(19)
(11)EP 2 850 001 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
03.02.2021 Bulletin 2021/05

(21)Application number: 13723961.2

(22)Date of filing:  25.03.2013
(51)International Patent Classification (IPC): 
B64D 15/16(2006.01)
(86)International application number:
PCT/IB2013/052362
(87)International publication number:
WO 2013/156880 (24.10.2013 Gazette  2013/43)

(54)

DE-ICING SYSTEMS AND METHODS

ENTEISUNGSSYSTEME UND -VERFAHREN

SYSTÈMES ET PROCÉDÉS DE DÉGIVRAGE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 18.04.2012 US 201261625770 P
15.03.2013 US 201313834964

(43)Date of publication of application:
25.03.2015 Bulletin 2015/13

(73)Proprietor: Zodiac Aerotechnics
78373 Plaisir Cedex (FR)

(72)Inventor:
  • DELRIEU, Julien
    F-78150 Le Chesnay (FR)

(74)Representative: Plasseraud IP 
66, rue de la Chaussée d'Antin
75440 Paris Cedex 09
75440 Paris Cedex 09 (FR)


(56)References cited: : 
GB-A- 2 472 053
US-A- 5 887 828
US-A- 4 399 967
  
  • VENNA S V ET AL: "PIEZOELECTRIC TRANSDUCER ACTUATED LEADING EDGE DE-ICING WITH SIMULTANEOUS SHEAR AND IMPULSE FORCES", JOURNAL OF AIRCRAFT, AIAA, RESTON, VA, US, vol. 44, no. 2, 1 March 2007 (2007-03-01), pages 509-515, XP001540539, ISSN: 0021-8669
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD OF THE INVENTION


FIELD OF THE INVENTION



[0001] Embodiments of the invention generally relate to de-icing systems and methods.

BACKGROUND OF THE INVENTION



[0002] While on the ground and during flight, aircrafts may be subjected to weather and other conditions that lead to the accumulation/ accretion of ice on components of the aircraft. Ice accretion on the aircraft wings, airfoils, rotors, sensors and other components may affect the aircraft's performance and flight safety by reducing lift, increasing draft and weight, and by disturbing sensors and their ability to take proper measurements. As such, regulations require onboard de-icing and anti-icing systems to prevent the accumulation of ice on the aircraft. US4399967 (Sandorff Paul, E) relates to a staggered coil and nose-torquer electromagnetic pulse deicing system and process for deicing airfoil surfaces. A plurality of upper and lower electromagnetic impulse coils and are arranged in a staggered geometrical array spanwise of an airfoil or wing. The upper coils are arranged adjacent to and spaced from the upper wing skin surface while the lower coils are arranged adjacent to and spaced from the lower wing skin surface so that when the coils are activated a torsional wave mode deformation of the skin occurs. In another embodiment, a deflection wave mode deformation is generated in the skin by activation of two electro-magnetic coils. In yet another embodiment, torsional movement of a blade mass balance element in a helicopter blade brings about a twisting of the upper and lower skin surfaces and of the blade to produce a torsional travelling deformation wave in the skin. GB 2 472 053 A describes an active de-icing system, wherein actuation means are arranged to reversibly deform a surface about pedestals between an at-rest condition and a deformed condition.

SUMMARY OF THE INVENTION



[0003] Embodiments of the invention covered by this patent are defined by the claims below, not this summary. This summary is a high-level overview of various aspects of the invention and introduces some of the concepts that are further described in the Detailed Description section below. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in isolation to determine the scope of the claimed subject matter. The subject matter should be understood by reference to the entire specification of this patent, all drawings and each claim.

[0004] The present invention provides a de-icing system as defined in the claims. In general, there is provided an electro-mechanical de-icing system having a shield configured to deform in a controlled and optimized way to de-bond accreted ice. In some embodiments, the shield has a variable (non-uniform) stiffness across its width such that its deformation may be twist-like when the shield is subjected to a force.

BRIEF DESCRIPTION OF THE DRAWINGS



[0005] A full and enabling disclosure including the best mode of practicing the appended claims and directed to one of ordinary skill in the art is set forth more particularly in the remainder of the specification. The specification makes reference to the following appended figures, in which use of like reference numerals in different features is intended to illustrate like or analogous components.

FIG. 1 is a cross-sectional view of a wing profile with a de-icing system.

FIG. 2 is a cross-sectional view of a de-icing system which does not fall within the scope of the claims.

FIG. 3A is a bottom schematic view of a de-icing system which does not fall within the scope of the claims.

FIG. 3B is a cross-sectional view of the system of FIG. 3A, taken along the line 37.

FIG. 4 illustrates normal stresses and shear stresses of a de-icing system.

FIG. 5A is a bottom schematic view of a de-icing system according to one embodiment.

FIG. 5B is a cross-sectional view of the system of FIG. 5A, taken along the line 56.

FIG. 6 is a bottom schematic view of a de-icing system according to another embodiment.

FIG. 7A is a bottom schematic view comparing two de-icing systems, one being an embodiment and the other not falling within the scope of the claims.

FIG. 7B is a cross-sectional view of the systems of FIG. 7A, taken along the line 86.


DETAILED DESCRIPTION OF THE DRAWINGS



[0006] The subject matter of embodiments of the present invention is described here with specificity to meet statutory requirements, but this description is not necessarily intended to limit the scope of the claims. Within their scope, the claimed subject matter may be embodied in other ways, may include different elements or steps, and may be used in conjunction with other existing or future technologies. This description should not be interpreted as implying any particular order or arrangement among or between various steps or elements except when the order of individual steps or arrangement of elements is explicitly described.

[0007] Disclosed herein are systems and processes for de-icing aircraft components such as, but not limited to, wings or slats. Figure 1 illustrates a cross-section of an aircraft wing or slat structure 11. As shown in Figure 1, one or more electro-mechanical de-icing systems, such as de-icing systems 13 and 14, may be positioned generally along a leading edge 15 of the wing 11. In some cases, ice 16 is generally prone to ice accretion or runback ice accretion along the leading edge 15 of the wing. As shown, de-icing systems 13 and 14 may be positioned proximate ice accretion 16, although they need not be.

[0008] In some embodiments, the de-icing system includes at least a portion of shield 12, which may be an erosion shield and which substantially covers the leading edge 15 of the wing 11 and helps protect the wing against various environmental elements such as, but not limited to, bird strikes, lightning strikes, corrosion, etc. Due to the placement of shield 12 around the wing 11, ice (such as at areas 16) may accrete directly on an outer surface of the shield 12. In some cases, the shield 12 is formed of a thin metal sheet such as aluminum or stainless steel or other suitable material. Shield 12 may be affixed or adhered to the wing 11 in any suitable way. In some cases, the deicing systems 13, 14 (which may include one or more actuators described below) are integral with the shield 12, although they need not be. In some embodiments, the one or more actuators are positioned between the shield 12 and the wing 11.

[0009] Figure 2 illustrates a de-icing system 29 that includes a shield 22 and one or more actuators 21. Actuators 21 may be electromagnetic (such as but not limited to coils), piezoelectric or any other suitable electrical actuator and are positioned between an inner surface of the shield 22 and a support structure 25, which in some embodiments is a rigid structure bonded to the wing or slat structure. Actuators 21 are configured to generate forces, such as forces 26, along shield 22. As shown in Figure 2, de-icing system 29 also includes a discharge unit 27 that supplies the energy required to drive the one or more actuators 21 and a control unit 28 that may be programmed to control the de-icing logic in response to the actual ice conditions. In some embodiments, the system 29 also includes one or more fixation points 23, at which the shield 22 is affixed to the support structure 25. As illustrated in Figure 2, an ice layer 24 may accrete on the outer surface of the shield 22, as the outer surface of the shield 22 is external to the aircraft wing and exposed to the elements.

[0010] Figure 3A illustrates a bottom view of an electro-mechanical de-icing system 38, while Figure 3B illustrates a cross-sectional view 36 of system 38 taken along line 37. The amount of deformation and displacement of shield 32 in Figure 3B is over-scaled for illustration purposes. Figures 3A-3B illustrate a system 38 having three actuators 31, although any suitable number of actuators may be used. As shown in Figure 3B, actuators 31 induce forces 35 that cause the shield 32 to deform and help break and/or de-bond the accreted ice layer. The performance of the de-icing system is dependent in part on the amount of displacement and acceleration of the shield 32 as caused by the forces 35 of the actuators 31, as well as the provided energy and the shape and configuration of the shield deformation. In turn, the deformation of the shield 32 depends in part on the location of one or more fixation points 33 (at which the shield is connected to the wing or other structure) and the location of the one or more actuators 31 and the spacing between the one or more actuators 31.

[0011] As mentioned, the performance of the de-icing system 38 is correlated to the shape and magnitude of the shield deformation, which is caused by the actuators 31. Specifically, the deformation of the shield generates forces that, if strong enough, de-bond the accreted ice. Figure 4 illustrates two types of ice cohesion forces between the ice and the outer surface of the shield: normal cohesion forces 47 and tangential cohesions forces 48. To counteract the normal cohesion forces 47 of the accreted ice, a normal traction force 44 may be applied between the accreted ice 42 and the shield 41, which generates a normal stress 43 at the shield/ice interface. To counteract the tangential cohesion force 48, a lateral traction force 45 may be applied between the accreted ice 42 and the shield 41, which generates a shear stress 46 at the shield/ice interface. In some cases, as discussed below, the lateral traction force 45 and the normal traction force 44 are generated by the deformation of the shield when it is subjected to the actuator forces.

[0012] The shear stresses 45 and 46 and/or the normal stresses 44 and 43 generated by the deformation of the shield 41, along with the resulting flexion, generate break stress inside the ice layer 42. However, a sufficient amount of shear stresses 46 and 45 and normal stresses 44 and 43 must be generated to break the ice cohesion forces and de-bond the accreted ice. To ensure that sufficient stresses are generated, the shield may be configured so that its deformation shape is controllable and optimized as discussed below. Using shear stress generated by the shield deformation to de-bond the ice allows the de-icing process to be more independent of the ice layer thickness. Using shear stress is also advantageous because tangential cohesion forces are generally weaker than normal cohesion forces.

[0013] In some embodiments, systems are provided that control and/or optimize the amount of deformation of the shield (and thus the deformation shape of the shield) to control the shear and/ or normal stresses along the shield/ice interface and the accreted ice, creating controlled ice breakage zones. To accomplish this, the shield is configured such that it has a variable/non-uniform stiffness across its width W and/or its length L (Figure 5B). Because it has a variable/non-uniform stiffness across its width and/or length, the shield undergoes a twist-like deformation when subjected to a force. A twist-like deformation mode provides for a uniform and distributed shear stress at the shield/ice interface.

[0014] Figures 5A-5B illustrate an example of a de-icing system 55 that is configured to control the shield 53 deformation shape such that the deformation generates sufficient forces to break and/ or de-bond the ice layer. Specifically, the shield 53 is configured such that its stiffness varies across its width W and/ or length L, as discussed below. Figure 5A shows a bottom view of de-icing system 55, while Figure 5B shows a cross-sectional view of the deicing system taken along line 56. As illustrated in Figures 5A-5B, shield 53 may be fixed along one or more fixation points 54 to an aircraft wing or other structure to help restrain the shield under deformation

[0015] As illustrated, the de-icing system 55 includes one or more stiffeners 51 and one or more areas of reduced thickness 52 between each of the one or more stiffeners 51 along the width W and/or length L of the shield 53. The stiffeners 51 can be any suitable structure that support the shield 53 and provide increased stiffness (high stiffness zones) along portions of the shield. Some non-limiting examples of stiffeners 51 include stringers, composite fibers, wire frames, laminated or layered frames, etc. In some embodiments, the stiffeners 51 are bonded or affixed to the inner surface of the shield 53 in any suitable way. In some embodiments, the stiffeners 51 project generally radially from each of the one or more actuators 501, as shown in Figure 5A, although they may have other configurations in other embodiments.

[0016] One or more thickness reduction areas 52 are present between the stiffeners 51. The one or more thickness reduction areas 52 are lower stiffness areas along the shield 53. In some embodiments, thickness reduction areas 52 are simply areas that do not have stiffeners 51 and in other embodiments may include weakening strips or other structural changes (such as, but not limited to, reductions in the thickness of the shield 53 along these areas 52) that reduce the stiffness of the shield 53 along areas 52. In some embodiments, as illustrated in Figures 5A-5B, the thickness reduction areas 52 are relatively thin areas, particularly when compared with the width of stiffeners 51. Figure 6 illustrates an embodiment of a de-icing system having a shield 70 with a plurality of stringers 71 that extend generally radially from one or more actuators 72 and with a plurality of weakening strips 73 that serve as the thickness reduction areas.

[0017] The configuration and placement of the one or more stiffeners 51 and the one or more thickness reduction areas 52 along the shield creates variable stiffness along the width W and/or length L of the shield 53. In particular, as the shield 53 is subjected to the forces 60 generated by the one or more actuators, the bending profile of the shield 53 is reduced along the portions of the shield 53 that include the stiffeners 51. The reduced bending profile increases the curvature radius of the shield along the stiffeners 51 and encourages twist deformation 59 along the portions of the shield 53 that include stiffeners 51. The twisting deformation in turn increases ice de-bonding between the one or more actuators 501 and the one or more rigid fixation points 54.

[0018] Along these same lines, the curvature radius along portions 57 of the deformed shield 53 corresponding to thickness reduction areas 52 is reduced because the twist is distributed along the stiffeners 51, which in turn concentrates the flexion along the portions 57 and increases the break stress along these areas, which promotes breakage inside the ice layer. The presence of one or more thickness reductions 52 also helps reduce the amount of energy needed to reach the required level of displacement to de-bond the ice layer.

[0019] The configuration of the shield 53, in particular the variable/non-uniform stiffness across the width and/or length of the shield, is such that the forces applied to the shield by the one or more actuators cause a twist-like deformation across the shield, which in turn generates a distributed and uniform shear stress (such as force 46 in Figure 4) at the shield/ice interface, with such forces being of sufficient magnitude to break the cohesion bonds of the accreted ice and de-ice the outer surface of the wing. In some cases, the generated shear stresses occur along a wider area than if the shield had a uniform stiffness across its width and/or length.

[0020] By controlling and/or optimizing shield deformation as described above, the de-icing performance is improved. Moreover, the required forces to deform the shield can be reduced, as well as the size and/or number of the actuators needed to generate the required forces. As such, the space required between actuators can be increased. In turn, the dimensions and weight of the control units can be decreased, while power consumption can also be decreased.

[0021] Shields having variable stiffness as described herein can be formed of any suitable materials including, but not limited to, composites materials with multiple layers and/or any suitable fiber arrangement (including various fiber types and various orientations of such fibers within one or more layers) to reach the desired deformation mode. One non-limiting example of a fiber composite patchwork system is illustrated in Figures 7A-7B. Figure 7A shows a bottom view of de-icing system 85, the left portion of which represents a thickness variation/ stiffener system 87 and the right portion of which represents a fiber composite patchwork system 88. Figure 7B shows a cross-sectional view of the de-icing system 85 taken along line 86.

[0022] Like system 55 in Figures 5A-5B, system 87 includes a shield 83 that may be fixed along one or more fixation points 92 to an aircraft wing or other structure to help restrain the shield under deformation. The system 87 also includes a plurality of stiffeners 81 and thickness reduction areas 82, as described above, which may be positioned/ oriented and modified in any suitable way.

[0023] System 88 includes a fiber composite shield 89 that may be fixed along one or more fixation points 92 to an aircraft wing or other structure to help restrain the shield under deformation. System 88 also includes a plurality of high stiffness areas 90 (which may be composite patches or areas having fibers or other materials configured such that the areas are relatively stiffer) that generally extend along the direction of arrows 91, although stiffness areas 90 may be positioned/ oriented in any suitable way. System 88 also includes a plurality of low stiffness areas 84 having fibers or other materials configured such that the areas have a relatively lower stiffness (for example, by using lower density fibers or otherwise). There are many ways of achieving a higher stiffness in the plurality of high stiffness areas 90 and a lower stiffness in the plurality of low stiffness areas 84, such as, but not limited to, by varying the configuration/ orientation of the fibers, varying the density or other properties of the fibers used, varying the materials used, varying the layers arrangement of the materials, varying the diameter of the fibers, etc.

[0024] As described above, the systems 87 and 88 are configured to encourage the shield to undergo a twist-like deformation when subjected to forces from actuators 801 due to the variations in stiffness along the width W and/ or length L. The anisotropic behavior and heterogeneous fiber arrangement of system 88 is configured in some embodiments to give substantially the same mechanical deformation shape and/or profile as the system 87, which achieves thickness variation by incorporating stiffeners or the like and areas of reduced thickness or weakening strips or the like. The invention is not limited to the arrangements illustrated and described. Rather, any suitable modification may be made to achieve the desired level of deformation and/or the desired deformation profile.

[0025] Other shields having variable stiffness can be formed, for example, by machining a sheet having a plurality of stringers and weakness strips or other suitable structures. In other embodiments, the shield includes a wire frame and/ or laminated multi-layer composites and/ or a layered frame.

[0026] The systems disclosed herein can be used alone or may be used in conjunction with any other suitable de-icing system.

[0027] The foregoing is provided for purposes of illustrating, explaining, and describing embodiments of the present invention. Further modifications and adaptations to these embodiments will be apparent to those skilled in the art and may be made without departing from the scope of the invention. Different arrangements of the components depicted in the drawings or described above, as well as components and steps not shown or described are possible. Similarly, some features and subcombinations are useful and may be employed without reference to other features and subcombinations. Embodiments of the invention have been described for illustrative and not restrictive purposes, and alternative embodiments will become apparent to readers of this patent. Accordingly, the present invention is not limited to the embodiments described above or depicted in the drawings, and various embodiments and modifications can be made without departing from the scope of the claims below.


Claims

1. A de-icing system (55, 87) for attaching to an aircraft comprising:

(i) a shield (53, 83) having an inner surface and an outer surface wherein the shield is configured to be fixed to an aircraft wing or slat structure at a plurality of fixation points of the system;

(ii) one or more actuators (501, 801) positioned adjacent the inner surface of the shield and spaced apart from each of the plurality of fixation points;

wherein each of the one or more actuators is configured to generate an actuator force against the inner surface of the shield;
and a plurality of stiffeners and a plurality of reduced thickness area arranged along a width of the shield so that a thickness between the inner surface and the outer surface of the shield varies across the width of the shield and causes the shield to undergo a twist-like deformation when subjected to the actuator forces,
wherein a stiffness of the shield is greater at a portion of the shield having one of the plurality of the stiffeners than at one of the plurality of reduced thickness areas.
 
2. The system of claim 1, wherein the one or more actuators (501, 801) are electro-mechanical actuators.
 
3. The system of claim 1 or 2, wherein the deformation generates unified shear forces (45, 46) greater than a cohesion force of ice
 
4. The system of claim 1, wherein a width of each of the plurality of stiffness areas (90) is greater than a width of each of the plurality of reduced thickness areas (52).
 
5. The system of claim 4, wherein some of the plurality of stiffness areas (90) extend generally radially from at least one of the plurality of actuators (501, 801).
 
6. The system of claim 4 or 5, wherein the plurality of stiffness areas (90) is provided by one or more stiffeners (51) along the width W and/or length L of the shield (53).
 
7. The system of claim 6, wherein, when the shield (53, 83) is subjected to the actuator forces, a first radius of curvature of the shield is greater along the width of the shield having the plurality of stiffeners than a second radius of curvature along the reduced thickness areas (52).
 
8. The system of claim 6 or 7, wherein the one or more areas of reduced thickness areas (52) are between each of the one or more stiffeners (51) along the width W and/or length L of the shield (53, 83).
 
9. The system of any of claims 4 to 8, wherein the plurality of reduced thickness areas (52) comprise a plurality of weakness strips.
 
10. An aircraft comprising a de-icing system as defined in any of the claims 1 to 9.
 
11. An aircraft wing (11) comprising a de-icing system as defined in any of the claims 1 to 9, wherein the shield (53, 83) is fixed to the aircraft wing (11) along the one or more of the fixation points.
 
12. The aircraft wing (11) of claim 11, wherein the shield is positioned along a leading edge of the wing (11).
 


Ansprüche

1. Enteisung-System (55, 87) zum Anbringen an einem Flugzeug, umfassend:

(i) einen Schild (53, 83), welcher eine innere Fläche und eine äußere Fläche aufweist, wobei der Schild dazu eingerichtet ist, an einem Flugzeug-Flügel oder einer Leisten-Struktur an einer Mehrzahl von Befestigungspunkten des Systems befestigt zu werden;

(ii) einen oder mehrere Aktuatoren (501, 801), welche der inneren Fläche des Schildes benachbart positioniert sind und von jedem der Mehrzahl von Befestigungspunkten beabstandet sind;

wobei jeder des einen oder der mehreren Aktuatoren dazu eingerichtet ist, eine Aktuator-Kraft gegen die innere Fläche des Schildes zu erzeugen;
und eine Mehrzahl von Verstärkungselementen und eine Mehrzahl von Bereichen mit reduzierter Dicke entlang einer Breite des Schildes angeordnet sind, so dass eine Dicke zwischen der inneren Fläche und der äußeren Fläche des Schildes über die Breite des Schildes variiert und den Schild veranlasst, einer Verdrillung-ähnlichen Deformation unterzogen zu werden, wenn den Aktuator-Kräften ausgesetzt,
wobei eine Steifigkeit des Schildes an einem Abschnitt des Schildes mit einem aus der Mehrzahl von Verstärkungselementen größer ist als an einem aus der Mehrzahl von Bereichen mit reduzierter Dicke.
 
2. System nach Anspruch 1, wobei der eine oder die mehreren Aktuatoren (501, 801) elektro-mechanische Aktuatoren sind.
 
3. System nach Anspruch 1 oder 2, wobei die Deformation einheitliche Scherkräfte (45, 46) erzeugt, welche größer sind als eine Kohäsionskraft von Eis.
 
4. System nach Anspruch 1, wobei eine Breite von jedem der Mehrzahl von Steifigkeit-Bereichen (90) größer ist als eine Breite von jedem der Mehrzahl von Bereichen mit reduzierter Dicke (52).
 
5. System nach Anspruch 4, wobei sich manche der Mehrzahl von Steifigkeit-Bereichen (90) im Wesentlichen radial von wenigstens einem der Mehrzahl von Aktuatoren (501, 801) erstrecken.
 
6. System nach Anspruch 4 oder 5, wobei die Mehrzahl von Steifigkeit-Bereichen (90) durch ein oder mehrere Verstärkungselemente (51) entlang der Breite W und/oder der Länge L des Schildes (53) bereitgestellt ist.
 
7. System nach Anspruch 6, wobei, wenn der Schild (53, 83) den Aktuator-Kräften ausgesetzt ist, ein erster Krümmungsradius des Schildes entlang der Breite des Schildes mit der Mehrzahl von Verstärkungselementen größer ist als ein zweiter Krümmungsradius entlang der Bereiche mit reduzierter Dicke (52).
 
8. System nach Anspruch 6 oder 7, wobei der eine oder die mehreren Bereiche von Bereichen mit reduzierter Dicke (52) zwischen jedem des einen oder der mehreren Verstärkungselemente (51) entlang der Breite W und/oder der Länge L des Schildes (53, 83) sind.
 
9. System nach einem der Ansprüche 4 bis 8, wobei die Mehrzahl von Bereichen mit reduzierter Dicke (52) eine Mehrzahl von Schwächung-Streifen umfassen.
 
10. Flugzeug, umfassend ein Enteisung-System, wie in einem der Ansprüche 1 bis 9 definiert.
 
11. Flugzeug-Flügel (11), umfassend ein Enteisung-System, wie in einem der Ansprüche 1 bis 9 definiert, wobei der Schild (53, 83) an dem Flugzeug-Flügel (11) entlang des einen oder der mehreren der Befestigungspunkte befestigt ist.
 
12. Flugzeug-Flügel (11) nach Anspruch 11, wobei der Schild entlang eines Führungsrandes des Flügels (11) positioniert ist.
 


Revendications

1. Système de dégivrage (55, 87) destiné à être fixé à un aéronef comprenant :

(i) un bouclier (53, 83) ayant une surface intérieure et une surface extérieure, dans lequel le bouclier est configuré pour être fixé à une aile d'aéronef ou à une structure à lattes à une pluralité de points de fixation du système ;

(ii) un ou plusieurs actionneurs (501, 801) positionnés adjacents à la surface intérieure du bouclier et espacés de chacun de la pluralité de points de fixation ;

dans lequel chacun des un ou plusieurs actionneurs est configuré pour générer une force d'actionneur contre la surface intérieure du bouclier ;
et une pluralité de raidisseurs et une pluralité de zones d'épaisseur réduite agencées le long d'une largeur du bouclier de sorte qu'une épaisseur entre la surface intérieure et la surface extérieure du bouclier varie à travers la largeur du bouclier et amène le bouclier à subir une déformation par torsion lorsqu'il est soumis aux forces d'actionneur,
dans lequel une rigidité du bouclier est plus grande à une portion du bouclier ayant l'un de la pluralité de raidisseurs qu'à l'une de la pluralité de zones d'épaisseur réduite.
 
2. Système selon la revendication 1, dans lequel les un ou plusieurs actionneurs (501, 801) sont des actionneurs électromécaniques.
 
3. Système selon la revendication 1 ou 2, dans lequel la déformation génère des forces de cisaillement unifiées (45, 46) supérieures à une force de cohésion de givre.
 
4. Système selon la revendication 1, dans lequel une largeur de chacune de la pluralité de zones de rigidité (90) est supérieure à une largeur de chacune de la pluralité de zones d'épaisseur réduite (52).
 
5. Système selon la revendication 4, dans lequel certaines de la pluralité de zones de rigidité (90) s'étendent généralement radialement depuis au moins l'un de la pluralité d'actionneurs (501, 801).
 
6. Système selon la revendication 4 ou 5, dans lequel la pluralité de zones de rigidité (90) est fournie par un ou plusieurs raidisseurs (51) le long de la largeur W et/ou de la longueur L du bouclier (53).
 
7. Système selon la revendication 6, dans lequel, lorsque le bouclier (53, 83) est soumis aux forces d'actionneur, un premier rayon de courbure du bouclier est plus grand le long de la largeur du bouclier ayant la pluralité de raidisseurs qu'un second rayon de courbure le long des zones d'épaisseur réduite (52).
 
8. Système selon la revendication 6 ou 7, dans lequel les une ou plusieurs zones de zones d'épaisseur réduite (52) sont entre chacun des un ou plusieurs raidisseurs (51) le long de la largeur W et/ou de la longueur L du bouclier (53, 83).
 
9. Système selon l'une quelconque des revendications 4 à 8, dans lequel la pluralité de zones d'épaisseur réduite (52) comprend une pluralité de bandes de faiblesse.
 
10. Aéronef comprenant un système de dégivrage selon l'une quelconque des revendications 1 à 9.
 
11. Aile d'aéronef (11) comprenant un système de dégivrage selon l'une quelconque des revendications 1 à 9, dans laquelle le bouclier (53, 83) est fixé à l'aile d'aéronef (11) le long des un ou plusieurs points de fixation.
 
12. Aile d'aéronef (11) selon la revendication 11, dans laquelle le bouclier est positionné le long d'un bord d'attaque de l'aile (11).
 




Drawing























Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description