(19)
(11)EP 2 850 640 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 13723927.3

(22)Date of filing:  16.05.2013
(51)Int. Cl.: 
H01J 49/00  (2006.01)
H03M 1/18  (2006.01)
H01J 49/02  (2006.01)
H03M 1/08  (2006.01)
(86)International application number:
PCT/GB2013/051270
(87)International publication number:
WO 2013/171500 (21.11.2013 Gazette  2013/47)

(54)

CALIBRATING DUAL ADC ACQUISITION SYSTEM

KALIBRIEREN EINES DUALEN ADC-ERFASSUNGSSYSTEMS

ÉTALONNAGE D'UN SYSTÈME D'ACQUISITION CAN DOUBLE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 18.05.2012 GB 201208841
24.05.2012 US 201261651251 P

(43)Date of publication of application:
25.03.2015 Bulletin 2015/13

(73)Proprietor: Micromass UK Limited
Wilmslow SK9 4AX (GB)

(72)Inventors:
  • GREEN, Martin Raymond
    Bowdon Cheshire WA14 3EE (GB)
  • WILDGOOSE, Jason Lee
    Stockport SK4 3PJ (GB)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
WO-A1-2012/080443
US-A1- 2006 020 400
US-A1- 2012 001 786
US-B2- 7 423 259
WO-A2-2008/008867
US-A1- 2010 213 361
US-B1- 6 195 031
  
  • ARKADY I. GUSEV ET AL: "Improvement of signal reproducibility and matrix/comatrix effects in MALDI analysis", ANALYTICAL CHEMISTRY, vol. 67, no. 6, 6 March 1995 (1995-03-06), pages 1034-1041, XP055080618, ISSN: 0003-2700, DOI: 10.1021/ac00102a003
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

BACKGROUND TO THE PRESENT INVENTION



[0001] The present invention relates to a mass spectrometer and method of mass spectrometry. The preferred embodiment relates to a method of calibrating a dual gain ADC detector system.

[0002] US-7423259 (Hidalgo) discloses a method of operating a dual gain ADC in which the signal from a mass spectrometer is split and directed to two independent amplifiers of different gains. The two amplified signals are digitized using two independent analogue to digital recording devices. The resultant data is sent to a spectral combiner which combines the data after appropriate intensity scaling such that digitized samples from the higher gain amplifier signal path with intensities which exceed the vertical dynamic range of the ADC are replaced with the corresponding digitised samples from the low gain sample path. This composite spectrum has a dynamic range greater than either individual ADC.

[0003] In order for this approach to work correctly the time sampling intervals of both the ADCs must be correctly aligned. It is known to use firmware or complex electronics to correct the phase between two ADCs in order to align the time sampling intervals prior to the signal being digitized.

[0004] However, in addition to aligning the two ADC clocks it is also necessary to align the signal itself such that each digitized point in the two signal paths corresponds to the same region of the ion signal before individual digitized points are chosen to represent the final signal. This alignment of the signal also adds significant complexity to dual ADC operation.

[0005] It will be understood by those skilled in the art that correcting the phase between two ADCs is limited to situations wherein the phase difference between the two ADC clocks is typically less than one ADC time bin e.g. < 100 ps.

[0006] US-6567022 (Reuveni) discloses a method of calibrating the vertical gain and offset differences of two ADCs using a test signal. The disclosed method relates to a calibration routine to compensate for the natural variation in output amplitude response of two substantially identical ADCs when digitising the same test signal. This process is performed to allow two ADCs to be interleaved successfully to produce a single output of apparent higher digitization rate. No time correction is performed, no compensation for dual signal paths with different amplification stages is described and no dynamic range enhancement is intended.

[0007] US 2010/0213361 (Micromass) discloses a dual gain ADC method for increasing the dynamic range of a Time of Flight system wherein the signal from ion arrivals at the detector is split and sent via two amplifiers of different gain and then to two separate ADCs to be digitized. The disclosed method advantageously does not require phase correcting of the ADC clocks. According to the disclosed method the data from each push is reduced to time and intensity pairs and then combined onto a time axis which is independent of the original ADC digitisation rate. This approach allows up-sampling of the combined data from the two ADCs using finer time bins than the ADC during combining. No alignment of the signal prior to digitization is required. The method disclosed in US 2010/0213361 is therefore particularly advantageous in that the detector system does not require complex phase correction electronics.

[0008] WO 2008/008867 (Mason) discloses injecting a test pulse to adjust the phase, offset or gain of the output channels of a preamplifier having two output channels. The first output channel has a gain of eight times that of the second output channel. Two digitised data streams are stitched ADC bin to ADC bin for an individual time of flight transient before summing to produce a single high dynamic range spectra. The phase difference between the two ADCs is adjusted or corrected to zero such that the bin intervals on each ADC line up and the signal falls over the same bins in both ADCs.

[0009] To line up the ADC time bins (i.e. phase correct), an onboard ADC delay is adjusted based on the measurement of the test signal. However, this onboard delay is only capable of adjusting the phase or delay by one or two digitisation bin widths i.e. approx. 100 ps and any attempts to make larger adjustments to this delay will cause phase noise and hence timing jitter in the final signal. The disclosed method therefore only allows correction of the phase difference between the two ADCs and is not suitable for addressing the problem of significantly longer time delays due to propagation delays between the two signal paths through the two amplifiers which may be substantially greater than the onboard ADC delay can cope with.

[0010] It will be apparent that the cables of the amplifier and the ADC signal paths for the two gain channels must be very carefully designed with as close to zero phase difference as possible, such that the only correction which is needed is between the two ADCs and this is a matter of only a few ps. It will understood by those skilled in the art that such design constraints result in complex and expensive ADC detector systems and associated electronics. Furthermore, if it desired to change the amplification then a whole new circuit must be designed.

[0011] A general problem with known dual ADC systems is that due to differences in cable lengths and propagation delays through the different amplifier circuits and other components etc. there is generally a difference in recorded time between the signal passing through high and low gain signal paths even though the signal originates from the same ion arrival event at the detector. This is generally a time offset and such a time offset (typically of 10-500 ns) due to propagation delay can not be corrected by phase correcting the two ADCs (which is only able to align ADCs by approx. 100 ps).

[0012] If the two signal paths are not calibrated or aligned before the signal is combined into a final spectrum then there will be resultant loss in mass resolution and or mass accuracy in the final combined data.

[0013] In addition, although the nominal theoretical gain of the amplification circuit in each signal path may be known, in practice the actual gain or gain difference may be different. If the gain ratio used in this normalization is in error there will be quantitative errors in the final combined spectrum.

[0014] In summary, conventional dual gain ADC systems are only able to align ADC clocks by phase correcting for timing differences of up to approx. 100 ps. Conventional dual gain ADC systems require that the signal path through both ADCs is substantially identical. This requirement imposes significant design constraints and also requires complex associated electronics.

[0015] Further examples of conventional dual gain ADC systems can be found in US 6195031, US 2012/01786, WO 2012/080443, US 2006/020400, and "Improvement of Signal Reproducibility and Matrix/Comatrix Effects in MALDI Analysis", Gusev et al. (XP055080618).

[0016] It is therefore desired to provide an improved dual gain ADC detector system for a mass spectrometer.

SUMMARY OF THE PRESENT INVENTION



[0017] According to an aspect of the present invention there is provided a method of mass spectrometry as claimed in claim 1.

[0018] An important advantage of the present invention is that a dual ADC detector system is provided which does not need to be designed so that there is no propagation delay between the two signal paths passing through the two ADCs. Furthermore, the two ADCs do not need to be phase corrected and hence complex and expensive electronics for phase correcting the two ADCs is not required.

[0019] The present invention therefore enables a less complex and less expensive dual gain ADC detector system to be provided and also allows the relative gain between the two ADCs paths to be easily altered (in contrast to conventional dual gain ADC systems where the gain of the two ADC paths can not be readily altered).

[0020] It will be appreciated by those skilled in the art that phase correction approaches such as that disclosed in WO 2008/008867 (Mason) require complex and very carefully designed ADC circuitry. Phase correction is only able to correct for very slight timing errors of the order of 100 ps and imposes strict requirements on the ADC circuitry so that there is essentially no propagation delay between the two ADC paths. The approach disclosed in WO 2008/008867 (Mason) is therefore unable to correct for significant timing or propagation delays of the order of 1-100 ns due to a difference in time for a signal to pass through two signal paths.

[0021] According to the present invention it is not necessary to phase correct the two ADCs. Instead, according to the present invention the time offset between the signals from the two signal paths is measured and is subsequently corrected for. It is not necessary to phase correct the two ADCs as the data is reduced to time and intensity pairs before combining.

[0022] A particular advantage of the present invention is that it is possible to compensate for large differences in propagation times as the correction is preferably applied as a post processing operation in a FPGA which reduces the requirement for highly matched upstream electronics and significantly simplifies the overall design of the dual ADC system.

[0023] Furthermore, the design of the ADCs may be easily changed (e.g. the relative gain may be easily changed) and the system can be easily re-calibrated as according to the present invention a relative shift in the signal itself can easily be compensated for.

[0024] In a similar manner, the gain can be measured and then according to the preferred embodiment the multiplication factor for the weak or low gain data may be adjusted accordingly. It is not therefore necessary to set a precise gain factor between the two ADCs. In contrast, the arrangement disclosed in WO 2008/008867 is only able to adjust the gain of the ADC using the onboard facility so that it matches the required gain difference. The maximum adjustment possible using this approach is approx. +10% of the gain of the ADC.

[0025] In contrast, according to the preferred embodiment the gain is measured and any gain difference (c.f. just up to 10%) can be accommodated. Accordingly, the detector system according to the preferred embodiment is a much more flexible system than that disclosed in WO 2008/008867 and utilises a simpler amplifier design which significantly reduces the overall cost of the dual ADC system.

[0026] In summary, a phase correction approach such as disclosed in WO 2008/008867 is complex, imposes very strict requirements in terms of amplifier design and requires complex electronics. The system is only able to make very fine adjustments (< 100 ps) using the onboard ADC functionality.

[0027] In contrast, the present invention is inherently simpler and more flexible. Field Programmable Gate Arrays ("FPGAs") are preferably used to compensate for the differences in the two signal paths (which may be of the order of 1-500 ns) and to measure the gain difference in post processing.

[0028] The present invention therefore represents a significant improvement over conventional arrangements as disclosed, for example, in WO 2008/008867.

[0029] The arrangement disclosed in WO 2008/008867 does not pass multiple test signals through both ADCs and then histogram the time and intensity values of test peaks and then determine a propagation delay between the two signal paths based upon the two histograms.

[0030] The first signal path preferably comprises a low gain signal path.

[0031] The second signal path preferably comprises a high gain signal path.

[0032] A signal passing along the first signal path is preferably multiplied or amplified by a first gain.

[0033] A signal passing along the second signal path is preferably multiplied or amplified by a second different gain.

[0034] The second gain is preferably greater than the first gain.

[0035] According to an embodiment either:
  1. (a) the ratio of the second gain to the first gain is selected from the group consisting of: (i) < 2; (ii) 2-5; (iii) 5-10; (iv) 10-15; (v) 15-20; (vi) 20-25; (vii) 25-30; (viii) 30-35; (ix) 35-40; (x) 40-45; (xi) 45-50; (xii) 50-60; (xiii) 60-70; (xiv) 70-80; (xv) 80-90; (xvi) 90-100; and (xvii) > 100; or
  2. (b) the ratio of the first gain to the second gain is selected from the group consisting of: (i) < 2; (ii) 2-5; (iii) 5-10; (iv) 10-15; (v) 15-20; (vi) 20-25; (vii) 25-30; (viii) 30-35; (ix) 35-40; (x) 40-45; (xi) 45-50; (xii) 50-60; (xiii) 60-70; (xiv) 70-80; (xv) 80-90; (xvi) 90-100; and (xvii) > 100.


[0036] The method further comprises outputting a first signal and a second signal from the ion detector, preferably wherein the first signal corresponds with a signal multiplied or amplified by a first gain and the second signal corresponds with a signal multiplied or amplified by a second different gain.

[0037] The method preferably further comprises detecting one or more first peaks in the first digitised signal and detecting one or more second peaks in the second digitised signal.

[0038] The method preferably further comprises marking or flagging first peaks and/or second peaks which are determined to suffer from saturation.

[0039] The method preferably further comprises determining an intensity value and an arrival time or other value for each of the first peaks.

[0040] The method preferably further comprises correcting the determined arrival time or other value of each of the first peaks based upon the time difference ΔT.

[0041] The method preferably further comprises determining an intensity value and an arrival time or other value for each of the second peaks.

[0042] The method preferably further comprises correcting the determined arrival time or other value of each the second peaks based upon the time difference ΔT.

[0043] The method preferably further comprises forming a combined data set comprising intensity values and arrival time or other values of each of the second peaks which are not marked or flagged as suffering from saturation and intensity values and arrival time or other values of first peaks when corresponding second peaks are marked or flagged as suffering from saturation.

[0044] The method preferably further comprises correcting the determined arrival time or other value of each of the first peaks based upon the time difference ΔT.

[0045] The method preferably further comprises correcting the determined arrival time or other value of each of the second peaks based upon the time difference ΔT.

[0046] The method preferably further comprises scaling intensity values of the first peaks by a scale factor.

[0047] The scale factor preferably corresponds with the ratio of the second gain to the first gain.

[0048] The method preferably further comprises histogramming or combining the intensity values and arrival time or other values in the combined data set with other intensity values and arrival time or other values to form a mass spectrum.

[0049] According to an embodiment the method further comprises summing the first digitised signal with a plurality of other corresponding first digitised signals to form a first summed digitised signal and summing the second digitised signal with a plurality of other corresponding second digitised signals to form a second summed digitised signal.

[0050] The method preferably further comprises determining a first summed intensity value and a first summed arrival time or other value from the first summed digitised signal.

[0051] The method preferably further comprises determining a second summed intensity value and a second summed arrival time or other value from the second summed digitised signal.

[0052] The method preferably further comprises either: (i) marking or flagging first digitised signals and/or second digitised signals which are determined to suffer from saturation; and/or (ii) marking or flagging first summed intensity values and/or second summed intensity values which are determined to suffer from saturation.

[0053] The method preferably further comprises correcting the first summed arrival times or other values based upon the time difference ΔT.

[0054] The method preferably further comprises correcting the second summed arrival times or other values based upon the time difference ΔT.

[0055] The method preferably further comprises forming a combined data set comprising second summed intensity values and second summed arrival time or other values which are not marked or flagged as suffering from saturation and first summed intensity values and first summed arrival time or other values when corresponding second digitised signals or second summed intensity values are marked or flagged as suffering from saturation.

[0056] The method preferably further comprises correcting the first summed arrival times or other values based upon the time difference ΔT.

[0057] The method preferably further comprises correcting the second summed arrival times or other values based upon the time difference ΔT.

[0058] The method preferably further comprises scaling the first summed intensity values by a scale factor. The scale factor preferably corresponds with the ratio of the second gain to the first gain.

[0059] The method preferably further comprises histogramming or combining the intensity values and arrival time or other values in the combined data set with other intensity values and arrival time or other values to form a mass spectrum.

[0060] The step of outputting the first signal and the second signal preferably comprises converting, splitting or dividing a signal output from the ion detector into the first signal and the second signal.

[0061] The steps of digitising the first signal and digitising the second signal are preferably performed substantially simultaneously.

[0062] The step of digitising the first signal comprises using a first Analogue to Digital Converter to digitise the first signal and the step of digitising the second signal comprises using a second different Analogue to Digital Converter to digitise the second signal.

[0063] The first Analogue to Digital Converter and/or the second Analogue to Digital Converter are preferably arranged to convert an analogue voltage to a digital output and wherein the first Analogue to Digital Converter and/or the second Analogue to Digital Converter are arranged:
to have a resolution selected from the group consisting of: (i) at least 4 bits; (ii) at least 5 bits; (iii) at least 6 bits; (iv) at least 7 bits; (v) at least 8 bits; (vi) at least 9 bits; (vii) at least 10 bits; (viii) at least 11 bits; (ix) at least 12 bits; (x) at least 13 bits; (xi) at least 14 bits; (xii) at least 15 bits; and (xiii) at least 16 bits.

[0064] The method further comprises using the determined intensity difference or ratio to correct subsequent intensity data produced by the dual gain ADC detector system.

[0065] According to the preferred embodiment signals output from the first Analogue to Digital Converter are not phase corrected with signals output from the second Analogue to Digital Converter.

[0066] The test signal preferably has a line width and/or line shape similar to an ion arrival signal.

[0067] The method preferably further comprises using a single ion detector to detect analyte ions.

[0068] Conventional arrangements such as the one disclosed in WO 2008/008867 are unable to determine a propagation time delay of the order > 1 ns. ADC time bins which are misaligned by only one or two time bins (e.g. up to 100 ps) may conventionally be aligned by phase correcting the two ADCs.

[0069] According to an aspect of the present invention there is provided a dual gain ADC detector system as claimed in claim 15.

[0070] The arrangement disclosed in WO 2008/008867 does not pass multiple test signals through both ADCs and then histogram the time and intensity values of test peaks and then determine a propagation delay between the two signal paths based upon two histograms.

[0071] The arrangement disclosed in WO 2008/008867 is unable to determine a propagation time delay of the order > 1 ns. ADC time bins which are misaligned by only one or two time bins e.g. up to 100 ps are aligned by phase correcting the two ADCs.

[0072] The first signal path preferably has a first gain and the second signal path has a second higher gain.

[0073] The method preferably further comprises providing an ion detector wherein the step of detecting the analyte ions comprises digitising a first signal output from the ion detector which passes along the first signal path and determining first time and intensity pairs in relation to peaks in the first signal and digitising a second signal output from the ion detector which passes along the second signal path and determining second time and intensity pairs in relation to peaks in the second signal.

[0074] The method preferably further comprises forming a mass spectrum by selecting the second time and intensity pairs unless a second time and intensity pair is determined to suffer from saturation whereupon a corresponding first time and intensity pair is selected instead.

[0075] According to the preferred embodiment if a first time and intensity pair is selected instead of a second time and intensity pair then an intensity value of the first time and intensity pair is scaled by a scale factor which substantially corresponds with the ratio of the second gain to the first gain.

[0076] The method preferably further comprises digitising an ion peak across multiple ADC time bins and converting the digitised ion peak into a single time and intensity pair, wherein the time value of the time and intensity pair corresponds with a centroid or weighted centroid of the digitised ion peak.

[0077] According to an aspect of the present invention there is provided a mass spectrometer comprising:
the dual gain ADC detector system.

[0078] The arrangement disclosed in WO 2008/008867 is unable to determine a propagation time delay of the order > 1 ns. ADC time bins which are misaligned by only one or two time bins e.g. up to 100 ps are aligned by phase correcting the two ADCs.

[0079] According to an embodiment the mass spectrometer may further comprise:
  1. (a) an ion source selected from the group consisting of: (i) an Electrospray ionisation ("ESI") ion source; (ii) an Atmospheric Pressure Photo lonisation ("APPI") ion source; (iii) an Atmospheric Pressure Chemical Ionisation ("APCI") ion source; (iv) a Matrix Assisted Laser Desorption lonisation ("MALDI") ion source; (v) a Laser Desorption lonisation ("LDI") ion source; (vi) an Atmospheric Pressure lonisation ("API") ion source; (vii) a Desorption lonisation on Silicon ("DIOS") ion source; (viii) an Electron Impact ("El") ion source; (ix) a Chemical Ionisation ("CI") ion source; (x) a Field lonisation ("Fl") ion source; (xi) a Field Desorption ("FD") ion source; (xii) an Inductively Coupled Plasma ("ICP") ion source; (xiii) a Fast Atom Bombardment ("FAB") ion source; (xiv) a Liquid Secondary Ion Mass Spectrometry ("LSIMS") ion source; (xv) a Desorption Electrospray lonisation ("DESI") ion source; (xvi) a Nickel-63 radioactive ion source; (xvii) an Atmospheric Pressure Matrix Assisted Laser Desorption lonisation ion source; (xviii) a Thermospray ion source; (xix) an Atmospheric Sampling Glow Discharge lonisation ("ASGDI") ion source; (xx) a Glow Discharge ("GD") ion source; (xxi) an Impactor ion source; (xxii) a Direct Analysis in Real Time ("DART") ion source; (xxiii) a Laserspray lonisation ("LSI") ion source; (xxiv) a Sonicspray lonisation ("SSI") ion source; (xxv) a Matrix Assisted Inlet lonisation ("MAII") ion source; and (xxvi) a Solvent Assisted Inlet lonisation ("SAII") ion source; and/or
  2. (b) one or more continuous or pulsed ion sources; and/or
  3. (c) one or more ion guides; and/or
  4. (d) one or more ion mobility separation devices and/or one or more Field Asymmetric Ion Mobility Spectrometer devices; and/or
  5. (e) one or more ion traps or one or more ion trapping regions; and/or
  6. (f) one or more collision, fragmentation or reaction cells selected from the group consisting of: (i) a Collisional Induced Dissociation ("CID") fragmentation device; (ii) a Surface Induced Dissociation ("SID") fragmentation device; (iii) an Electron Transfer Dissociation ("ETD") fragmentation device; (iv) an Electron Capture Dissociation ("ECD") fragmentation device; (v) an Electron Collision or Impact Dissociation fragmentation device; (vi) a Photo Induced Dissociation ("PID") fragmentation device; (vii) a Laser Induced Dissociation fragmentation device; (viii) an infrared radiation induced dissociation device; (ix) an ultraviolet radiation induced dissociation device; (x) a nozzle-skimmer interface fragmentation device; (xi) an in-source fragmentation device; (xii) an in-source Collision Induced Dissociation fragmentation device; (xiii) a thermal or temperature source fragmentation device; (xiv) an electric field induced fragmentation device; (xv) a magnetic field induced fragmentation device; (xvi) an enzyme digestion or enzyme degradation fragmentation device; (xvii) an ion-ion reaction fragmentation device; (xviii) an ion-molecule reaction fragmentation device; (xix) an ion-atom reaction fragmentation device; (xx) an ion-metastable ion reaction fragmentation device; (xxi) an ion-metastable molecule reaction fragmentation device; (xxii) an ion-metastable atom reaction fragmentation device; (xxiii) an ion-ion reaction device for reacting ions to form adduct or product ions; (xxiv) an ion-molecule reaction device for reacting ions to form adduct or product ions; (xxv) an ion-atom reaction device for reacting ions to form adduct or product ions; (xxvi) an ion-metastable ion reaction device for reacting ions to form adduct or product ions; (xxvii) an ion-metastable molecule reaction device for reacting ions to form adduct or product ions; (xxviii) an ion-metastable atom reaction device for reacting ions to form adduct or product ions; and (xxix) an Electron lonisation Dissociation ("EID") fragmentation device; and/or
  7. (g) a mass analyser selected from the group consisting of: (i) a quadrupole mass analyser; (ii) a 2D or linear quadrupole mass analyser; (iii) a Paul or 3D quadrupole mass analyser; (iv) a Penning trap mass analyser; (v) an ion trap mass analyser; (vi) a magnetic sector mass analyser; (vii) Ion Cyclotron Resonance ("ICR") mass analyser; (viii) a Fourier Transform Ion Cyclotron Resonance ("FTICR") mass analyser; (ix) an electrostatic or orbitrap mass analyser; (x) a Fourier Transform electrostatic or orbitrap mass analyser; (xi) a Fourier Transform mass analyser; (xii) a Time of Flight mass analyser; (xiii) an orthogonal acceleration Time of Flight mass analyser; and (xiv) a linear acceleration Time of Flight mass analyser; and/or
  8. (h) one or more energy analysers or electrostatic energy analysers; and/or
  9. (i) one or more ion detectors; and/or
  10. (j) one or more mass filters selected from the group consisting of: (i) a quadrupole mass filter; (ii) a 2D or linear quadrupole ion trap; (iii) a Paul or 3D quadrupole ion trap; (iv) a Penning ion trap; (v) an ion trap; (vi) a magnetic sector mass filter; (vii) a Time of Flight mass filter; and (viii) a Wien filter; and/or
  11. (k) a device or ion gate for pulsing ions; and/or
  12. (l) a device for converting a substantially continuous ion beam into a pulsed ion beam.


[0080] The mass spectrometer may further comprise either:
  1. (i) a C-trap and an orbitrap (RTM) mass analyser comprising an outer barrel-like electrode and a coaxial inner spindle-like electrode, wherein in a first mode of operation ions are transmitted to the C-trap and are then injected into the orbitrap (RTM) mass analyser and wherein in a second mode of operation ions are transmitted to the C-trap and then to a collision cell or Electron Transfer Dissociation device wherein at least some ions are fragmented into fragment ions, and wherein the fragment ions are then transmitted to the C-trap before being injected into the orbitrap (RTM) mass analyser; and/or
  2. (ii) a stacked ring ion guide comprising a plurality of electrodes each having an aperture through which ions are transmitted in use and wherein the spacing of the electrodes increases along the length of the ion path, and wherein the apertures in the electrodes in an upstream section of the ion guide have a first diameter and wherein the apertures in the electrodes in a downstream section of the ion guide have a second diameter which is smaller than the first diameter, and wherein opposite phases of an AC or RF voltage are applied, in use, to successive electrodes.


[0081] According to an embodiment the mass spectrometer further comprises a device arranged and adapted to supply an AC or RF voltage to the electrodes. The AC or RF voltage preferably has an amplitude selected from the group consisting of: (i) < 50 V peak to peak; (ii) 50-100 V peak to peak; (iii) 100-150 V peak to peak; (iv) 150-200 V peak to peak; (v) 200-250 V peak to peak; (vi) 250-300 V peak to peak; (vii) 300-350 V peak to peak; (viii) 350-400 V peak to peak; (ix) 400-450 V peak to peak; (x) 450-500 V peak to peak; and (xi) > 500 V peak to peak.

[0082] The AC or RF voltage preferably has a frequency selected from the group consisting of: (i) < 100 kHz; (ii) 100-200 kHz; (iii) 200-300 kHz; (iv) 300-400 kHz; (v) 400-500 kHz; (vi) 0.5-1.0 MHz; (vii) 1.0-1.5 MHz; (viii) 1.5-2.0 MHz; (ix) 2.0-2.5 MHz; (x) 2.5-3.0 MHz; (xi) 3.0-3.5 MHz; (xii) 3.5-4.0 MHz; (xiii) 4.0-4.5 MHz; (xiv) 4.5-5.0 MHz; (xv) 5.0-5.5 MHz; (xvi) 5.5-6.0 MHz; (xvii) 6.0-6.5 MHz; (xviii) 6.5-7.0 MHz; (xix) 7.0-7.5 MHz; (xx) 7.5-8.0 MHz; (xxi) 8.0-8.5 MHz; (xxii) 8.5-9.0 MHz; (xxiii) 9.0-9.5 MHz; (xxiv) 9.5-10.0 MHz; and (xxv) > 10.0 MHz.

BRIEF DESCRIPTION OF THE DRAWINGS



[0083] Various embodiments of the present invention will now be described, by way of example only, and with reference to the accompanying drawings in which:

Fig. 1 shows a schematic representation of a preferred embodiment of the present invention;

Fig. 2 shows how the output from a mass spectrometer may be split according to an example outside the scope of the present invention;

Fig. 3 shows an oscilloscope trace showing a test signal;

Fig. 4A shows a summed mass spectrum produced for a test signal via a low gain signal path and Fig. 4B shows a summed mass spectrum produced for a test signal via a high gain signal path;

Fig. 5A shows a Total Ion Chromatogram from a high gain signal path and Fig. 5B shows a Total Ion Chromatogram from a low gain signal path;

Fig. 6A shows a mass spectrum for the low gain signal path and Fig. 6B shows a mass spectrum for the high gain signal path;

Fig. 7 shows a superimposed plot of ppm error in mass measurement and signal intensity for the high gain signal path;

Fig. 8 shows a superimposed plot of ppm error in mass measurement and signal intensity for the low gain signal path; and

Fig. 9 shows both sets of mass error and intensity data superimposed after applying a correction according to a preferred embodiment of the present invention.


DETAILED DESCRIPTION OF PREFERRED EMBODIMENT



[0084] A preferred embodiment of the present invention will now be described and relates to injecting a test signal in a dual ADC detector system. The test signal traverses the part of the signal path which is unique to each ADC input.

[0085] The test signal is preferably peak detected to produce time and intensity pairs for the portion of the signal which travels along the high gain amplifier signal path and time and intensity pairs for the portion of the signal which travels along the low gain amplifier path.

[0086] Fig. 1 shows a schematic representation of a preferred embodiment of the present invention.

[0087] With reference to Fig. 1, a signal from the arrival of an ion or ions at the detector of a mass spectrometer 1 is split by an impedance matched splitter 2 into two separate signal paths with a substantially equal intensity of signal being directed to each signal path.

[0088] A calibration signal from a signal generator 3 is preferably injected into the signal line between the output of the mass spectrometer 1 and the splitter device 2. The test signal is preferably similar in line width to a signal which would be generated from ions striking the ion detector and should not exceed the dynamic range of the second ADC 9 when amplified by a high gain detector 8. It is generally advantageous for this signal, when amplified by the high gain detector 8, to be close to the maximum intensity allowed by the dynamic range of the ADC such that when passing through low gain amplifier 4 the resultant digitized signal from the low gain signal path 6 is of sufficient intensity to be accurately represented.

[0089] The test signal preferably passes through the splitter device 2. A portion of the signal travels down a signal path where it is amplified by a low gain amplifier 4 and is subsequently digitised by a first ADC 5 to produce a digitized signal 6. This digitized signal 6 is then processed to produce a time and intensity pair 7.

[0090] A second portion of the test signal travels down a different signal path where it is amplified by a high gain amplifier 8 and is subsequently digitised by a second ADC 9 to produce a digitized signal 10. This digitized signal 10 is then processed to produce a time intensity pair 11.

[0091] A time difference 12 or propagation delay is then preferably calculated from the two time intensity pairs and this time difference may be added to one of the time intensity pairs as appropriate to align subsequent data.

[0092] Time-intensity pairs from subsequent (real) digitized and peak detected ion arrivals can then be aligned using a correction factor which has been calculated based upon the time difference of the test signal. The time and intensity pairs, once corrected, are then preferably combined into a single mass spectrum. The time correction is preferably applied for every time of flight spectrum before the data from the two ADCs is combined.

[0093] In the example described above with reference to Fig. 1 a single digitized transient from both signal paths for the same test signal was used to calculate the correction factor in order to align the two ADC outputs. However, in practice, it is highly desirable to create a histogram or sum of many transients for both signal paths and to determine the time correction based upon this summed data. This method produces an average correction value which will take into account timing jitter which may be different between the two signal paths.

[0094] In the preferred method this correction factor is applied to individual time of flight spectra from a single acceleration pulse prior to summing. However, in a less preferred embodiment the correction may be applied to the final summed or combined spectra made up from a summation of more than one time of flight spectrum. The summed time of flight spectra from each signal path may then be subsequently combined into a single high dynamic range data set.

[0095] To illustrate the utility of the present invention the test system shown in Fig. 2 comprising a single ADC was used to obtain some data for illustrative purposes only. In this test system the incoming signal was split into two signal paths with different amplification stages and was digitised sequentially using the same 3 GHz 8 bit ADC 5. The input of the ADC 5 was switched between the first and second signal paths on a regular repeating interval. This allowed spectra to be built up by summing many thousands of individual time of flight spectra for each signal path in turn. Spectra from each signal path were then processed to calibrate the two streams of data in terms of time and intensity.

[0096] With reference to Fig. 2, the output of a quadrupole orthogonal acceleration Time of Flight mass spectrometer 1 was split into two separate signal paths using a Mini Circuits 2FRSC-183 S+, 18 MHz power splitter 2. To calibrate the system a test signal from a Stanford research DG535 pulse generator 3 was introduced in place of the input from the mass spectrometer 1.

[0097] One portion of the test signal was directed to a ORTEC 9306 1 GHz amplifier 8. The second portion of the signal was directed to a second ORTEC 9306 amplifier 4 fitted with a 20 dB input attenuator prior to the amplifier. This attenuator had the effect of reducing the total amplification provided by the (low) amplification stage 4 by a factor of approximately x10 with respect to the other (high) amplification stage 8.

[0098] At the start of the acquisition a first switch 13 was arranged to be in a closed position and a second switch 14 was arranged to be in an open position. Signal from the lower amplification stage 4 was digitized 6, reduced to a time intensity pair 7 and recorded in memory. Subsequent pulses from the signal generator 3 were analysed in the same signal path and summed in memory to produce a spectrum.

[0099] After a period of approximately one second the first switch 13 was set to an open position and the second switch 14 was set to a closed position. Signal from the higher amplification stage 8 was digitized 10, reduced to a time intensity pair 11 and recorded in a separate summed spectrum for a further second.

[0100] This sequence was repeated every second to produce two series of spectra, one from the low gain signal path and one from the high gain signal path.

[0101] Fig. 3 shows an oscilloscope trace of the form of the test signal directly on the output of the signal generator 3. The signal generator 3 was set to produce a negative going signal with a pulse width of approximately 2.5 ns. The signal was made as symmetrical as possible in an effort to emulate the shape of an ion arrival envelope of the mass spectrometer. This ensured that any processing after digitisation had similar results for the test signal as the results which were expected for analyte ion arrival events.

[0102] The magnitude of the test signal was adjusted such that after amplification via the high gain signal path and subsequent digitization, the height of the most intense digitized sample was close to the maximum vertical range of the ADC. For the 8 bit ADC the maximum vertical least significant bit (LSB) is 255. In this case the signal was set to have a maximum of 225 LSBs. Setting the signal to this level ensured that in the low gain signal path sufficient intensity remained to accurately digitize the lower amplitude part of the signal.

[0103] For this example the test signal was set to appear at approximately 36 µs after the ADC 5 was triggered. This time is similar to the flight time of an ion having a mass to charge ratio of 556 in the geometry of mass spectrometer used. Subsequent calculation and application of the correction factor was performed close to this mass to charge ratio value to avoid errors.

[0104] According to the preferred embodiment all data was stored and corrected in time before conversion to mass.

[0105] Fig. 4A shows a summed spectrum produced for the test signal via the low gain signal path during a one second acquisition at a trigger repetition rate of 25,000 Hz.

[0106] Fig. 4B shows a summed spectrum produced for the test signal via the high gain signal path during a one second acquisition at a trigger repetition rate of 25,000 Hz.

[0107] The ratio of intensity for high gain/low gain was 2.52x107/2.68 x 106 = 9.4.

[0108] Therefore, the intensity correction factor which needs to be applied to the intensity from the low signal path is a multiplication factor of 9.4.

[0109] The ppm difference in the recorded mass to charge ratio values was 17.3 ppm. Therefore, to correct the mass to charge ratio scale in the low gain data path to the same value as in the high gain data path at a mass to charge ratio of approximately 556, 17.3 ppm should be subtracted from the mass to charge ratio recorded.

[0110] It will be understood that the timing or propagation delay between the two signal paths is essentially independent of the mass to charge ratio of ions being detected.

[0111] After the calibration was performed, the signal generator 3 was removed and the output of the mass spectrometer 1 was attached to the splitter 2 as shown in Fig. 2. A solution of Leucine Enkephalin was infused in positive ion Electrospray ionization mode. The intensity of the [M+H]+ ion at mass to charge ratio 556 was increased and decreased as the acquisition proceeded by adjusting the Electrospray capillary voltage. The intensity of the signal was then deliberately driven beyond the dynamic range of the ADC so that the correction factors calculated using the test signal could be tested.

[0112] Drift due to ambient temperature fluctuations was corrected by acquiring a separate single point "lock mass" at regular intervals during the acquisition. Lock mass spectra were acquired using the high gain amplifier signal path.

[0113] Fig. 5A shows the total ion current chromatogram (TIC) from the high gain signal path and Fig. 5B shown the total ion current chromatogram (TIC) from the low gain signal path.

[0114] Fig. 6A shows a single, one second duration, mass spectrum for the low gain signal path. Fig. 6B shows the mass spectrum acquired in one second for the high gain signal path directly after acquisition of the spectrum shown in Fig. 6A.

[0115] Fig. 7 shows a superimposed plot of ppm error in mass measurement (left hand side y axis) 1 of the [M+H]+ peak of Leucine Enkephalin having a mass to charge ratio of 556.3 and the intensity (right hand side y axis) 2 of the [M+H]+ peak of Leucine Enkephalin having a mass to charge ratio of 556.3 versus scan number for the signal recorded from the high gain signal path.

[0116] It is apparent from Fig. 7 that below an intensity of 1 x 107 as indicated by the horizontal line shown in Fig. 7 the mass measurement error was less than approx. +/- 1 ppm throughout the experiment. However, above an intensity of 1 x 107 the peak shifts towards high mass to charge ratio giving a positive mass measurement error. The maximum error was nearly 12 ppm at an intensity of 4.5 x 107. This shift in mass measurement is due to saturation of the ADC.

[0117] Fig. 8 shows a corresponding superimposed plot of ppm error in mass measurement (left hand side y axis) 3 of the [M+H]+ peak of Leucine Enkephalin having a mass to charge ratio of 556.3 and the intensity (right hand side y axis) 4 of the [M+H]+ peak of Leucine Enkephalin having a mass to charge ratio of 556.3 versus scan number for the signal recorded from the low gain signal path.

[0118] The mean mass measurement error is approximately 17 ppm +/- 1 ppm and there is little evidence of a mass shift within the statistical variation as the intensity increases. This is expected behaviour as the intensity does not rise above 1 x 107. This intensity did not give rise to a mass shift in Fig. 7.

[0119] Fig. 9 shows both sets of mass error 1,4 and intensity data 2,3 superimposed after correcting the mass to charge ratio values and the intensity based on the correction factors determined from Fig. 4 and the method according to the preferred embodiment of the present invention.

[0120] The intensity 3 recorded from the low gain signal path is shown multiplied by 9.4. It follows the intensity 2 recorded from the high gain signal path until an intensity of around 1 x 107. This intensity is the point at which saturation of the ADC in the high gain signal path becomes significant both qualitatively and quantitatively. The ppm mass error 4 after subtraction of 17.4 ppm from the low gain data path result also follows the mass error 1 for the high gain data path until the onset of saturation in the high gain data.

[0121] Using a combination of the low and high gain data the dynamic range of the data set can be improved by over 10 times whilst still retaining detection limits at low intensity.

[0122] This data illustrates that the method of calibrating a dual gain ADC system using a test signal as described above in accordance with the preferred embodiment of the present invention provides sufficient accuracy in the mass accuracy and quantitative performance of a dual gain ADC.

[0123] The preferred method of calibration is also relevant to a gain switching Dynamic Range Enhancement ("DRE") method of operation such as that described in the example data given in this application. This method of operation is described in Micromass patent US-7038197.

[0124] It should be stressed that although not preferred, it is within the scope of the present invention to use a calibrant compound ionized and analysed by the mass spectrometer to perform the calibration procedure. This still is advantageous over conventional arrangements since no phase correcting of the two ADCs is required.

[0125] In addition there is no requirement to align the signal such that each digitized point in the two signal paths corresponds to the same region of the ion signal before individual digitized points are chosen to represent the final signal. This reduces the complexity of operating such a system.

[0126] Although the present invention has been described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes in form and detail may be made without departing from the scope of the invention as set forth in the accompanying claims.


Claims

1. A method of mass spectrometry comprising:

passing a test signal (6) through a first signal path of a dual gain ADC detector system to produce a first signal and to determine a first time T1 for said first signal path;

passing a test signal (10) through a second signal path of said dual gain ADC detector system to produce a second signal and to determine a second time T2 for said second signal path;

determining an intensity difference or ratio between the first signal and the second signal;

determining a time difference ΔT (12) between said first time T1 and said second time T2, wherein said time difference ΔT is selected from the group consisting of: (i) 10-20 ns; (ii) 20-30 ns; (iii) 30-40 ns; (iv) 40-50 ns; (v) 50-60 ns; (vi) 60-70 ns; (vii) 70-80 ns; (viii) 80-90 ns; (ix) 90-100 ns; (x) 100-200 ns; (xi) 200-300 ns; (xii) 300-400 ns; and (xiii) 400-500 ns;

detecting analyte ions using an ion detector and outputting a first signal and a second signal from said ion detector;

digitising said first signal using a first Analogue to Digital Converter (5) to produce a first digitised signal and digitising said second signal using a second different Analogue to Digital Converter (9) to produce a second digitised signal, wherein said first Analogue to Digital Converter (5) and said second Analogue to Digital Converter (9) operate at a digitisation rate selected from the group consisting of: (i) 1-2 GHz; (ii) 2-3 GHz; (iii) 3-4 GHz; (iv) 4-5 GHz; (v) 5-6 GHz; (vi) 6-7 GHz; (vii) 7-8 GHz; (viii) 8-9 GHz; and (ix) 9-10 GHz;

detecting one or more peaks in the digitised signal data produced by the dual gain ADC detector system for the detected analyte ions;

determining an intensity value and an arrival time, mass, or mass to charge ratio value for said one or more peaks;

correcting the intensity value of said one or more peaks using the determined intensity difference or ratio; and

correcting the arrival time, mass, or mass to charge ratio value of said one or more peaks using the determined time difference ΔT (12).


 
2. A method as claimed in claim 1, wherein:

said first signal path comprises a low gain signal path; and/or

said second signal path comprises a high gain signal path.


 
3. A method as claimed in claim 1 or 2, wherein:
a signal passing along said first signal path is multiplied or amplified by a first gain; and optionally:
a signal passing along said second signal path is multiplied or amplified by a second different gain, wherein preferably said second gain is greater than said first gain.
 
4. A method as claimed in any one of claims 1, 2 or 3, further comprising:

passing the test signal multiple times through the first signal path of the dual gain ADC detector system to produce first digitised test signals, processing each said first digitised test signal to detect a first test peak, determining a time or other value and an intensity value corresponding to each said first test peak, histogramming or combining each said time or other value and said intensity value to form a first histogram or combined data set and determining the first time T1 for said first signal path from said first histogram or combined data set; and

passing the test signal multiple times through the second signal path of said dual gain ADC detector system to produce second digitised test signals, processing each said second digitised test signal to detect a second test peak, determining a time or other value and an intensity value corresponding to each said second test peak, histogramming or combining each said time or other value and said intensity value to form a second histogram or combined data set and determining a second time T2 for said second signal path from said second histogram or combined data set.


 
5. A method as claimed in any preceding claim, wherein said first signal corresponds with a signal multiplied or amplified by a first gain and said second signal corresponds with a signal multiplied or amplified by a second different gain.
 
6. A method as claimed in any preceding claim, further comprising:
detecting one or more first peaks in said first digitised signal and detecting one or more second peaks in said second digitised signal; and optionally:
marking or flagging first peaks and/or second peaks which are determined to suffer from saturation.
 
7. A method as claimed in claim 6, further comprising:

determining an intensity value and an arrival time or other value for each of said first peaks, and preferably correcting the determined arrival time or other value of each of said first peaks based upon said time difference ΔT; and/or

determining an intensity value and an arrival time or other value for each of said second peaks, and preferably correcting the determined arrival time or other value of each said second peaks based upon said time difference ΔT.


 
8. A method as claimed in claim 7, further comprising:

forming a combined data set comprising intensity values and arrival time or other values of each of said second peaks which are not marked or flagged as suffering from saturation and intensity values and arrival time or other values of first peaks when corresponding second peaks are marked or flagged as suffering from saturation;

and optionally:
correcting the determined arrival time or other value of each of said first peaks and/or said second peaks based upon said time difference ΔT.


 
9. A method as claimed in claim 8, further comprising histogramming or combining the intensity values and arrival time or other values in said combined data set with other intensity values and arrival time or other values to form a mass spectrum.
 
10. A method as claimed in any of claims 1-5, further comprising summing said first digitised signal with a plurality of other corresponding first digitised signals to form a first summed digitised signal and summing said second digitised signal with a plurality of other corresponding second digitised signals to form a second summed digitised signal.
 
11. A method as claimed in claim 10, further comprising determining:

a first summed intensity value and a first summed arrival time or other value from said first summed digitised signal; and/or

a second summed intensity value and a second summed arrival time or other value from said second summed digitised signal.


 
12. A method as claimed in claim 10 or 11, further comprising either: (i) marking or flagging first digitised signals and/or second digitised signals which are determined to suffer from saturation; and/or (ii) marking or flagging first summed intensity values and/or second summed intensity values which are determined to suffer from saturation.
 
13. A method as claimed in claim 11 or 12, further comprising:

correcting the first summed arrival times or other values based upon said time difference ΔT; and/or

correcting the second summed arrival times or other values based upon said time difference ΔT.


 
14. A method as claimed in claim 11, 12 or 13, further comprising:

forming a combined data set comprising second summed intensity values and second summed arrival time or other values which are not marked or flagged as suffering from saturation and first summed intensity values and first summed arrival time or other values when corresponding second digitised signals or second summed intensity values are marked or flagged as suffering from saturation;

and optionally:

correcting said first summed arrival times or other values based upon said time difference ΔT; and/or

correcting said second summed arrival times or other values based upon said time difference ΔT.


 
15. A dual gain ADC detector system comprising:

an ion detector;

a first signal path;

a second signal path; and

a control system arranged and adapted:

(i) to pass a test signal (6) through said first signal path to produce a first signal and to determine a first time T1 for said first signal path;

(ii) to pass a test signal (10) through said second signal path to produce a second signal and to determine a second time T2 for said second signal path;

(iii) to determine an intensity difference between said first signal and said second signal; and

(iv) to determine a time difference ΔT (12) between said first time T1 and said second time T2, wherein said time difference ΔT is selected from the group consisting of: (i) 10-20 ns; (ii) 20-30 ns; (iii) 30-40 ns; (iv) 40-50 ns; (v) 50-60 ns; (vi) 60-70 ns; (vii) 70-80 ns; (viii) 80-90 ns; (ix) 90-100 ns; (x) 100-200 ns; (xi) 200-300 ns; (xii) 300-400 ns; and (xiii) 400-500 ns;

wherein the dual gain ADC detector system is arranged and adapted:

(i) to detect analyte ions using the ion detector and output a first signal and a second signal from said ion detector;

(ii) to digitise said first signal using a first Analogue to Digital Converter (5) to produce a first digitised signal and digitise said second signal using a second different Analogue to Digital Converter (9) to produce a second digitised signal, wherein said first Analogue to Digital Converter (5) and said second Analogue to Digital Converter (9) operate at a digitisation rate selected from the group consisting of: (i) 1-2 GHz; (ii) 2-3 GHz; (iii) 3-4 GHz; (iv) 4-5 GHz; (v) 5-6 GHz; (vi) 6-7 GHz; (vii) 7-8 GHz; (viii) 8-9 GHz; and (ix) 9-10 GHz;

(iii) to detect one or more peaks in the digitised data produced by the dual gain ADC detector system for the detected analyte ions;

(iv) to detect an intensity value and an arrival time, mass, or mass to charge ratio value for said one or more peaks;

(v) to correct the intensity value of said one or more peaks using the determined intensity difference; and

(vi) to correct the arrival time, mass, or mass to charge ratio value of said one or more peaks using the determined time difference ΔT (12).


 


Ansprüche

1. Verfahren der Massenspektrometrie, umfassend:

Durchführen eines Testsignals (6) durch einen ersten Signalweg eines ADC-Erfassungssystems mit doppelter Verstärkung, um ein erstes Signal zu erzeugen und eine erste Zeit T1 für den ersten Signalweg zu bestimmen;

Durchführen eines Testsignals (10) durch einen zweiten Signalweg des ADC-Erfassungssystems mit doppelter Verstärkung, um ein zweites Signal zu erzeugen und eine zweite Zeit T2 für den zweiten Signalweg zu bestimmen;

Bestimmen einer Intensitätsdifferenz oder eines Verhältnisses zwischen dem ersten Signal und dem zweiten Signal;

Bestimmen einer Zeitdifferenz ΔT(12) zwischen der ersten Zeit T1 und der zweiten Zeit T2, wobei die Zeitdifferenz ΔT ausgewählt ist aus der Gruppe, bestehend aus: (i) 10-20 ns; (ii) 20-30 ns; (iii) 30-40 ns; (iv) 40-50 ns; (v) 50-60 ns; (vi) 60-70 ns; (vii) 70-80 ns; (viii) 80-90 ns; (ix) 90-100 ns; (x) 100-200 ns; (xi) 200-300 ns; (xii) 300-400 ns und (xiii) 400-500 ns;

Erkennen von Analyt-Ionen unter Verwendung eines lonendetektors und Ausgeben eines ersten Signals und eines zweiten Signals von dem lonendetektor;

Digitalisieren des ersten Signals unter Verwendung eines ersten Analog-/DigitalWandlers (5), um ein erstes digitalisiertes Signal zu erzeugen, und Digitalisieren des zweiten Signals unter Verwendung eines zweiten, unterschiedlichen Analog-/DigitalWandlers (9), um ein zweites digitalisiertes Signal zu erzeugen, wobei der erste Analog-/Digital-Wandler (5) und der zweite Analog-/Digital-Wandler (9) mit einer Digitalisierungsrate betrieben werden, die ausgewählt ist aus der Gruppe, bestehend aus: (i) 1-2 GHz; (ii) 2-3 GHz; (iii) 3-4 GHz; (iv) 4-5 GHz; (v) 5-6 GHz; (vi) 6-7 GHz; (vii) 7-8 GHz; (viii) 8-9 GHz; und (ix) 9-10 GHz;

Erkennen von einer oder mehreren Spitzen in den Daten des digitalisierten Signals, die von dem ADC-Erfassungssystem mit doppelter Verstärkung für die erkannten Analyt-Ionen erzeugt wurden;

Bestimmen eines Intensitätswerts und eines Werts der Ankunftszeit, der Masse oder des Masse-/Ladungsverhältnisses für die eine oder mehreren Spitzen;

Korrigieren des Intensitätswerts der einen oder mehreren Spitzen unter Verwendung der bestimmten Intensitätsdifferenz oder des Verhältnisses; und

Korrigieren des Werts der Ankunftszeit, der Masse oder des Masse-/Ladungsverhältnisses der einen oder mehreren Spitzen unter Verwendung der bestimmten Zeitdifferenz ΔT (12).


 
2. Verfahren nach Anspruch 1, wobei:

der erste Signalweg einen Signalweg mit niedriger Verstärkung umfasst; und/oder

der zweite Signalweg einen Signalweg mit hoher Verstärkung umfasst.


 
3. Verfahren nach Anspruch 1 oder 2, wobei:
ein Signal, das entlang des ersten Signalwegs durchgeführt wird, von einer ersten Verstärkung vervielfacht oder verstärkt wird; und optional:
ein Signal, das entlang des zweiten Signalwegs durchgeführt wird, von einer zweiten, unterschiedlichen Verstärkung vervielfacht oder verstärkt wird, wobei bevorzugt die zweite Verstärkung größer ist als die erste Verstärkung.
 
4. Verfahren nach einem der Ansprüche 1, 2 oder 3, weiter umfassend:

mehrmaliges Durchführen des Testsignals durch den ersten Signalweg des ADC-Erfassungssystems mit doppelter Verstärkung, um erste digitalisierte Testsignale zu erzeugen, Verarbeiten jedes der ersten digitalisierten Testsignale, um eine erste Testspitze zu erkennen, Bestimmen einer Zeit oder eines anderen Werts und eines Intensitätswerts, der jeder der ersten Testspitzen entspricht, , Erstellen eines Histogramms oder Kombinieren jedes der Zeit oder des anderen Werts und des Intensitätswerts, um ein erstes Histogramm oder einen kombinierten Datensatz zu bilden und Bestimmen der ersten Zeit T1 für den ersten Signalweg aus dem ersten Histogramm oder kombinierten Datensatz; und

mehrfaches Durchführen des Testsignals durch den zweiten Signalweg des ADC-Erfassungssystems mit doppelter Verstärkung, um zweite digitalisierte Testsignale zu erzeugen, Verarbeiten jedes der zweiten digitalisierten Testsignale, um eine zweite Testspitze zu erkennen, Bestimmen einer Zeit oder eines anderen Werts und eines Intensitätswerts, der jeder der zweiten Testspitzen entspricht, Erstellen eines Histogramms oder Kombinieren jedes der Zeit oder des anderen Werts und des Intensitätswerts, um ein zweites Histogramm oder einen kombinierten Datensatz zu bilden und Bestimmen einer zweiten Zeit T2 für den zweiten Signalweg aus dem zweiten Histogramm oder kombinierten Datensatz.


 
5. Verfahren nach einem der vorstehenden Ansprüche, wobei das erste Signal einem Signal entspricht, das von einer ersten Verstärkung vervielfacht oder verstärkt wurde, und das zweite Signal einem Signal entspricht, das von einer zweiten, unterschiedlichen Verstärkung vervielfacht oder verstärkt wurde.
 
6. Verfahren nach einem der vorstehenden Ansprüche, weiter umfassend:
Erkennen von einer oder mehreren ersten Spitzen in dem ersten digitalisierten Signal, und Erkennen von einer oder mehreren zweiten Spitzen in dem zweiten digitalisierten Signal; und optional:
Markieren oder Kennzeichnen von ersten Spitzen und/oder zweiten Spitzen, für die bestimmt ist, dass sie an Sättigung leiden.
 
7. Verfahren nach Anspruch 6, weiter umfassend:

Bestimmen eines Intensitätswerts und eines Werts der Ankunftszeit oder eines anderen Werts für jede der ersten Spitzen, und bevorzugt Korrigieren der bestimmten Ankunftszeit oder des anderen Werts von jeder der ersten Spitzen auf der Grundlage der Zeitdifferenz ΔT; und/oder

Bestimmen eines Intensitätswerts und eines Werts der Ankunftszeit oder eines anderen Werts für jede der zweiten Spitzen, und bevorzugt Korrigieren der bestimmten Ankunftszeit oder des anderen Werts für jede der zweiten Spitzen auf der Grundlage der Zeitdifferenz ΔT.


 
8. Verfahren nach Anspruch 7, weiter umfassend:

Bilden eines kombinierten Datensatzes, umfassend Intensitätswerte und Werte der Ankunftszeit oder andere Werte für jede der zweiten Spitzen, die nicht als unter Sättigung leidend markiert oder gekennzeichnet sind, und Intensitätswerte und Werte der Ankunftszeit oder andere Werte für die ersten Spitzen, wenn entsprechende zweite Spitzen als unter Sättigung leidend markiert oder gekennzeichnet sind;

und optional:
Korrigieren des bestimmten Werts der Ankunftszeit oder des anderen Werts der ersten Spitzen und/oder der zweiten Spitzen auf der Grundlage der Zeitdifferenz ΔT.


 
9. Verfahren nach Anspruch 8, weiter Erstellen eines Histogramms oder Kombinieren der Intensitätswerte und der Werte der Ankunftszeit oder der anderen Werte in dem kombinierten Datensatz mit anderen Intensitätswerten und Werten der Ankunftszeit oder anderen Werten umfassend, um ein Massenspektrum zu bilden.
 
10. Verfahren nach einem der Ansprüche 1-5, weiter umfassend Summieren des ersten digitalisierten Signalen mit einer Vielzahl von anderen entsprechenden ersten digitalisierten Signalen, um ein erstes summiertes digitalisiertes Signal zu bilden, und Summieren des zweiten digitalisierten Signalen mit einer Vielzahl von anderen entsprechenden zweiten digitalisierten Signalen, um ein zweites summiertes digitalisiertes Signal zu bilden.
 
11. Verfahren nach Anspruch 10, weiter umfassend Bestimmen:

eines ersten summierten Intensitätswerts und eines ersten summierten Werts der Ankunftszeit oder eines anderen Werts von dem ersten summierten digitalisierten Signal; und/oder

eines zweiten summierten Intensitätswerts und eines zweiten summierten Werts der Ankunftszeit oder eines anderen Werts aus dem zweiten summierten digitalisierten Signal.


 
12. Verfahren nach Anspruch 10 oder 11, weiter umfassend eines von: (i) Markieren oder Kennzeichnen von ersten digitalisierten Signalen und/oder zweiten digitalisierten Signalen, für die bestimmt ist, dass sie an Sättigung leiden; und/oder (ii) Markieren oder Kennzeichnen von ersten summierten Intensitätswerten und/oder zweiten summierten Intensitätswerten, für die bestimmt ist, dass sie an Sättigung leiden.
 
13. Verfahren nach Anspruch 11 oder 12, weiter umfassend:

Korrigieren der ersten summierten Werten der Ankunftszeiten oder von anderen Werten auf der Grundlage der Zeitdifferenz ΔT; und/oder

Korrigieren der zweiten summierten Werte der Ankunftszeiten oder von anderen Werten auf der Grundlage der Zeitdifferenz ΔT.


 
14. Verfahren nach Anspruch 11, 12 oder 13, weiter umfassend:

Bilden eines kombinierten Datensatzes, der zweite summierte Intensitätswerte und zweite summierte Werte der Ankunftszeit oder andere Werte, die nicht als unter Sättigung leidend markiert oder gekennzeichnet sind, und erste summierte Intensitätswerte und erste summierte Werte der Ankunftszeit oder andere Werte, wenn diese zweiten digitalisierten Signalen entsprechen, oder zweite summierte Intensitätswerte, die als unter Sättigung leidend markiert oder gekennzeichnet sind, umfasst;

und optional:

Korrigieren der ersten summierten Werte der Ankunftszeiten oder anderen Werte auf der Grundlage der Zeitdifferenz ΔT; und/oder

Korrigieren der zweiten summierten Werte der Ankunftszeiten oder anderen Werte auf der Grundlage der Zeitdifferenz ΔT.


 
15. ADC-Erfassungssystem mit doppelter Verstärkung, umfassend:

einen Ionendetektor;

einen ersten Signalweg;

einen zweiten Signalweg; und

ein Steuerungssystem, das angeordnet und angepasst ist, um:

(i) ein Testsignal (6) durch den ersten Signalweg durchzuführen, um ein erstes Signal zu erzeugen und eine erste Zeit T1 für den ersten Signalweg zu bestimmen;

(ii) ein Testsignal (10) durch den zweiten Signalweg durchzuführen, um ein zweites Signal zu erzeugen und eine zweite Zeit T2 für den zweiten Signalweg zu bestimmen;

(iii) eine Intensitätsdifferenz zwischen dem ersten Signal und dem zweiten Signal zu bestimmen; und

(iv) eine Zeitdifferenz ΔT (12) zwischen der ersten Zeit T1 und der zweiten Zeit T2 zu bestimmen, wobei die Zeitdifferenz ΔT ausgewählt ist aus der Gruppe, bestehend aus: (i) 10-20 ns; (ii) 20-30 ns; (iii) 30-40 ns; (iv) 40-50 ns; (v) 50-60 ns; (vi) 60-70 ns; (vii) 70-80 ns; (viii) 80-90 ns; (ix) 90-100 ns; (x) 100-200 ns; (xi) 200-300 ns; (xii) 300-400 ns; und (xiii) 400-500 ns;

wobei das ADC-Erfassungssystem mit doppelter Verstärkung angeordnet und angepasst ist, um:

(i) Analyt-Ionen unter Verwendung des lonendetektors zu erkennen und ein erstes Signal und ein zweites Signal von dem lonendetektor auszugeben;

(ii) das erste Signal unter Verwendung eines ersten Analog-/Digital-Wandlers (5) zu digitalisieren, um ein erstes digitalisiertes Signal zu erzeugen, und das zweite Signal unter Verwendung eines zweiten, unterschiedlichen Analog-/Digital-Wandlers (9) zu digitalisieren, um ein zweites digitalisiertes Signal zu erzeugen, wobei der erste Analog-/Digital-Wandler (5) und der zweite Analog-/Digital-Wandler (9) mit einer Digitalisierungsrate betrieben werden, die ausgewählt ist aus der Gruppe, bestehend aus: (i) 1-2 GHz; (ii) 2-3 GHz; (iii) 3-4 GHz; (iv) 4-5 GHz; (v) 5-6 GHz; (vi) 6-7 GHz; (vii) 7-8 GHz; (viii) 8-9 GHz; und (ix) 9-10 GHz;

(iii) eine oder mehrere Spitzen in den von dem ADC-Erfassungssystem mit doppelter Verstärkung für die erkannten Analyt-Ionen erzeugten digitalisierten Daten zu erkennen;

(vi) einen Intensitätswert und einen Wert der Ankunftszeit, der Masse oder des Masse-/Ladungsverhältnisses für die eine oder die mehreren Spitzen zu erkennen;

(v) den Intensitätswert der einen oder der mehreren Spitzen unter Verwendung der bestimmten Intensitätsdifferenz zu korrigieren; und

(vi) den Wert der Ankunftszeit, der Masse oder des Masse-/Ladungsverhältnisses der einen oder der mehreren Spitzen unter Verwendung der bestimmten Zeitdifferenz ΔT (12) zu korrigieren.


 


Revendications

1. Procédé de spectrométrie de masse comprenant les étapes consistant à :

faire passer un signal de test (6) à travers un premier trajet de signal d'un système de détecteur d'ADC à double gain pour produire un premier signal et pour déterminer un premier temps T1 pour ledit premier trajet de signal ;

faire passer un signal de test (10) à travers un second trajet de signal dudit système de détecteur d'ADC à double gain pour produire un second signal et pour déterminer un second temps T2 pour ledit second trajet de signal ;

déterminer une différence ou un rapport d'intensité entre le premier signal et le second signal ;

déterminer une différence de temps ΔT (12) entre ledit premier temps T1 et ledit second temps T2, dans lequel ladite différence de temps ΔT est sélectionnée dans le groupe consistant en : (i) 10 à 20 ns ; (ii) 20 à 30 ns ; (iii) 30 à 40 ns ; (iv) 40 à 50 ns ; (v) 50 à 60 ns ; (vi) 60 à 70 ns ; (vii) 70 à 80 ns ; (viii) 80 à 90 ns ; (ix) 90 à 100 ns ; (x) 100 à 200 ns ; (xi) 200 à 300 ns ; (xii) 300 à 400 ns ; et (xiii) 400 à 500 ns ;

détecter des ions d'analyte en utilisant un détecteur d'ions et délivrer en sortie un premier signal et un second signal à partir dudit détecteur d'ions ;

numériser ledit premier signal en utilisant un premier convertisseur analogique-numérique (5) pour produire un premier signal numérisé et numériser ledit second signal en utilisant un second convertisseur analogique-numérique différent (9) pour produire un second signal numérisé, dans lequel ledit premier convertisseur analogique-numérique (5) et ledit second convertisseur analogique-numérique (9) fonctionnent à une vitesse de numérisation choisie dans le groupe consistant en : (i) 1 à 2 GHz ; (ii) 2 à 3 GHz ; (iii) 3 à 4 GHz ; (iv) 4 à 5 GHz ; (v) 5 à 6 GHz ; (vi) 6 à 7 GHz ; (vii) 7 à 8 GHz ; (viii) 8 à 9 GHz ; et (ix) 9 à 10 GHz;

détecter un ou plusieurs pics dans les données de signal numérisées produites par le système de détecteur d'ADC à double gain pour les ions d'analyte détectés ;

déterminer une valeur d'intensité et une valeur de temps d'arrivée, de masse ou de rapport masse/charge pour lesdits un ou plusieurs pics ;

corriger la valeur d'intensité desdits un ou plusieurs pics en utilisant la différence ou le rapport d'intensité déterminé(e) ; et

corriger la valeur de temps d'arrivée, de masse ou de rapport masse/charge desdits un ou plusieurs pics en utilisant la différence de temps déterminée ΔT (12).


 
2. Procédé selon la revendication 1, dans lequel :

ledit premier trajet de signal comprend un trajet de signal à faible gain ; et/ou

ledit second trajet de signal comprend un trajet de signal à gain élevé.


 
3. Procédé selon la revendication 1 ou 2, dans lequel :
un signal passant le long dudit premier trajet de signal est multiplié ou amplifié par un premier gain ; et facultativement :
un signal passant le long dudit second trajet de signal est multiplié ou amplifié par un second gain différent, dans lequel de préférence ledit second gain est supérieur audit premier gain.
 
4. Procédé selon l'une quelconque des revendications 1, 2 ou 3, comprenant en outre les étapes consistant à :

faire passer le signal de test plusieurs fois à travers le premier trajet de signal du système de détecteur d'ADC à double gain pour produire des premiers signaux de test numérisés, traiter chacun desdits premiers signaux de test numérisés pour détecter un premier pic de test, déterminer un temps ou une autre valeur et une valeur d'intensité correspondant à chacun desdits premiers pics de test, établir un histogramme de ou combiner chacun dudit temps ou de ladite autre valeur et ladite valeur d'intensité pour former un premier histogramme ou ensemble de données combiné et déterminer le premier temps T1 pour ledit premier trajet de signal à partir dudit premier histogramme ou ensemble de données combiné ; et

faire passer le signal de test plusieurs fois à travers le second trajet de signal dudit système de détecteur d'ADC à double gain pour produire des seconds signaux de test numérisés, traiter chacun desdits seconds signaux de test numérisés pour détecter un second pic de test, déterminer un temps ou une autre valeur et une valeur d'intensité correspondant à chaque second pic de test, établir un histogramme de ou combiner chacun dudit temps ou de ladite autre valeur et ladite valeur d'intensité pour former un second histogramme ou ensemble de données combiné et déterminer un second temps T2 pour ledit second trajet de signal à partir dudit second histogramme ou ensemble de données combiné.


 
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel ledit premier signal correspond à un signal multiplié ou amplifié par un premier gain et ledit second signal correspond à un signal multiplié ou amplifié par un second gain différent.
 
6. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre les étapes consistant à :
détecter un ou plusieurs premiers pics dans ledit premier signal numérisé et détecter un ou plusieurs seconds pics dans ledit second signal numérisé ; et facultativement :
marquer ou signaler les premiers pics et/ou les seconds pics qui sont déterminés comme souffrant d'une saturation.
 
7. Procédé selon la revendication 6, comprenant en outre les étapes consistant à :

déterminer une valeur d'intensité et un temps d'arrivée ou une autre valeur pour chacun desdits premiers pics, et corriger de préférence le temps d'arrivée ou l'autre valeur déterminé(e) de chacun desdits premiers pics sur la base de ladite différence de temps ΔT; et/ou

déterminer une valeur d'intensité et un temps d'arrivée ou une autre valeur pour chacun desdits seconds pics, et corriger de préférence le temps d'arrivée ou l'autre valeur déterminé(e)de chacun desdits seconds pics sur la base de ladite différence de temps ΔT.


 
8. Procédé selon la revendication 7, comprenant en outre les étapes consistant à :

former un ensemble de données combiné comprenant des valeurs d'intensité et des valeurs de temps d'arrivée ou d'autres valeurs de chacun desdits seconds pics qui ne sont pas marqués ou signalés comme souffrant de valeurs de saturation et d'intensité et le temps d'arrivée ou d'autres valeurs de premiers pics lorsque des seconds pics correspondants sont marqués ou signalés comme souffrant de saturation ;

et facultativement :
corriger le temps d'arrivée ou l'autre valeur déterminé(e)de chacun desdits premiers pics et/ou desdits seconds pics sur la base de ladite différence de temps ΔT.


 
9. Procédé selon la revendication 8, comprenant en outre les étapes consistant à établir un histogramme de ou à combiner les valeurs d'intensité et des valeurs de temps d'arrivée ou d'autres valeurs dans ledit ensemble de données combiné avec d'autres valeurs d'intensité et des valeurs de temps d'arrivée ou d'autres valeurs pour former un spectre de masse.
 
10. Procédé selon l'une quelconque des revendications 1 à 5, comprenant en outre les étapes consistant à additionner ledit premier signal numérisé avec une pluralité d'autres premiers signaux numérisés correspondants pour former un premier signal numérisé additionné, et à additionner ledit second signal numérisé avec une pluralité d'autres seconds signaux numérisés correspondants pour former un second signal numérisé additionné.
 
11. Procédé selon la revendication 10, comprenant en outre l'étape consistant à déterminer :

une première valeur d'intensité additionnée et une première valeur de temps d'arrivée ou une première autre valeur additionnée à partir dudit premier signal numérisé additionné ; et/ou

une seconde valeur d'intensité additionnée et une seconde valeur de temps d'arrivée ou une seconde autre valeur additionnée issue dudit second signal numérisé additionné.


 
12. Procédé selon la revendication 10 ou 11, comprenant en outre les étapes consistant à : (i) marquer ou signaler des premiers signaux numérisés et/ou des seconds signaux numérisés qui sont déterminés comme souffrant d'une saturation ; et/ou (ii) marquer ou signaler des premières valeurs d'intensité additionnées et/ou des secondes valeurs d'intensité additionnées qui sont déterminées comme souffrant d'une saturation.
 
13. Procédé selon la revendication 11 ou 12, comprenant en outre les étapes consistant à :

corriger les premières valeurs de temps d'arrivée ou les premières autres valeurs additionnées sur la base de ladite différence de temps ΔT; et/ou

corriger les secondes valeurs de temps d'arrivée ou les secondes autres valeurs additionnées sur la base de ladite différence de temps ΔT.


 
14. Procédé selon la revendication 11, 12 ou 13, comprenant en outre les étapes consistant à :

former un ensemble de données combiné comprenant des secondes valeurs d'intensité additionnées et des secondes valeurs de temps d'arrivée ou des secondes autres valeurs additionnées qui ne sont pas marquées ou signalées comme souffrant d'une saturation et des premières valeurs d'intensité additionnées et des premières valeurs de temps d'arrivée ou des premières autres valeurs additionnées lorsque des seconds signaux numérisés correspondants ou des secondes valeurs d'intensité additionnées sont marqué(e)s ou signalé(e)s comme souffrant d'une saturation ;

et facultativement :

corriger lesdites premières valeurs de temps d'arrivée ou lesdites premières autres valeurs additionnées sur la base de ladite différence de temps ΔT ; et/ou

corriger lesdites secondes valeurs de temps d'arrivée ou lesdites secondes autres valeurs additionnées sur la base de ladite différence de temps ΔT.


 
15. Système de détecteur d'ADC à double gain comprenant :

un détecteur d'ions ;

un premier trajet de signal ;

un second trajet de signal ; et

un système de commande agencé et adapté pour :

(i) faire passer un signal de test (6) à travers ledit premier trajet de signal pour produire un premier signal et pour déterminer un premier temps T1 pour ledit premier trajet de signal ;

(ii) faire passer un signal de test (10) à travers ledit second trajet de signal pour produire un second signal et pour déterminer un second temps T2 pour ledit second trajet de signal ;

(iii) déterminer une différence d'intensité entre ledit premier signal et ledit second signal ; et

(iv) déterminer une différence de temps ΔT (12) entre ledit premier temps T1 et ledit second temps T2, dans lequel ladite différence de temps ΔT est sélectionnée dans le groupe consistant en : (i) 10 à 20 ns ; (ii) 20 à 30 ns ; (iii) 30 à 40 ns ; (iv) 40 à 50 ns ; (v) 50 à 60 ns ; (vi) 60 à 70 ns ; (vii) 70 à 80 ns ; (viii) 80 à 90 ns ; (ix) 90 à 100 ns ; (x) 100 à 200 ns ; (xi) 200 à 300 ns ; (xii) 300 à 400 ns ; et (xiii) 400 à 500 ns ;

dans lequel le système de détecteur d'ADC à double gain est agencé et adapté pour :

(i) détecter des ions d'analyte en utilisant le détecteur d'ions et délivrer en sortie un premier signal et un second signal à partir dudit détecteur d'ions ;

(ii) numériser ledit premier signal en utilisant un premier convertisseur analogique-numérique (5) pour produire un premier signal numérisé et numériser ledit second signal en utilisant un second convertisseur analogique-numérique différent (9) pour produire un second signal numérisé,
dans lequel ledit premier convertisseur analogique-numérique (5) et ledit second convertisseur analogique-numérique (9) fonctionnent à une vitesse de numérisation choisie dans le groupe consistant en : (i) 1 à 2 GHz ; (ii) 2 à 3 GHz ; (iii) 3 à 4 GHz ; (iv) 4 à 5 GHz ; (y) 5 à 6 GHz ; (vi) 6 à 7 GHz ; (vii) 7 à 8 GHz ; (viii) 8 à 9 GHz ; et (ix) 9 à 10 GHz ;

(iii) détecter un ou plusieurs pics dans les données numérisées produites par le système de détecteur d'ADC à double gain pour les ions d'analyte détectés ;

(iv) détecter une valeur d'intensité et une valeur de temps d'arrivée, de masse ou de rapport masse/charge pour lesdits un ou plusieurs pics ;

(v) corriger la valeur d'intensité desdits un ou plusieurs pics en utilisant la différence d'intensité déterminée ; et

(vi) corriger la valeur de temps d'arrivée, de masse ou de rapport masse/charge desdits un ou plusieurs pics en utilisant la différence de temps déterminée ΔT (12).


 




Drawing



























REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description