étendant radialement vers l'intérieur de la structure en anneau et une bride circonférentielle (460a) s'étendant en face de la patte, la bride circonférentielle (460a) étant fixée à la structure statique (472).
     
    14. Moteur de turbine à gaz (20), comprenant :

    une section de compresseur (24) ;

    un ensemble de chambre de combustion selon une quelconque revendication précédente, dans lequel la chambre de combustion annulaire (56) est en communication fluidique avec la section de compresseur (24) ; et

    une section de turbine (28) en communication fluidique avec la chambre de combustion annulaire (56).


     
    15. Procédé pour commander le mouvement d'une chambre de combustion (56) dans un moteur de turbine à gaz (20), le procédé comprenant la fourniture de l'ensemble selon la revendication 1 et la limitation d'un mouvement axial vers l'avant de la chambre de combustion annulaire (56) dans un moteur de turbine à gaz (20) en utilisant l'élément de butée (76) qui est espacé axialement vers l'avant d'une distance D de la bride s'étendant radialement vers l'extérieur (60a) sur l'enveloppe annulaire extérieure de la chambre de combustion annulaire (56) de sorte qu'un mouvement axial vers l'avant de la chambre de combustion annulaire (56) est limité à une quantité égale à la distance D.
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description