(19)
(11)EP 2 849 834 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 13790660.8

(22)Date of filing:  16.05.2013
(51)International Patent Classification (IPC): 
A61M 25/09(2006.01)
A61B 17/221(2006.01)
A61B 17/22(2006.01)
(86)International application number:
PCT/US2013/041319
(87)International publication number:
WO 2013/173566 (21.11.2013 Gazette  2013/47)

(54)

CAPTURE DEVICE

ERFASSUNGSVORRICHTUNG

DISPOSITIF DE CAPTURE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 17.05.2012 US 201261648322 P

(43)Date of publication of application:
25.03.2015 Bulletin 2015/13

(73)Proprietors:
  • Lake Region Manufacturing, Inc. d/b/a Lake Region Medical
    Chaska, MN 55318 (US)
  • Lupton, Henry, William
    Galway (IE)

(72)Inventor:
  • Lupton, Henry, William
    Oranmore County Galway (IE)

(74)Representative: Mathys & Squire 
The Shard 32 London Bridge Street
London SE1 9SG
London SE1 9SG (GB)


(56)References cited: : 
WO-A1-00/20064
US-A- 5 693 086
US-A1- 2008 306 499
US-B2- 7 527 606
WO-A1-00/20064
US-A1- 2007 185 524
US-A1- 2008 306 499
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    CROSS REFERENCE TO RELATED APPLICATIONS


    FIELD OF THE INVENTION



    [0001] The present invention relates to a device for capturing a guidewire being progressed along the lumen of a bodily duct. More particularly the invention relates to such a device that is positioned at the end of a catheter and is adapted to be positioned within a bodily duct and is adapted to capture a guidewire being progressed through the bodily duct from the other direction and to direct it into the catheter.

    [0002] The present invention relates to a new catheter or capture device that can be used to facilitate the capture of a guide.

    [0003] Reference is directed to WO 00/20064 which discloses a guidewire capture sheath for capturing a guidewire being progressed along the lumen of a body duct, wherein a capture means is housed in, connected to or integral with a catheter, capable of moving between a first, retracted condition and a second, expanded condition, when the sheath is adapted to capture guidewire being progressed through the body duct from the other direction, and to direct it into the catheter. The guidewire capture sheath is used during placement of vascular grafts, particularly trouser grafts, across an aneurysm.

    SUMMARY OF THE INVENTION



    [0004] The present invention is set forth in the appended claims. There is disclosed a guidewire capture sheath for use in a bodily vessel comprising:
    1. (a) a catheter having a longitudinal central axis and defining a lumen; and
    2. (b) a capture means housed by, connected to, or integral with the catheter; at least a portion of the capture means being capable of expanding and collapsing between a first condition and at least a second condition, wherein when in the second condition, the capture means is adapted to guide a guidewire into the catheter, the capture means, comprising in its at least second condition is a distally-opening, eccentrically oriented cone, the cone being eccentrically oriented with respect to the longitudinal axis and being deployable from and retractable into the lumen.


    [0005] In one arrangement, when a portion of the capture means is in the first condition, it is contracted to a cross-sectional area that is smaller than that of the catheter; and when in the second condition, it is expanded to a cross-sectional area that is larger than that of the catheter.

    [0006] There is also disclosed a method for guiding a guidewire which is extending in a first vessel into a catheter, the method comprising:
    1. (a) causing or allowing at least one portion of a guidewire capture sheath according to the first aspect of the invention to assume its first, contracted, condition;
    2. (b) introducing the guidewire capture sheath according to (a) into the first vessel or a second vessel which communicates with the first vessel;
    3. (c) advancing the guidewire capture sheath such that the capture means is directed towards the guidewire;
    4. (d) causing or allowing the at least one portion of the capture means to assume its second, expanded, condition; and
    5. (e) causing the guidewire and the capture means to approach one another, such that the guidewire is guided into the catheter by the capture means.


    [0007] In the present invention the capture means is an eccentric cone which opens distally. "Eccentric" as used here means that the longitudinal axis of the catheter and the axis of the cone are not collinear. This relationship can be characterized in the terminology of conical structures. If a conical structure is defined as having a base and a vertex, then the perpendicular distance between the two is the height or altitude of the cone. A straight line from the vertex to a point of the base about which the base has rotational symmetry is the axis of the cone. Conical capture structures of this invention comprise what are more formally called "oblique" conical structures meaning that the vertex of the cone and the axis of the cone do not overlap and are not collinear. If the axis and the vertex of the cone coincide, then the cone is referred to as a right cone. If the base is circular (as opposed to elliptical or other shape) the cone is referred to as a right circular cone. For purposes of this invention, conical capture means or structures within its scope are all either "oblique" or "eccentric," those terms being used interchangeably herein.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] 

    Thus, there is shown in FIG. 1 an embodiment of this invention that would be useful to capture the distal end of an antegrade-approaching guidewire 1 using a retrograde approaching catheter or capture device 10. Such a procedure might be employed e.g., to cross a lesion of the dorsalis pedis artery. Eccentric cone or funnel 12 is shown to be offset with respect to catheter tube 14, specifically offset with respect to its longitudinal axis. An eccentric funnel provides a wider capture area without inhibiting blood flow. Rotating the funnel moves the funnel mouth or opening 13 eccentrically within the artery.

    FIG. 2 is a section view of the device of FIG. 1 taken along line 2-2 in FIG 1. In FIG. 2, the view is generally antegrade, vessel 16, not being shown in FIG. 1. In FIG. 2 the eccentric cone 12 capture structure is clearly shown.

    In FIG. 3, the eccentric cone capture structure 12 is shown having emerged from the lumen 20 of catheter 22. The device could ship in the open state. A collapsing tube with tapered tip could fold up the funnel and be used to feed it into the luer/backbleed device of the introducer or catheter.

    FIG. 4 shows a capture device 28 of this invention emerging from the lumen 30 of a further catheter configuration 32. FIG. 4 illustrates what is referred to herein as the cone's first i.e., collapsed condition. Upon exiting the catheter in the femoral site the funnel reopens. This provides a wide mouth goal for the approaching Pedal access guidewire.

    FIG. 5 shows the capture device of FIG. 4 in its second, i.e., expanding, (if not completely expanded) condition. A suitable material would recover into a smooth funnel.



    [0009] In a further preferred embodiment, the capture means may be disposed within the catheter lumen when it is in the first, contracted, condition; and be caused to assume the second, expanded, condition upon being projected from the catheter, particularly a lumen defined by the catheter. Alternatively, the capture means may be permanently disposed to project from one end of the catheter. In one embodiment according to the latter case, the capture means is preferably configured so that when in a first, contracted, condition, it will form or define a substantially conical nose on the catheter that will assist the passage of the catheter through the bodily vessel by defining a flow-description-minimizing tip.

    [0010] In some embodiments, it is preferable to introduce the guidewire capture sheath into the vessel with the guidance of a guidewire. In such embodiments, as the guidewire is inserted before the catheter of the guidewire capture sheath, it is preferable to provide an orifice within the capture means through which the guidewire may pass. Accordingly, when in its first, collapsed, condition, the capture means of these embodiments defines a guidewire-following aperture. As the catheter will be threaded over the distal end of this placement guidewire outside the body, it is only necessary that the guidewire following aperture be just sufficient to allow the catheter to be slid along the placement guidewire. Once the catheter has been placed in the vessel in which it is to capture a second guidewire, the capture means can be expanded to its second condition. In this second condition, it is preferable that the capture means expands to a size at which its outer parameter bears against only part of the circumferential luminal wall of the vessel. Partial circumferential overlap between the luminal wall and the outside of the capture means in the second condition, permits better luminal flow e.g., of blood, around the device while it is being used.

    [0011] This is an important aspect of this invention and is one of the reasons the eccentric cone capture means of this invention is used. Having an non-central-axis-aligned cone deployed in a vessel provides laminar space between the outside perimeter of the cone to permit bodily fluids to flow by the capture means even during the guidewire capture process. The advantage of having bodily fluid flow around the outside of the cone is that downstream cellular and physiologic needs are at least partially met even during the guidewire capture process itself.

    [0012] In preferred embodiments, such expansion provides assurance that as the guidewire and the guidewire capture sheath are caused to approach one another, the guidewire will eventually make contact with the capture means, and be funneled into the catheter. Typically, the guidewire will be projected down the catheter until its free end is located outside the body. The catheter can then be withdrawn from the vessel leaving the guidewire projecting from the vessel. A new catheter, such as a graft deploying catheter, can then be guided up the guidewire that has been captured by the guidewire capture sheath according to this invention.

    [0013] There are a wide variety of forms that the capture means may take. In a first form, at least a portion of the capture means comprises a number of petal-like members disposed around the circumference of one end of the catheter. Each petal-like member is connected to its neighboring petal-like members by a web of a thin flexible film. In preferred embodiments, the petal-like members are pivotable between a first position, in which they are close together at their free ends, as are the petals in a flower bud, and a second position, in which they are spread apart, as in the manner of an opened flower. In the latter position, the petal-like members and the webs together form a funnel that will direct a guidewire into the lumen of the catheter. In this embodiment of the invention, the petal-like members may be caused to move between their first and second positions by a wire or wires connected to a radially outer side of one or more of the petal-like members, such that by pulling on the wire or wires the petal-like members are caused to be moved from their first position to their second position. Alternatively, the petal-like members may be formed as two superposed leaves connected at their free ends, an outer one of the leaves being connected at its base to the catheter and the inner end being connected at its base to a tube disposed within the catheter. In this arrangement relative movement between the catheter and the tube will move the petal-like members between their first and second positions. In a preferred form, a number of the petal-like members are at least semi-permeable to allow for additional passage of blood.

    [0014] Also note that in embodiments of the invention where at least a portion of the capture means is comprised of a plurality of petal-like members, the materials and/or construction of at least that portion of the capture means may be such that no manipulative intervention is required to cause the petal-like members to go from their first position to their second position. An example of such embodiments includes cases where the capture means is formed of a material which has the capacity to "memorize" or "remember" a particular shape, and is, therefore, capable of memory-aided change. Such a material has a continuous tendency to return to that shape following any event which causes it to be temporarily deformed. A capture means with at least a portion being comprised of a plurality of petal-like members will, according to one such embodiment, be initially manufactured such that its petal-like members are pre-formed in their respective second-open-positions. Prior to introduction of the guidewire capture sheath into a vessel, such a capture means is then manually compressed and pushed into the lumen of the catheter, such that its petal-like members are caused to assume their respective first, closed, positions. Once the guidewire capture sheath is in the appropriate position within the vessel, the capture means is caused to extend beyond an end of the catheter e.g., by sliding engagement of one relative to the other. Such extension results in a release of the petal-like members from the confines of the catheter lumen, thereby allowing them to spring back into their respective second, open, positions. When the petal-like members are each in such a position, together, they preferably provide a funnel capable of directing a guidewire into the lumen of the catheter.

    [0015] In further preferred embodiments, wherein at least a portion of the capture means is comprised of a plurality of petal-like members, the capture means is formed of a material which is capable of changing its shape when subjected to a change in temperature and is, therefore, capable of heat-aided change. In this case, the capture means will, upon introduction into a patient, undergo an increase in temperature caused by its placement within the body of the patient. It will, consequently, have its petal-like members change from their first, usually closed, position to their second, usually open, position. In such embodiments, it may be preferable3, before using the invention, to predetermine the desired greatest cross-sectional diameter of the petal-like members when in their open, positions so that the radial size of this greatest cross-sectional diameter is appropriate to the circumstances of the particular case. In embodiments of the invention wherein temperature changes are employed to cause the capture means to assume the appropriate position for "capturing" a guidewire, materials such as Nitinol are preferably used in the manufacture of the capture means.

    [0016] Naturally, in all of the embodiments so far described, wherein the capture means with petal-like members is formed of a "memory" material or a heat sensitive material, it may not be necessary to provide a means, such as a wire, which the surgeon must manipulate in order to cause the capture means to change from a first condition to a second condition. In these embodiments, such change may occur without manipulative intervention. Note that either metallic or non-metallic shape memory materials (or both) can be used.

    [0017] In yet another embodiment of the invention, at least a portion of the capture means comprises a helical spring that is surrounded by an elastic sheath. In preferred arrangements of this embodiment, when in a relaxed state, the spring has a greater diameter at its free end than at an end which is connected to or integral with the catheter. In alternative arrangements of this embodiment, however, the spring may also have a constant diameter along its length when in the relaxed state. In either case, or for arrangements in which the diameter of the spring varies along its length, it is preferable that when in the relaxed state, the spring has, at least at one point, a diameter which is greater than the diameter of the catheter in which it is initially housed. Indeed, according to these embodiments, the spring is in the first condition housed within the catheter which holds it in a retracted condition. If a push rod extending long the catheter is used to push the free end of the spring out of the catheter (thereby allowing the spring to assume a relaxed state, the free end of the spring, and the elastic sheath attached to it, will then assume a second, expanded, condition. In this condition, the free end of the spring will engage against the luminal wall of a vessel in which the guidewire capture sheath has been deployed, and will direct a guidewire with which it comes into contact into the catheter.

    [0018] As above, it is noteworthy that the discussion relating to the use of a "memory" materials, or those which respond to changes in temperature, for the formation of the capture means with a plurality of petal-like members is, in appropriate circumstances, equally applicable to the formation of a capture means which is essentially comprised of a spring.

    [0019] In a still further embodiment, the capture means includes a distal portion of the first end of the catheter which, in at least its second condition forms a funnel member. The capture means of this embodiment is most preferably formed of either a shape "memory" material or a spring material. It may, however, also be formed of a material, such as Nitinol, which is capable of changing shape upon being subjected to a change in temperature or stress. In embodiments where the capture means is formed of the "memory" material, the catheter is housed within an outer sheath, and upon movement of the catheter relative the out sheath or e.g., a shding movement, the capture means is caused to change from a first condition, in which it forms a part of the first end of the catheter, to a second condition, in which it forms the funnel member. In this second condition, the open end of the funnel member partially engages the luminal wall of a vessel in which the guidewire capture sheath has been deployed, and will direct a contra-directed guidewire into the catheter.

    [0020] In similar embodiments, where the capture means if formed of a temperature sensitive material, such as Nitinol, there may, of course, be no need to provide an outer sheath as described above. This is because the capture means, according to this particular embodiment, will remain in its first, contracted, condition until such time as its temperature has increased to a point at which it changes to a second, expanded, condition.

    [0021] While there are many operative procedures that could use the guidewire capture sheath according to the present invention, it is particularly useful in the procedures described in PCT patent specifications PCT/AU97/00046 and PCT/AU96/00714.

    [0022] In a further embodiment of the invention, the capture means comprises an eccentric helical spring that is surrounded by an elastic sheath. The spring has a greater diameter at its free end than at an end that is disposed within the first end of the catheter. The spring is in a first position housed within the catheter which holds it in a retracted condition. If a push tube, extending along the catheter, is used to push the free end of the spring out of the catheter, the free end of the eccentric spring, and the elastic sheath attached to it, will then assume a second condition and expand to its enlarged diameter. In this condition the free end of the eccentric spring will partially engage against the luminal wall of a vessel in which the guidewire capture sheath has been deployed and will direct a contra-directed guidewire into the catheter.

    [0023] In a further embodiment the capture means includes a distal portion of the first end of the catheter formed form an eccentric shape memory material or eccentric spring material. The catheter is housed within an outer sheath, and upon deployment of the capture sheath within the appropriate vessel, the catheter is projected distal to the ends of the outer sheath by means of a push tube. Because the capture means is made from a shape memory material or spring material, upon projection beyond the distal end of the outer sheath, it will take on a second position in which it forms a funnel member. The open end of the funnel member abuts against the luminal wall of a vessel in which the capture sheath is being deployed. Accordingly, a guidewire being passed down the vessel will be guided into the lumen of the catheter by the funnel member of the capture device.

    [0024] Reference is also made to the following patents and patent applications:

    US 2005/0228402, "Methods and Devices for Percutaneous and Surgical Inventions," to Hofmann;

    US 2007/0250070, "Medical Instrument Having a Medical Snare," to Nobis et al.;

    WO 00/20064, "Guidewire Capture Device," to White et al;

    US 2008/0009883, "Snare Retrieval Device," to Bieneman;

    US 2008/0221587, "Two-Stage Snare-Basket Medical Device," to Schwartz.




    Claims

    1. A guidewire capture sheath for use in a bodily vessel, the guidewire capture sheath comprising:

    a) a catheter (14, 22, 30, 32) having a longitudinal central axis and defining a lumen; and

    b) a capture means (12, 28) housed by, connected to, or integral with the catheter, at least a portion of the capture means being configured to expand and collapse between a first condition and a second condition, wherein when in the second condition, the capture means is adapted to guide a guidewire into the catheter lumen,

    characterised by the capture means comprising in its second condition an eccentrically oriented cone, the cone being eccentrically oriented with respect to the longitudinal central axis and being deployable from and retractable into the lumen of the catheter.
     
    2. The guidewire capture sheath according to claim 1, wherein when in the first condition, the at least a portion of the capture means is contracted to a cross-sectional area that is relatively smaller than that of the catheter, and when in the second condition, the at least a portion of the capture means is expanded to a cross-sectional area that is relatively larger than that of the catheter.
     
    3. The guidewire capture sheath according to claim 1, wherein when in the first condition, the at least a portion of the capture means is disposed within the catheter, and when in the second condition, the at least a portion of the capture means projects from an end of the catheter.
     
    4. The guidewire capture sheath according to claim 1, wherein the capture means is permanently disposed to project from one end of the catheter.
     
    5. The guidewire capture sheath according to claim 1, wherein the catheter lumen extends along the longitudinal central axis from a proximal catheter open end to a distal catheter open end, and wherein the eccentrically oriented cone extends from a proximal conical open end to a distal conical open end, wherein the proximal conical open end is connected to or integral with the distal catheter open end, and wherein the capture means further comprises a cylindrical portion extending from a proximal cylindrical open end to a distal cylindrical open rim, wherein the proximal cylindrical open end is connected to or integral with the distal conical open end.
     
    6. The guidewire capture sheath according to claim 5, wherein in the first condition, the cylindrical portion has a first cross-sectional area that is less than a second cross-sectional area of the eccentrically oriented cone in the second condition, the second condition thereby providing the distal conical open end and the cylindrical portion having greater respective diameters than the proximal conical open end so that the capture means is configured to guide a guidewire into the cylindrical portion in open communication with both the eccentrically oriented cone and the catheter lumen.
     
    7. The guidewire capture sheath according to claim 1, wherein the at least one portion of the capture means further comprises a plurality of petal members, each having a first free end and a second end which is connected to one end of the catheter, said petal members each being pivotable about the connection with the catheter between a first position, in which they are relatively close together at their free ends, and a second position, in which they are relatively spread apart.
     
    8. The guidewire capture sheath according to claim 7, wherein each petal member is connected to its neighboring petal member by a web of a thin flexible film.
     
    9. The guidewire capture sheath according to claim 7, wherein when in the second position, the petal members and the web form a funnel which is configured to direct a guidewire into the lumen of the catheter.
     


    Ansprüche

    1. Führungsdraht-Einfangschleuse zur Verwendung in einem Körpergefäß, wobei die Führungsdraht-Einfangschleuse Folgendes umfasst:

    (a) einen Katheter (14, 22, 30, 32), der eine längsverlaufende Zentralachse aufweist und ein Lumen definiert; und

    (b) ein Einfangmittel (12, 28), untergebracht in, angebracht an oder integral ausgebildet mit dem Katheter, wobei mindestens ein Anteil des Einfangmittels zum Expandieren und Kollabieren zwischen einem ersten Zustand und einem zweiten Zustand konfiguriert ist, wobei wenn im zweiten Zustand, das Einfangmittel zum Leiten eines Führungsdrahts in das Katheterlumen angepasst ist,

    dadurch gekennzeichnet, dass das Einfangmittel in seinem zweiten Zustand einen exzentrisch ausgerichteten Konus umfasst, wobei der Konus bezogen auf die längsverlaufende Zentralachse exzentrisch ausgerichtet ist und aus dem Lumen des Katheters ausbringbar und in das Lumen des Katheters zurückziehbar ist.
     
    2. Führungsdraht-Einfangschleuse nach Anspruch 1, wobei wenn im ersten Zustand, der mindestens eine Anteil des Einfangmittels auf eine Querschnittsfläche kontrahiert ist, die relativ kleiner als die des Katheters ist, und wenn im zweiten Zustand, der mindestens eine Anteil des Einfangmittels auf eine Querschnittsfläche expandiert ist, die relativ größer als die des Katheters ist.
     
    3. Führungsdraht-Einfangschleuse nach Anspruch 1, wobei wenn im ersten Zustand, der mindestens eine Anteil des Einfangmittels in dem Katheter angeordnet ist, und wenn im zweiten Zustand, der mindestens eine Anteil des Einfangmittels aus einem Ende des Katheters herausragt.
     
    4. Führungsdraht-Einfangschleuse nach Anspruch 1, wobei das Einfangmittel zum Herausragen aus einem Ende des Katheters permanent angeordnet ist.
     
    5. Führungsdraht-Einfangschleuse nach Anspruch 1, wobei das Katheterlumen entlang der längsverlaufenden Zentralachse von einem proximalen offenen Katheterende bis zu einem distalen offenen Katheterende verläuft, und wobei der exzentrisch ausgerichtete Konus von einem proximalen offenen Konusende bis zu einem distalen offenen Konusende verläuft, wobei das proximale offene Konusende an das distale offene Katheterende angebracht oder mit ihm integral ausgebildet ist, und wobei das Einfangmittel weiter einen zylindrischen Anteil umfasst, der von einem proximalen offenen Zylinderende bis zu einem distalen offenen Zylinderrand verläuft, wobei das proximale offene Zylinderende an dem distalen offenen Konusende angebracht oder mit ihm integral ausgebildet ist.
     
    6. Führungsdraht-Einfangschleuse nach Anspruch 5, wobei im ersten Zustand, der zylindrische Anteil eine erste Querschnittsfläche aufweist, die kleiner ist als eine zweite Querschnittsfläche des exzentrisch ausgerichteten Konus im zweiten Zustand, wobei der zweite Zustand auf diese Weise das distale offene Konusende bereitstellt und der zylindrische Anteil entsprechend größere Durchmesser als das proximale offene Konusende derart aufweist, dass das Einfangmittel zum Leiten eines Führungsdrahts in den zylindrischen Anteil in offener Kommunikation mit sowohl dem exzentrisch ausgerichteten Konus als auch dem Katheterlumen konfiguriert ist.
     
    7. Führungsdraht-Einfangschleuse nach Anspruch 1, wobei der mindestens eine Anteil des Einfangmittels weiter eine Vielzahl von blütenblattförmigen Gliedern (petal members) umfasst, jedes mit einem ersten freien Ende und einem zweiten Ende, das an einem Ende des Katheters angebracht ist, wobei die genannten blütenblattförmigen Glieder jedes um die Verbindung mit dem Katheter zwischen einer ersten Position in welcher sie sich an ihren freien Enden relativ eng zusammen befinden, und einer zweiten Position, in welcher sie relativ auseinander ausgebreitet sind, drehbar sind.
     
    8. Führungsdraht-Einfangschleuse nach Anspruch 7, wobei jedes blütenblattförmige Glied mit seinem benachbarten blütenblattförmigen Glied mittels einer Bahn aus einer dünnen flexiblen Folie verbunden ist.
     
    9. Führungsdraht-Einfangschleuse nach Anspruch 7, wobei wenn in der zweiten Position, die blütenblattförmigen Glieder und die Bahn eine Trichterform bilden, die zum Leiten eines Führungsdrahts in das Lumen des Katheters konfiguriert ist.
     


    Revendications

    1. Gaine de capture de fil de guidage destinée à être utilisée dans un vaisseau corporel, la gaine de capture de fil de guidage comprenant :

    (a) un cathéter (14, 22, 30, 32) ayant un axe central longitudinal et définissant une lumière ; et

    (b) un moyen de capture (12, 28) logé par le cathéter, connecté à celui-ci, ou d'un seul tenant avec celui-ci, au moins une partie du moyen de capture configurée pour se développer et s'affaisser entre un premier état et un deuxième état, dans laquelle dans le deuxième état, le moyen de capture est conçu pour guider un fil de guidage jusque dans la lumière de cathéter,

    caractérisée en ce que le moyen de capture comprend dans son deuxième état un cône orienté de manière excentrique, le cône étant orienté de manière excentrique par rapport à l'axe central longitudinal et pouvant être déployé et retiré jusque dans la lumière du cathéter.
     
    2. Gaine de capture de fil de guidage selon la revendication 1, dans laquelle dans le premier état, l'au moins une partie du moyen de capture est contractée en une aire en coupe transversale qui est relativement plus petite que celle du cathéter, et dans le deuxième état, l'au moins une partie du moyen de capture est développée en une aire en coupe transversale qui est relativement plus grande que celle du cathéter.
     
    3. Gaine de capture de fil de guidage selon la revendication 1, dans laquelle dans le premier état, l'au moins une partie du moyen de capture est disposée au sein du cathéter, et dans le deuxième état, l'au moins une partie du moyen de capture fait saillie à partir d'une extrémité du cathéter.
     
    4. Gaine de capture de fil de guidage selon la revendication 1, dans laquelle le moyen de capture est disposé de manière permanente pour faire saillie à partir d'une extrémité du cathéter.
     
    5. Gaine de capture de fil de guidage selon la revendication 1, dans laquelle la lumière de cathéter s'étend le long de l'axe central longitudinal d'une extrémité ouverte proximale de cathéter à une extrémité ouverte distale de cathéter, et dans laquelle le cône orienté de manière excentrique s'étend d'une extrémité ouverte conique proximale à une extrémité ouverte conique distale, dans laquelle l'extrémité ouverte conique proximale est connectée à l'extrémité ouverte distale de cathéter ou d'un seul tenant avec celle-ci, et dans laquelle le moyen de capture comprend en outre une partie cylindrique s'étendant d'une extrémité ouverte cylindrique proximale à une bordure ouverte cylindrique distale, dans laquelle l'extrémité ouverte cylindrique proximale est connectée à l'extrémité ouverte conique distale ou d'un seul tenant avec celle-ci.
     
    6. Gaine de capture de fil de guidage selon la revendication 5, dans laquelle dans le premier état, la partie cylindrique a une première aire en coupe transversale qui est inférieure à une deuxième aire en coupe transversale du cône orienté de manière excentrique dans le deuxième état, le deuxième état faisant ainsi que l'extrémité ouverte conique distale et la partie cylindrique ont des diamètres respectifs plus grands que l'extrémité ouverte conique proximale de sorte que le moyen de capture est configuré pour guider un fil de guidage jusque dans la partie cylindrique en communication ouverte avec tant le cône orienté de manière excentrique que la lumière de cathéter.
     
    7. Gaine de capture de fil de guidage selon la revendication 1, dans laquelle l'au moins une partie du moyen de capture comprend en outre une pluralité d'éléments en forme de pétale, chacun ayant une première extrémité libre et une deuxième extrémité qui est connectée à une extrémité du cathéter, lesdits éléments en forme de pétale pouvant chacun pivoter autour de la connexion avec le cathéter entre une première position, dans laquelle ils sont relativement rapprochés au niveau de leur extrémité libre, et une deuxième position, dans laquelle ils sont relativement espacés.
     
    8. Gaine de capture de fil de guidage selon la revendication 7, dans laquelle chaque élément en forme de pétale est connecté à son élément en forme de pétale voisin par une bande de film souple fin.
     
    9. Gaine de capture de fil de guidage selon la revendication 7, dans laquelle dans la deuxième position, les éléments en forme de pétale et la bande forment un entonnoir qui est configuré pour diriger un fil de guidage jusque dans la lumière du cathéter.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description