(19)
(11)EP 2 847 111 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
14.08.2019 Bulletin 2019/33

(21)Application number: 13787459.0

(22)Date of filing:  12.03.2013
(51)Int. Cl.: 
B65G 39/20  (2006.01)
B65G 17/24  (2006.01)
B65G 47/53  (2006.01)
B65G 47/34  (2006.01)
H02K 17/16  (2006.01)
B65G 54/02  (2006.01)
H02K 49/00  (2006.01)
B65G 13/06  (2006.01)
H02K 16/02  (2006.01)
H02K 49/04  (2006.01)
(86)International application number:
PCT/US2013/030364
(87)International publication number:
WO 2013/169343 (14.11.2013 Gazette  2013/46)

(54)

CONVEYOR HAVING ROLLERS ACTUATED BY ELECTROMAGNETIC INDUCTION

FÖRDERER MIT DURCH ELEKTROMAGNETISCHE INDUKTION BETÄTIGTEN ROLLEN

TRANSPORTEUR COMPRENANT DES ROULEAUX ACTIONNÉS PAR INDUCTION ÉLECTROMAGNÉTIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 07.05.2012 US 201261643730 P

(43)Date of publication of application:
18.03.2015 Bulletin 2015/12

(73)Proprietor: Laitram, L.L.C.
Harahan, LA 70123 (US)

(72)Inventor:
  • RAGAN, Bryant G.
    Metairie, Louisiana 70001 (US)

(74)Representative: Walker, Ross Thomson 
Forresters IP LLP Skygarden Erika-Mann-Strasse 11
80636 München
80636 München (DE)


(56)References cited: : 
EP-A1- 0 480 549
JP-A- H1 113 855
JP-A- 2012 012 125
US-A- 4 686 895
US-A- 4 781 286
US-A1- 2007 089 970
US-A1- 2010 230 245
WO-A1-2010/085670
JP-A- H03 155 408
KR-A- 20070 115 188
US-A- 4 781 286
US-A- 5 918 728
US-A1- 2010 230 245
  
  • Anonymous: "Diamagnetism - Wikipedia", , 30 April 2012 (2012-04-30), XP055328985, Retrieved from the Internet: URL:https://en.wikipedia.org/w/index.php?t itle=Diamagnetism&oldid=489936344 [retrieved on 2016-12-14]
  • Anonymous: "Paramagnetism - Wikipedia", , 19 March 2012 (2012-03-19), XP055328986, Retrieved from the Internet: URL:https://en.wikipedia.org/w/index.php?t itle=Paramagnetism&oldid=482806554 [retrieved on 2016-12-14]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

BACKGROUND



[0001] The invention relates generally to power-driven conveyors and more particularly to belt conveyors having electrically conductive rollers inductively actuated by interaction with a magnetic field.

[0002] Conveyor belts with article-supporting rollers are used to divert or orient articles as they are being conveyed. The belt rollers are rotated by contact with bearing surfaces or actuating rollers underlying the conveyor belt. As the belt advances, the belt rollers ride on the bearing surfaces or actuating rollers and are caused to rotate. The rotating belt rollers propel conveyed articles across or along the belt in the direction of the rollers' rotation. These belts are effective in sorting, orienting, registering, singulating, and otherwise diverting conveyed articles. But they do have some shortcomings. One shortcoming is noise. Contact between the belt rollers and the actuating rollers is noisy, especially at high belt speeds. Another shortcoming is roller wear. The frictional contact between the belt rollers and the bearing surfaces or actuating rollers wears away the belt rollers. And the need for frictional contact to rotate the belt rollers means that oil or other lubricants contaminating the conveyor cause the belt rollers to slip and alter the intended article trajectories.
Furthermore, the rotational speed of the belt rollers and, consequently, the speeds of the articles depend on belt speed.

[0003] US2010/230245 A1 discloses a conveyor comprising a conveyor belt having a plurality of permanently magnetic rollers having axes of rotation, wherein the conveyor belt advances in a direction of belt travel; a magnetic-field source generating a primary magnetic field passing through the conveyor belt and a method for conveying articles comprising supporting articles atop permanently magnetic rollers in a conveyor belt which advances in a direction of belt travel; and subjecting the permanently magnetic rollers to a primary magnetic field.

[0004] US 4,781,286 discloses a power and free roller conveyor which has a plurality of spaced rollers defining a conveyor path and to each of which is fixed a drive that comprises the secondary of a linear induction motor. The primary of the linear induction motor is positioned adjacent the drivers to enable an interaction of magnetic flux and current resulting from the propagation of a magnetic wave along the primary to cause the drivers and the rollers to rotate. The drivers are optional and the primary can be located near the rollers to act directly on the rollers. The rollers or drivers can be made of copper or aluminium.

SUMMARY



[0005] The present invention provides a conveyor belt in accordance with claim 1, the use according to claim 8 and a method according to claim 13. These shortcomings are addressed by a conveyor comprising a conveyor belt advancing in a direction of belt travel, having a plurality of electrically conductive rollers having axes of rotation and a magnetic-field source generating a primary magnetic field passing through the conveyor belt. The rollers are made of aluminum or copper so that the primary magnetic field is inducing a current in the electrically conductive rollers that produces a secondary magnetic field that interacts with the primary magnetic field to produce a force that rotates the electrically conductive rollers.

[0006] In another aspect of the invention, a method for conveying articles comprising: supporting articles atop electrically conductive rollers in a conveyor belt; subjecting the electrically conductive rollers to a primary magnetic field; wherein the rollers are made of aluminum or copper. The method is further comprising inducing a current in the electrically conductive rollers with the primary magnetic field to produce a secondary magnetic field that interacts with the primary magnetic field to produce a force that rotates the electrically conductive rollers; and propelling articles along the conveyor belt with the rotating electrically conductive rollers.

BRIEF DESCRIPTION OF THE DRAWINGS



[0007] These aspects and features of the invention, as well as its advantages, are described in more detail in the following description, appended claims, and accompanying drawings, in which:

FIG. 1 is an isometric view of a portion of a conveyor embodying features of the invention, including conductive belt rollers rotated by electromagnetic induction;

FIG. 2 is an enlarged isometric view showing a magnetic-field-generating stator and one of the belt rollers of FIG. 1;

FIG. 3 is an enlarged view of the belt roller of FIG. 2 showing circulating currents induced in the belt roller;

FIGS. 4A-4C are side views of the stator of FIG. 2 showing the magnetic flux pattern as the field moves from left to right in the figure;

FIG. 5 is an isometric view of a portion of a conveyor as in FIG. 1, except with in-line, rather than transverse, belt rollers;

FIG. 6 is an isometric view of a portion of a conveyor as in FIG. 1, except with oblique belt rollers;

FIGS. 7A-7D are isometric views of a conveyor using fixed conductive rollers as in FIG. 1 atop a turntable to act as a conveyor sorter, which is not part of the present invention;

FIG. 8 is an isometric view of a conveyor having a series of fixed conductive rollers as in FIG. 1 configured as a sorter, which is not part of the present invention;

FIG. 9 is an isometric view as in FIG. 2 of an electrically conductive roller with helical grooves and actuated by a Halbach array;

FIG. 10 is an isometric view of a magnetic roller coacting with a conductive plate, which is not part of the invention; and

FIG. 11 is a block diagram of a stator drive usable with the stators of FIGS. 1, 2, and 4-8.


DETAILED DESCRIPTION



[0008] A portion of a conveyor embodying features of the invention is shown in FIG. 1. The conveyor 20 comprises a conveyor belt 22 conventionally driven in a direction of belt travel 24. The belt includes a plurality of rollers 26 arranged to rotate freely on axes 28 in the direction of belt travel 24. The axes are defined by axles retained in the belt. In the example shown, the conveyor belt is a modular plastic conveyor belt constructed of a series of hingedly linked rows 30 of one or more belt modules having body sections extending from a first end to an opposite second in the direction of belt travel. The rollers 26 are mounted in cavities 32 in the belt with salient portions of the rollers protruding above an outer conveying surface 34 of the belt. Articles 36 are conveyed atop the belt rollers 26. Although the rollers are shown residing in cavities in the module bodies of a modular plastic belt, they could be mounted atop the belt or extend through a bottom surface of the belt or be carried in a flat belt or a ceramic belt.

[0009] The rollers 26, as also shown in FIG. 2, are cylindrical and made of an electrically conductive material, such as aluminum or copper. The aluminum or copper could form the outer surface of the rollers, or the aluminum or copper could be covered by another material, such as a plastic or elastomeric material that would exhibit desirable properties for contact with conveyed articles. The roller 26 is depicted in FIG. 2 as a hollow conductive tube. Underlying the conveyor belt along a portion of the carryway is a magnetic-field source, such as the stator 136 of a linear induction motor. The stator has a series of poles 38 that are energized to produce a magnetic flux wave that travels along the length of the stator in a propagation direction 40 transverse to the direction of belt travel 24 in this example. As shown in FIGS. 3 and 4A-4C, the magnetic flux wave 42 traveling along the stator 136 induces a circulating current I in the electrically conductive roller 26 passing through the field. The current I produces a magnetic field that opposes the change in the flux of the
magnetic field produced by the stator 136. The interaction of the stator field (the primary field) with the induced field (the secondary field) produces a force that rotates the roller at a rotational speed ω and a tangential velocity v at the top of the roller opposite to the propagation direction 40. In this way, the article 36 conveyed atop the rollers in FIG. 1 will be pushed off the side of the belt 22 in the transverse direction 44 when it reaches the magnetic-field-producing stators 136. If the propagation direction of the magnetic wave is reversed in the stator, the rollers 26 will rotate in the opposite direction and push the article 36 off the other side of the conveyor belt 22. The axes of rotation 28 of the belt rollers are perpendicular to the stator-wave propagation direction 40 and parallel to the direction of belt travel 24, which causes the rollers to push conveyed articles across the conveying surface 34 in the direction 44 perpendicular, or transverse, to the direction of belt travel. For this reason, the rollers 26 in the conveyor belt 22 of FIG. 1 are referred to as transverse rollers.

[0010] In the conveyor 46 shown in FIG. 5, a conveyor belt 48 has electrically conductive belt rollers 50 whose axes of rotation 52 are perpendicular to the direction of belt travel 24. These rollers are referred to as in-line rollers because they propel conveyed articles 36 in or opposite to the direction of belt travel 24. The stator 52 underlying the belt 48 on the carryway is rotated 90° from the stator 136 of FIG. 1 to produce a magnetic flux wave that has a propagation direction 54 in the direction of belt travel 24 to propel articles rearward on the conveying surface 34 of the belt. If the rearward tangential velocity of the rollers is equal to the forward speed of the belt, the conveyed article will remain stationary in space, which is useful in zero-back-pressure accumulation of backed-up articles. The belt speed and the propagation speed of the stator wave can be changed relative to each other to propel the articles rearward or forward. If the stator field is reversed, the belt rollers 50 rotate forward and accelerate articles at a speed faster than the belt speed to achieve article separation.

[0011] The conveyor 56 in FIG. 6 uses a conveyor belt 58 that has obliquely arranged conductive belt rollers 60 to divert conveyed articles 36 across the conveying surface of the belt along trajectories oblique to the direction of belt travel 24. The rollers 60 are freely rotatable on oblique axes 62. A magnetic-field-producing stator 64 creates a magnetic wave that travels along the linear stator in a stator-wave propagation direction 66 perpendicular to the axes of the oblique rollers 60. The forward-traveling stator wave causes the electrically conductive rollers to rotate opposite to the wave and push the articles obliquely rearward. If
the stator field is reversed, the rollers reverse their rotation and push the articles 36 obliquely forward.

[0012] Although the conductive rollers in the conveyors of FIGS. 1, 5, and 6 are shown in endless conveyor belts, or mats, capable of advancing in a direction of belt travel, the rollers could also be embedded in or mounted on fixed, immobile mats, which are embodiments which are not within the scope of protection of the claims and thus do not form part of the present invention. The mats could even be formed by a plurality of rollers or conveyor-belt sections long enough to extend over the stator. As another example, which is not within the scope of protection of the claims and thus do not form part of the present invention,

[0013] FIGS. 7A-7B show a turntable 70 topped with a stator 72 and a roller mat 74 having a plurality of freely-rotatable electrically conductive rollers 76. The roller mat 74 could be realized, for example, as a few rows of the in-line-roller conveyor belt 48 of FIG. 5. In FIG. 7A, the article 36 is fed or drawn onto the roller mat 74 in a first infeed direction 78. The in-line rollers 76 are inductively actuated by the stator 72 with a magnetic stator wave traveling opposite to the first direction 78. When the article 36 is centered on the turntable 70, the stator is de-energized. The turntable is then rotated 90° counterclockwise as shown in FIG. 7B until the article is positioned as in FIG. 7C. The stator 72 is then reenergized to produce a magnetic wave that travels in a propagation direction 80 to rotate the rollers in the opposite direction and push the article 36 off the turntable in an outfeed direction perpendicular to its infeed direction 78 as shown in FIG. 7D. Of course, the turntable can be rotated to any outfeed angle.

[0014] Another arrangement of a fixed mat of rollers is shown in a conveyor section 83 configured as a sorter in FIG. 8. which is an embodiment which is not within the scope of protection of the claims and thus do not form part of the present invention. Three roller mats 84, 85, 86 are arranged in series, linked together, and supported in a frame 88. Stators 90, 91, 92 underlie the mats. The first roller mat 84 has in-line rollers 50 used to draw an article 36 onto the conveyor. The first stator 90 propagates a magnetic wave in the first propagation direction 94 to rotate the rollers toward the second roller mat 85. The speed of the propagating wave determines the rotational speed of the electrically conductive in-line rollers 50. The roller speed can be set high enough to propel the article 36 all the way across the second roller mat 85. Or it can be set low enough so that the article stops on the second roller mat 85. If the article is not propelled past the second mat, the second stator 91 can be energized to produce a magnetic wave that travels in either transverse direction 96 to rotate the transverse electrically conductive rollers 26 in the opposite direction and direct the article 36 off a selected side of the conveyor. Articles 36 that are propelled past the second roller mat 85 onto the third roller mat 86 are directed off the end of the conveyor section 83. The third stator 92 generates a magnetic flux wave that travels in the same propagation direction 94 as the first stator 90 to propel the article 36 off the end. The fields produced by the first and third stators 90, 92 can be reversed, and articles can be fed onto the sorter and off its end in the opposite direction.

[0015] The stators shown underlying moving conveyor belts in FIGS. 1, 5, and 6 can be replaced by magnets, such as permanent magnets or electromagnets arranged with alternating polarities along the direction of belt travel. The static, but spatially varying, magnetic field produced by these time-invariant magnetic-field sources can rotate the rollers as long as the roller belt is advancing in the direction of belt travel. In that way, the rollers "see" a magnetic field that is changing as the belt advances in the direction of belt travel through the magnetic field. The spatial variation in the magnetic field encountered by the rollers as they advance with the belt induces a current in the electrically conductive rollers that causes them to rotate. Once the belt stops, however, no current is induced in the rollers, which will then coast to a stop. As shown in FIG. 9, the permanent magnets underlying the rollers 100 can be arranged in a Halbach array 102, which increases the magnitude of the magnetic field above the array and decreases it below the array. The arrows on each magnet in the Halbach array indicate the direction of the magnetic field along that face of the magnet. Because the rollers are advanced by the belt through a stronger magnetic field, the magnetic coupling and the roller torque are increased. Helical slots 104 in the periphery of the electrically conducted rollers 100 of FIG. 9 bias the rotation direction.

[0016] In the examples described thus far, stators and magnets served as sources, or primaries, of a magnetic circuit and electrically conductive rollers served as secondaries of the magnetic circuit. But the principle of operation could be reversed by making the roller a magnet (the primary) and underlying the conveyor belt with a conductive strip (the secondary) as shown in FIG. 10. which is not part of the invention. The magnetic roller 106 acts as a source producing a magnetic field. Magnetic poles 108 are separated by helical slots 110 in the periphery of the roller. As the roller advances in the direction of belt travel 24, the twisted poles induce a current in an underlying electrically conductive element, such as a metallic strip or plate 112, that creates an induced magnetic field. The interaction of the primary magnetic field produced by the magnetic roller with the induced magnetic field in the electrically conductive element produces a force that causes the freely rotatable magnetic roller 106 to rotate.

[0017] As shown in FIG. 11, the stators 114 are controlled by a motor drive system 116, such as a variable-frequency drive, that is coupled to a system controller 118 that can be used to coordinate stator frequency with belt speed and belt stopping and starting.

[0018] Although the invention has been described with the electrically conductive and magnetic belt rollers as article-supporting rollers, the rollers are not limited to use as rollers that contact articles directly. For example, the electrically conductive or magnetic belt rollers could be used to contact the carryway to help propel the conveyor belt, itself, along its path. Or the electrically conductive or magnetic belt rollers could be used to drive other rollers or non-roller components in the belt.


Claims

1. A conveyor (20, 46, 56) comprising:

a conveyor belt (22, 48, 58) having a plurality of electrically conductive rollers (26, 50, 60) having axes of rotation, wherein the conveyor belt advances in a direction of belt travel;

a magnetic-field source (136, 52, 64, 90, 91, 92) generating a primary magnetic field passing through the conveyor belt wherein the rollers are made of aluminum or copper so that the primary magnetic field is inducing a current in the electrically conductive rollers that produces a secondary magnetic field that interacts with the primary magnetic field to produce a force that rotates the electrically conductive rollers.


 
2. A conveyor as in claim 1 wherein the magnetic-field source comprises a series of magnets of alternating polarity arranged along the direction of belt travel.
 
3. A conveyor as in claim 2 wherein the series of magnets forms a Halbach array.
 
4. A conveyor as in claim 1 wherein the magnetic-field source comprises a stator underlying the conveyor belt producing the magnetic field and forming a linear-induction machine with the electrically conductive rollers.
 
5. A conveyor as in claim 2 wherein the magnets are electromagnets.
 
6. A conveyor as in claim 2 wherein the magnets are permanent magnets.
 
7. A conveyor as in claim 1 wherein the electrically conductive rollers comprise electrically conductive cylindrical tubes.
 
8. The use of a conveyor belt (22, 48, 58) having a plurality of electrically conductive rollers (26,50,60) having axes of rotation, wherein the conductive rollers (26, 50, 60) are made of aluminum or copper in a conveyor comprising a magnetic-field source (136,52,64,90,91,92) generating a primary magnetic field passing through the conveyor belt and inducing a current in the electrically conductive rollers that produces a secondary magnetic field that interacts with the primary magnetic field to produce a force that rotates the electrically conductive rollers and wherein the conveyor belt advances in a direction of belt travel.
 
9. The use of claim 8 wherein the electrically conductive rollers are article-supporting rollers.
 
10. The use of claim 8 wherein the electrically conductive rollers are in-line rollers.
 
11. The use of claim 8 wherein the electrically conductive rollers are transverse rollers or wherein the electrically conductive rollers are oblique rollers.
 
12. The use of claim 8 wherein the conveyor belt further comprises:

a series of belt modules (30) hingedly interlinked end to end to form a conveyor belt, each module comprising a body section extending from a first end to a second end in the direction of belt travel;

wherein the body section of at least some of the modules includes a conveying surface, at least one cavity formed in the body section and opening onto the conveying surface, and an electrically conductive roller rotatably disposed in the cavity to rotate.


 
13. A method for conveying articles (36), the method comprising:

supporting articles atop electrically conductive rollers (26, 50, 60) made of aluminum or copper in a conveyor belt (22, 48, 58) which advances in a direction of belt travel;

subjecting the electrically conductive rollers to a primary magnetic field;

inducing a current in the electrically conductive rollers with the primary magnetic field to produce a secondary magnetic field that interacts with the primary magnetic field to produce a force that rotates the electrically conductive rollers; and

propelling articles along the conveyor belt with the rotating electrically conductive rollers.


 
14. The method of claim 13 further comprising advancing the conveyor belt through the magnetic field to rotate the electrically conductive rollers.
 
15. The method of claim 13 further comprising changing the magnetic field to induce the current in the electrically conductive rollers.
 


Ansprüche

1. Förderer (20, 46, 56), umfassend:

ein Förderband (22, 48, 58) mit einer Mehrzahl von elektrisch leitenden Rollen (26, 50, 60) mit Drehachsen, wobei sich das Förderband in einer Bandlaufrichtung vorwärtsbewegt;

eine Magnetfeldquelle (136, 52, 64, 90, 91, 92), die ein das Förderband durchlaufendes primäres Magnetfeld erzeugt, wobei die Rollen aus Aluminium oder Kupfer bestehen, sodass das primäre Magnetfeld einen Strom in den elektrisch leitenden Rollen induziert, der ein sekundäres Magnetfeld erzeugt, das mit dem primären Magnetfeld interagiert, um eine Kraft zu erzeugen, die die elektrisch leitenden Rollen dreht.


 
2. Förderer nach Anspruch 1, wobei die Magnetfeldquelle eine Reihe von Magneten wechselnder Polarität umfasst, die entlang der Bandlaufrichtung angeordnet sind.
 
3. Förderer nach Anspruch 2, wobei die Reihe von Magneten ein Halbach-Array bildet.
 
4. Förderer nach Anspruch 1, wobei die Magnetfeldquelle einen unter dem Förderband liegenden Stator umfasst, der das Magnetfeld erzeugt und eine Linearinduktionsmaschine mit den elektrisch leitenden Rollen bildet.
 
5. Förderer nach Anspruch 2, wobei die Magnete Elektromagnete sind.
 
6. Förderer nach Anspruch 2, wobei die Magnete Permanentmagnete sind.
 
7. Förderer nach Anspruch 1, wobei die elektrisch leitenden Rollen elektrisch leitende zylindrische Röhren umfassen.
 
8. Verwendung eines Förderbands (22, 48, 58) mit einer Mehrzahl von elektrisch leitenden Rollen (26, 50, 60) mit Drehachsen, wobei die leitenden Rollen (26, 50, 60) aus Aluminium oder Kupfer bestehen, in einem Förderer, der eine Magnetfeldquelle (136, 52, 64, 90, 91, 92) umfasst, die ein primäres Magnetfeld erzeugt, das das Förderband durchläuft und einen Strom in den elektrisch leitenden Rollen induziert, der ein sekundäres Magnetfeld erzeugt, das mit dem primären Magnetfeld interagiert, um eine Kraft zu erzeugen, die die elektrisch leitenden Rollen dreht, und wobei sich das Förderband in einer Bandlaufrichtung vorwärtsbewegt.
 
9. Verwendung nach Anspruch 8, wobei die elektrisch leitenden Rollen artikelabstützende Rollen sind.
 
10. Verwendung nach Anspruch 8, wobei die elektrisch leitenden Rollen Inline-Rollen sind.
 
11. Verwendung nach Anspruch 8, wobei die elektrisch leitenden Rollen transversale Rollen sind oder wobei die elektrisch leitenden Rollen schräge Rollen sind.
 
12. Verwendung nach Anspruch 8, wobei das Förderband ferner umfasst:

eine Reihe von Bandmodulen (30), die Ende an Ende gelenkig verbunden sind, um ein Förderband zu bilden, wobei jedes Modul einen Körperabschnitt umfasst, der sich von einem ersten Ende zu einem zweiten Ende in der Bandlaufrichtung erstreckt;

wobei der Körperabschnitt mindestens einiger der Module eine Förderfläche beinhaltet, wobei mindestens ein Hohlraum im Körperabschnitt gebildet ist und sich zur Förderfläche öffnet, und eine elektrisch leitende Rolle drehbar im Hohlraum zum Drehen angeordnet ist.


 
13. Verfahren zum Fördern von Artikeln (36), wobei das Verfahren umfasst:

Abstützen von Artikeln oben auf elektrisch leitenden Rollen (26, 50, 60), die aus Aluminium oder Kupfer bestehen, in einem Förderband (22, 48, 58), das sich in einer Bandlaufrichtung vorwärtsbewegt;

Aussetzen der elektrisch leitenden Rollen an ein primäres Magnetfeld;

Induzieren eines Stroms in den elektrisch leitenden Rollen mit dem primären Magnetfeld, um ein sekundäres Magnetfeld zu erzeugen, das mit dem primären Magnetfeld interagiert, um eine Kraft zu erzeugen, die die elektrisch leitenden Rollen dreht; und

Vorantreiben von Artikeln entlang des Förderbands mit den sich drehenden elektrisch leitenden Rollen.


 
14. Verfahren nach Anspruch 13, ferner umfassend das Vorwärtsbewegen des Förderbands durch das Magnetfeld, um die elektrisch leitenden Rollen zu drehen.
 
15. Verfahren nach Anspruch 13, ferner umfassend das Ändern des Magnetfelds, um den Strom in den elektrisch leitenden Rollen zu induzieren.
 


Revendications

1. Transporteur à bande (20, 46, 56) comprenant :

une bande transporteuse (22, 48, 58) ayant une pluralité de rouleaux électriquement conducteurs (26, 50, 60) ayant des axes of rotation, dans lequel la bande transporteuse avance dans le sens de déplacement de la bande ;

une source de champ magnétique (136, 52, 64, 90, 91, 92) générant un champ magnétique primaire traversant la bande transporteuse, dans lequel les rouleaux sont fabriqués en aluminium ou en cuivre de telle sorte que le champ magnétique primaire induit un courant dans les rouleaux électriquement conducteurs qui produit un champ magnétique secondaire qui interagit avec le champ magnétique primaire pour produire un force qui fait tourner les rouleaux électriquement conducteurs.


 
2. Transporteur à bande selon la revendication 1, dans lequel la source de champ magnétique comprend une série d'aimants à polarité alternée agencés le long du sens de déplacement de la bande.
 
3. Transporteur à bande selon la revendication 2, dans lequel la série d'aimants forme un réseau de Halbach.
 
4. Transporteur à bande selon la revendication 1, dans lequel la source de champ magnétique comprend un stator sous-jacent à la bande transporteuse produisant le champ magnétique et formant une machine à induction linéaire avec les rouleaux électriquement conducteurs.
 
5. Transporteur à bande selon la revendication 2, dans lequel les aimants sont des électroaimants.
 
6. Transporteur à bande selon la revendication 2, dans lequel les aimants sont des aimants permanents.
 
7. Transporteur à bande selon la revendication 1, dans lequel les rouleaux électriquement conducteurs comprennent des tubes cylindriques électriquement conducteurs.
 
8. Utilisation d'une bande transporteuse (22, 48, 58) ayant une pluralité de rouleaux électriquement conducteurs (26, 50, 60) ayant des axes of rotation, dans lequel les rouleaux conducteurs (26, 50, 60) sont fabriqués en aluminium ou en cuivre dans un transporteur à bande comprenant une source de champ magnétique (136, 52, 64, 90, 91, 92) générant un champ magnétique primaire traversant la bande transporteuse et induisant un courant dans les rouleaux électriquement conducteurs qui produit un champ magnétique secondaire qui interagit avec le champ magnétique primaire pour produire une force qui fait tourner les rouleaux électriquement conducteurs et dans lequel la bande transporteuse avance dans un sens de déplacement de la bande.
 
9. Utilisation selon la revendication 8, dans laquelle les rouleaux électriquement conducteurs sont des rouleaux soutenant des articles.
 
10. Utilisation selon la revendication 8, dans laquelle les rouleaux électriquement conducteurs sont des rouleaux en ligne.
 
11. Utilisation selon la revendication 8, dans laquelle les rouleaux électriquement conducteurs sont des rouleaux transversaux ou dans laquelle les rouleaux électriquement conducteurs sont des rouleaux obliques.
 
12. Utilisation selon la revendication 8, dans laquelle la bande transporteuse comprend en outre :

une série de modules de bande (30) reliés de manière articulée d'une extrémité à l'autre extrémité pour former une bande transporteuse, chaque module comprenant une section corps s'étendant d'une première extrémité à une deuxième extrémité dans le sens de déplacement de la bande ;

dans laquelle la section corps d'au moins certains des modules inclut une surface de transport, au moins une cavité formée dans la section corps et une ouverture sur la surface de transport, et un rouleau électriquement conducteur disposé de manière à pouvoir tourner dans la cavité pour tourner.


 
13. Procédé de transport d'articles (36), le procédé consistant à :

soutenir des articles sur la partie supérieure de rouleaux électriquement conducteurs (26, 50, 60) fabriqués en aluminium ou en cuivre dans une bande transporteuse (22, 48, 58) laquelle avance dans un sens de déplacement de la bande ;

soumettre les rouleaux électriquement conducteurs à un champ magnétique primaire ;

induire un courant dans les rouleaux électriquement conducteurs avec le champ magnétique primaire pour produire un champ magnétique secondaire qui interagit avec le champ magnétique primaire pour produire un force qui fait tourner les rouleaux électriquement conducteurs ; et

déplacer des articles le long de la bande transporteuse avec les rouleaux électriquement conducteurs en rotation.


 
14. Procédé selon la revendication 13, consistant en outre à faire avancer la bande transporteuse à travers le champ magnétique pour faire tourner les rouleaux électriquement conducteurs.
 
15. Procédé selon la revendication 13, consistant en outre à modifier le champ magnétique pour induire le courant dans les rouleaux électriquement conducteurs.
 




Drawing


















REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description