(19)
(11)EP 2 853 001 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
01.05.2019 Bulletin 2019/18

(21)Application number: 13793885.8

(22)Date of filing:  22.05.2013
(51)Int. Cl.: 
H01M 10/60  (2014.01)
B60L 11/18  (2006.01)
(86)International application number:
PCT/CN2013/076055
(87)International publication number:
WO 2013/174260 (28.11.2013 Gazette  2013/48)

(54)

POWER SYSTEM OF HYBRID ELECTRIC VEHICLE, HYBRID ELECTRIC VEHICLE COMPRISING THE SAME AND METHOD FOR HEATING BATTERY GROUP OF HYBRID ELECTRIC VEHICLE

STROMVERSORGUNGSSYSTEM FÜR EIN HYBRIDES ELEKTROFAHRZEUG, HYBRIDES ELEKTROFAHRZEUG DAMIT UND VERFAHREN ZUR ERWÄRMUNG DER BATTERIEGRUPPE EINES HYBRIDEN ELEKTROFAHRZEUGS

SYSTÈME D'ALIMENTATION DE VÉHICULE ÉLECTRIQUE HYBRIDE, VÉHICULE ÉLECTRIQUE HYBRIDE COMPRENANT LEDIT SYSTÈME D'ALIMENTATION ET PROCÉDÉ DE CHAUFFAGE DE GROUPE BATTERIE DE VÉHICULE ÉLECTRIQUE HYBRIDE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 22.05.2012 CN 201210160624

(43)Date of publication of application:
01.04.2015 Bulletin 2015/14

(73)Proprietor: BYD Company Limited
Shenzhen 518118 (CN)

(72)Inventors:
  • CHEN, Liqiang
    Shenzhen Guangdong 518118 (CN)
  • WANG, Hongjun
    Shenzhen Guangdong 518118 (CN)
  • XIE, Shibin
    Shenzhen Guangdong 518118 (CN)

(74)Representative: Hoffmann Eitle 
Patent- und Rechtsanwälte PartmbB Arabellastraße 30
81925 München
81925 München (DE)


(56)References cited: : 
EP-A2- 0 992 811
WO-A2-2008/023245
CN-U- 202 219 728
JP-A- 2010 119 171
JP-B2- 4 120 025
WO-A1-2011/070848
CN-A- 102 055 042
JP-A- 2009 072 003
JP-B2- 3 509 382
US-A1- 2011 298 427
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    CROSS-REFERENCE TO RELATED APPLICATION



    [0001] This application claims priority to, and benefits of Chinese Patent Application Serial No. 201210160624.0, filed with the State Intellectual Property Office of P. R. C. on May 22, 2012, the entire contents of which are incorporated herein by reference.

    FIELD



    [0002] Exemplary embodiments of the present disclosure relate generally to a power system, and more particularly, to a power system of a hybrid electric vehicle, a hybrid electric vehicle comprising the power system and a method for heating a battery group of the hybrid electric vehicle.

    BACKGROUND



    [0003] With the development of the science technology, the new energy vehicle especially the pure electric vehicle and hybrid electric vehicle enters into a family as the means of transport. The performance requirement especially the comfort requirement of the user for the vehicle is higher and higher, which requires that the vehicle must adapt to different running requirements. But currently most pure electric vehicles and hybrid electric vehicles can not satisfy the requirements. Especially in winter, the temperature is low so that the capability of the battery, no matter the discharge capability or the battery capacity, may be decreased or even the battery can not be used. Specifically, the work temperature of the battery especially lithium ion battery is generally within a range from -20°C to 55°C, and the battery is not allowed to be charged at a low temperature. Under a low temperature condition, the battery in the electric vehicle may have the following problems. (1) The lithium ions may be deposited easily at the negative electrode and lose the electric activity at the low temperature, and therefore, if the battery in the electric vehicle is usually used at the low temperature, the life of the battery may be shortened and a safety problem may be caused accordingly. (2) When the lithium ion battery is charged at the low temperature, the lithium ions may be deposited easily at the negative electrode to become dead ions and thus the capacity of the battery may be decreased, and more ever, the deposited ions grow larger and larger during the continuous use, thus leading to a potential danger such as an internal short circuit. (3) The discharge capability of the battery is limited at the low temperature. All of the problems listed above may be not favourable for the electric vehicle which uses green and environment friendly new energy.
    The method for heating a battery is a very important technology in the electric vehicle field. A heating strategy of the battery and the performance of the battery heater influence the comfort, operation stability and safety of the vehicle directly. Many new technologies are applied in the battery heating, but because of the self capability defects, the technologies are not widely applied in the vehicle field. For example, a thermal insulation sleeve is provided to warm the battery by the thermal insulation material, an infrared radiation film is used to heat the battery and a thermal insulation sleeve is provided to keep warm, or a heating patch is attached on the surface of the battery. The methods are only suitable for the fixed battery. Furthermore, using the external power to heat the battery is not suitable for the vehicle which is not fixed in position. Therefore, the above methods have not been widely applied in the pure electric vehicle field and hybrid electric vehicle field.

    [0004] Document WO 2011/070848 A1 describes a transmission having a first transmission group which is capable of transmitting motive power from an electric motor and/or an engine to driven wheels and which is provided with the plurality of transmission stages having different transmission ratios and a second transmission group capable of transmitting motive power from the engine to the driven wheels.

    [0005] Document WO 2008/023245 A2 describes a HVECU sets a target amount of charge of a battery to a target value SOCL that is lower than a normal target value SOC when the temperature of the battery is lower than a predetermined temperature. During operation of an engine, the HVECU reads an amount of charge C of the battery, and forces the battery to be discharged if the amount of charge C is larger than the target value SOCL. At this time, the battery is allowed to be charged with regenerative power, but is inhibited from being charged using driving force of the engine. The temperature of the battery is increased due to heat generated upon charging and discharging of the battery, while assuring improved fuel consumption of the engine.

    [0006] Document JP 2009 072003 A describes an electric railroad system including a main feeder system, a power regulating unit, a three-phase induction motor for running drive, a VVVF inverter, the battery, and a feeder system for auxiliary equipment and the like, and is constituted so that a motor may be driven by power from the stringing in the stringing section, and the motor may be driven by power from the battery in the non-stringing section.; The railroad system has a constitution where an input end of the power regulating unit is connected to the main feeder system, and an output end is connected to the inverters, the feeder system and the battery, and includes power control means which sets a charging current to the battery in the stringing section by using predetermined charging current setting means and controls the power regulating unit so that the battery may be charged by the charging current.

    [0007] Document US 2011/298427 A1 describes an apparatus for heating a battery of a vehicle, having an electric rotating machine and buck-boost converter between the battery and rotating machine to step up/down voltage outputted from the battery to be supplied to the rotating machine and step up/down voltage generated by the rotating machine to be supplied to the battery, it is configured to have a first capacitor interposed between wires connecting the battery to the converter, a second capacitor interposed between wires connecting the converter to the rotating machine, and a heating controller to control operation of the converter to generate current similar to rectangular wave current and input/output the current between the battery and the second capacitor through the first capacitor so as to heat the battery. With this, it becomes possible to efficiently heat the battery so that the battery can output expected power, without adversely affecting the size of the apparatus.

    [0008] EP 0 992 811 A2 further describes a battery apparatus and a corresponding control system, wherein a protective function is provided to stop charging or discharging by detecting over-charge or over-discharge of secondary batteries. In a case where a plurality of lithium secondary batteries having such a protective function are connected in series, the safety can be secured by stopping charging at the time when a voltage of some of the secondary batteries which have a high initial voltage reaches an over-charge protective level. The remaining secondary batteries which have a low initial voltage are stopped to be charged in the middle of charging before being charged sufficiently.

    [0009] JP 2010 119171 A relates to a device and method for controlling an inverter. In this matter, a charging state of a secondary battery is restored in order to be within a prescribed control range in an early stage when a state in which power cannot be generated in a rotary electric machine is released in a vehicle on which the secondary battery and the rotary electric machine are loaded. An electronic control unit ECU performs temperature rise control of the battery when a shift position SP is in an N position in which the battery cannot be charged, the battery temperature is lower than a reference temperature and the SOC of the battery is larger than a reference value. In the temperature rise control of the battery, charging and discharging of the battery are alternately repeated.

    SUMMARY



    [0010] The present invention is addressed by the subject-matter of the independent claims. Further preferred embodiments are defined in the dependent claims. According to a first aspect of the present disclosure, a power system of a hybrid electric vehicle is provided. The power system comprises: a battery group; a battery heater, connected with the battery group and configured to charge and discharge the battery group to heat the battery group; a battery management device, connected with the battery group and the battery heater respectively, and configured to: if a temperature of the battery group is lower than a first heating threshold and a residual electric quantity of the battery group is larger than a running electric quantity threshold, control the battery heater to heat the battery group with a first power when the hybrid electric vehicle is in an electric vehicle mode, and heat the battery group with a second power when the hybrid electric vehicle is in a hybrid electric vehicle mode, wherein the second power is larger than the first power; an electric distribution box, configured to distribute a voltage output by the battery group; an engine; a motor; a motor controller, connected with the motor and the electric distribution box respectively, comprising a first input terminal, a second input terminal and a pre-charging capacitor connected between the first input terminal and the second input
    terminal, and configured to supply power to the motor according to a control command and a voltage distributed by the electric distribution box; and an isolation inductor, connected between the battery group and the electric distribution box, in which an inductance of the isolation inductor matches with a capacitance of the pre-charging capacitor.

    [0011] With the power system of the hybrid electric vehicle according to embodiments of the present disclosure, by using a large current discharge of the battery group in the hybrid electric vehicle, the internal resistor of the battery itself may be heated so that the battery group may be heated. Without any external power supply, the electricity for heating is totally supplied by the battery group. A heating management may be performed for the battery group by the battery management device and the battery heater, which may greatly reduce the restriction on the use of the hybrid electric vehicle at the low temperature, thus satisfying the requirements of running and charging at the low temperature. Moreover, the power system heats the battery group directly, and therefore, a higher heating efficiency, a lower cost and a better utility may be obtained.

    [0012] According to a second aspect of the present disclosure, a hybrid electric vehicle comprising the above power system is provided. The hybrid electric vehicle can normally run in a cold region and the battery group can be heated while the hybrid electric vehicle is running, thus ensuring a safe and smooth running.

    [0013] According to a third aspect of the present disclosure, a method for heating a battery group of a hybrid electric vehicle is provided. The method comprises: detecting a temperature and a residual electric quantity of the battery group; if the temperature of the battery group is lower than a first heating threshold and the residual electric quantity of the battery group is larger than a running electric quantity threshold, judging a mode the hybrid electric vehicle is in; controlling the battery heater to heat the battery group with a first power if the hybrid electric vehicle is in an electric vehicle mode; controlling the battery heater to heat the battery group with a second power if the hybrid electric vehicle is in a hybrid electric vehicle mode, wherein the second power is higher than the first power; and indicating the battery group is inhibited from being heated or charged and the hybrid electric vehicle is inhibited from being driven if the temperature of the battery group is lower than the first heating threshold and the residual electric quantity of the battery group is lower than the parking electric quantity threshold.

    [0014] With the method for heating the battery group of the hybrid electric vehicle according to embodiments of the present disclosure, the battery group may be heated directly without any external power supply, the temperature of the battery group may be increased to a required temperature and then the battery group may be charged or discharged normally, which may greatly reduce the restriction on the use of the hybrid electric vehicle at the low temperature, thus satisfying the requirements of running and charging at the low temperature.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0015] Having thus described exemplary embodiments of the present disclosure in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale.

    Fig. 1 illustrates a schematic diagram of an electric section of a power system of a hybrid electric vehicle according to an exemplary embodiment;

    Fig. 2 illustrates a schematic diagram of an electric section of a power system of a hybrid electric vehicle according to an exemplary embodiment;

    Fig. 3 illustrates an electric principle diagram of a power system of a hybrid electric vehicle according to an exemplary embodiment;

    Fig. 4 illustrates an electric connection diagram of an electric section of a power system of a hybrid electric vehicle according to an exemplary embodiment;

    Fig. 5 illustrates an electric connection diagram of an electric section a power system of a hybrid electric vehicle according to an exemplary embodiment;

    Fig. 6 illustrates a schematic diagram of an electric distribution box in a power system of a hybrid electric vehicle according to an exemplary embodiment;

    Fig. 7 illustrates a schematic diagram of a power system of a hybrid electric vehicle according to an exemplary embodiment;

    Fig. 8 illustrates a flow chart of a method for heating a battery group of a hybrid electric vehicle according to an exemplary embodiment;

    Fig. 9A- Fig. 9C illustrate a flow chart of a method for heating a battery group of a hybrid electric vehicle according to an exemplary embodiment; and

    Fig. 10A- Fig. 10C illustrate a flow chart of a method for heating a battery group of a hybrid electric vehicle according to an exemplary embodiment.


    DETAILED DESCRIPTION



    [0016] Reference will now be made in detail to exemplary embodiments, examples of which are illustrated in the accompanying drawings. It is readily appreciated by those having ordinary skill in the art that the presently claimed subject matter may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.

    [0017] In the description, relative terms such as "longitudinal", "lateral", "lower", "upper", "front", "rear", "left", "right", "horizontal", "vertical", "above", "below", "up", "top", "bottom" "external", "internal " as well as derivative thereof (e.g., "horizontally", "downwardly", "upwardly", etc.) should be construed to refer to the orientation as then described or as shown in the drawings under discussion. These relative terms are for convenience of description and do not require that the present disclosure be constructed or operated in a particular orientation.

    [0018] In the description, terms concerning attachments, coupling and the like, such as "connected" and "interconnected", refer to a relationship in which structures are secured or attached to one another through mechanical or electrical connection, or directly or indirectly through intervening structures, unless expressly described otherwise. Specific implications of the above phraseology and terminology may be understood by those skilled in the art according to specific situations.

    [0019] Referring to Fig. 1, Fig. 2 and Fig. 7, in some embodiments of the present disclosure, a power system of a hybrid electric vehicle comprises: a battery group 101, a battery heater 102, a battery management device 103, an electric distribution box 104, a motor 105, a motor controller 106, an isolation inductor L2, and an engine 702. The battery heater 102 is connected with the battery group 101 and configured to charge and discharge the battery group 101 to heat the battery group 101. The battery management device 103 is connected with the battery heater 102 via a CAN cable 107 and connected with the battery group 101 via a sampling cable 108 to sample the temperature and voltage of each battery and the output current of the battery group 101. In addition, the battery management device 103 is also configured to judge the current status of the hybrid electric vehicle, to calculate the temperature and the residual electric quantity of the battery group 101, and to send the control signals to the relevant electric devices via the CAN cable 107 so as to manage the relevant devices. Specifically, if the temperature of the battery group 101 is lower than a first heating threshold and a residual electric quantity of the battery group 101 is larger than a running electric quantity threshold, the battery management device 103 is configured to control the battery heater 102 to heat the battery group 101 with a first power when the hybrid electric vehicle is in an electric vehicle mode and to control the battery heater 102 to heat the battery group 101 with a second power when the hybrid electric vehicle is in a hybrid electric vehicle mode, in which the second power is larger than the first power. The electric distribution box 104 is a high voltage device for turning on and off the large current. A voltage output by the battery group 101 is distributed by the battery management device 103 by sending a control signal to the electric distribution box 104. The motor controller 106 is connected with the motor 105 and the electric distribute box 104 respectively, and comprises a first input terminal, a second input terminal and a pre-charging capacitor C2 connected between the first input terminal and the second input terminal. The motor controller 106 is configured to supply power to the motor 105 according to a control command and a voltage distributed to the motor controller 106 by the electric distribution box 104. Specifically, as shown in Fig. 7, the motor 105 comprises a first motor 701 and a second motor 705. The first motor 701 is connected with the engine 702, the motor controller 106 is connected with the first motor 701, the second motor 705, and the electric distribution box 104 respectively, and the motor controller 106 is configured to supply power to the first motor 701 and the second motor 705 according to the control command and the voltage distributed by the electric distribution box 104 respectively. In other words, the motor controller 106 converts the DC supplied by the battery group 101 into the three-phase AC required by the first motor 701 and the second motor 705 to supply power to the first motor 701 and the second motor 705 by the internal driving circuit of the motor controller 106, and controls the first motor 701 and the second motor 705 according to the control signal sent by the battery management device 103. The isolation inductor L2 is connected between the battery group 101 and the electric distribution box 104, and the inductance of the isolation inductor L2 matches with the capacitance of the pre-charging capacitor C2. The power system further comprise a heating controller 704 connected with the battery heater 102 and configured to control the operation of the battery heater 102 directly. Information such as a failure or a heating state (such as, the heating of the battery group 101 is finished) existing in the battery heater 102 may be sent to a meter 703 by the battery management device 103 to display the information.

    [0020] Referring to Fig. 7, the power system of the hybrid electric vehicle according to embodiments of the present disclosure has three power output modes: a series mode, a parallel mode, and a series-parallel mode. In the series mode, the second motor 705 drives the hybrid electric vehicle directly, the engine 702 supplies power to the second motor 705 through the first motor 701, and the battery group 101 is charged by the engine 702 through the first motor 701. In the parallel mode, the second motor 705 and the engine 702 can drive the hybrid electric vehicle simultaneously or independently. The series-parallel mode is a combination of the series mode and the parallel mode, in which the hybrid electric vehicle can operate in the series mode or in the parallel mode.

    [0021] In one embodiment of the present disclosure, the battery heater 102 may be configured to perform a failure self-test and send the test result to the battery management device 103.

    [0022] Referring to Fig. 3, the battery heater 102 comprises: a first switch module 301, a first capacitor C1, a first inductor L1 and a second switch module 302. A first terminal of the first switch module 301 is connected with a first electrode of the battery group 101 and the isolation inductor L2 respectively. A first terminal of the first capacitor C1 is connected with a second terminal of the first switch module 301, and a second terminal of the first capacitor C1 is connected with a second electrode of the battery group 101. A first terminal of the first inductor L1 is connected with a node between the first switch module 301 and the first capacitor C1. A first terminal of the second switch module 302 is connected with a second terminal of the first inductor L1, a second terminal of the second switch module 302 is connected with the second electrode of the battery group 101. The control terminal of the first switch module 301 and the control terminal of the second switch module 302 are connected with the battery management device 103. The battery management device 103 sends a heating signal to the control terminal of the first switch module 301 and the control terminal of the second switch module 302 to control the first switch module 301 and the second switch module 302 to turn on in turn so as to generate a charge current and a discharge current in turn. When the first switch module 301 is on, the second switch module 302 is off, and when the second switch module 302 is on, the first switch module 301 is off.

    [0023] Referring to Fig. 3, the ESR is an equivalent resistor of the battery group 101, the ESL is an equivalent inductor of the battery group 101, and E is a battery package. L2 is an isolation inductor and is configured to isolate the battery heating circuit Part 2 from the motor equivalent load circuit Part 5. Therefore, the reversed voltage of the battery group 101 is absorbed by the isolation inductor L2 and may not be applied to the load follow-up. C2 is a pre-charging capacitor; and R is the equivalent load of the motor. When the battery heater works, an internal switch module thereof turns on or off in a certain timing sequence.

    [0024] Referring to Fig. 3, according to one embodiment of the present disclosure, the switch module (e.g., the first switch module 301 or the second switch module 302) may be an insulated gate bipolar transistor (IGBT). When the battery heater starts to work, the internal elements of the battery heater such as inductor, capacitor are in an initial status and do not store any energy. The work procedure of the battery heater will be described below. When an IGBT1 is on and an IGBT2 is off, the battery package E charges the first capacitor C1 by the charging loop "E-ESR-ESL-D1-C1-E". After the battery package E has charged the first capacitor C1 for a time, the voltage of the first capacitor C1 is equal to the voltage of the battery package E. But because there is an inductive element in the battery heater, the first capacitor C1 continues being charged so that the voltage of the first capacitor C1 is higher than that of the battery package. When the charge current is zero, the first capacitor C1 begins to discharge by the discharging loop "C1-D1-ESL-ESR-E-C1" until the discharge current is zero. When the IGBT1 is off and the IGBT2 is on, the first capacitor C1 continues discharging by the discharging loop "C1-D2-L1-IGBT2-C1". Because there is the first inductor L1, the first capacitor C1 continues to discharge so that the voltage of the first capacitor C1 is lower than that of the battery package E. Above process is thus repeated.

    [0025] In one embodiment of the present disclosure , the isolation inductor L2 may prevent the pre-charging capacitor C2 from charging the first capacitor C1 through the first switch module 301 so that the current waveform of the first capacitor C1 may be controlled and thus the characteristics of the heating circuit may be controlled. Therefore, the circuit may run normally. As a result, when the motor 105 and the battery heater 102 operate simultaneously, the isolation inductor L2 may be needed.

    [0026] In one embodiment of the present disclosure, the inductance L of the isolation inductor L2 may be determined according to the formula

    where T is an equivalent load work cycle of the motor 105 and C is the capacitance of the pre-charging capacitor C2. The battery heater 102 needs to control the IGBT module and switch on/off the first switch module 301 or the second switch module 302. Assuming that a switching frequency of the first switch module 301 or the second switch module 302 is t, in order to reduce the influence of the battery heater 102 on the motor controller 106, it may be assumed that a cycle of a circuit comprising the isolation inductor L2 and the pre-charging capacitor C2 is T. In one embodiment, T >10t, thus meeting the design requirements. Therefore, as used herein, the expression "T is an equivalent load work cycle of the motor 105" means that T is the cycle of the circuit comprising the isolation inductor L2 and the pre-charging capacitor C2.

    [0027] In one embodiment of the present disclosure, the battery heater 102 further comprises a power connector configured to connect and fasten a power cable 109. The power connector needs to satisfy the requirement of the anti-vortex. When the battery heater 102 works, the frequency of the current is changed very quickly, which leads to very quick increase in the temperature of the magnetic material in the power connector, so the magnetic permeability of the power connector must be low. In one embodiment of the present disclosure, the battery heater 102 further comprises a low voltage connector, which is connected and communicates with the external system. The low voltage connector comprises a CAN cable 107 configured to connect to the battery management device 103, a self-test signal cable and a failure signal cable.

    [0028] Referring to Fig. 2 and Fig. 4, in one embodiment of the present disclosure, the isolation inductor L2 is disposed in the battery heater 102. A fuse 401 is also disposed in the battery heater 102. As shown in Fig. 4, the battery heater 102 comprises the isolation inductor L2, the fuse 401 and a power supply for the battery heater 102. The battery heater 102 further comprises four power connectors, in which two power connectors are connected to the battery group 101 via the power cable 109 and the other two power connectors are connected to the electric distribution box 104 via the power cable 109. In one embodiment of the present disclosure, the power connectors are used in the head end and the tail end of a high voltage cable.

    [0029] In one embodiment of the present disclosure, the isolation inductor L2 is disposed in the battery heater 102, and when the battery group 101 does not need to be heated, the battery heater 102 may be removed, so that the electric distribution box 104 may be connected directly to the battery group 101. The hybrid electric vehicle does not need any battery heater in the high temperature area but needs the battery heater in the low temperature area. Therefore, if the hybrid electric vehicle needs to be modified to adapt to different areas, the modification may be small, thus greatly reducing the cost.

    [0030] Referring to Fig. 1 and Fig. 5, in one embodiment of the present disclosure, the isolation inductor L2 may be disposed in the electric distribution box 104. No matter the isolation inductor L2 is disposed in the battery heater 102 or the electric distribution box 104, the isolation inductor L2 is disposed between the battery group 101 and the electric distribution box 104. Referring to Fig. 1, the electric distribution box 104 is not connected to the battery heater 102 directly. The battery group 101 comprises four power connectors, in which two power connectors are connected to the battery heater 102 via two power cables 109 and the other two power connectors are connected to the electric distribution box 104 via another two power cables 109. In this embodiment, the power system of the hybrid electric vehicle further comprises a relay 501 configured to select whether the isolation inductor L2 is connected to the circuit, as shown in Fig. 5. The battery heater 102 is connected in parallel with the electric distribution box 104. The fuse 401 is mounted in the battery group 101.

    [0031] The isolation inductor L2 is disposed in the electric distribution box 104 so that the influence on the electric distribution box 104 by the battery heater 102 may be greatly reduced. Furthermore, when the battery heater 102 works, the isolation inductor L2 may be connected into the circuit by the relay 501, and when the battery heater 102 stops working, the isolation inductor L2 may be disconnected from the circuit by the relay 501.

    [0032] In one embodiment of the present disclosure, as shown in Figs. 1-3 and Fig. 7, the power system of the hybrid electric vehicle further comprises a cooling assembly 110 configured to cool the first switch module 301 and the second switch module 302.

    [0033] In one embodiment of the present disclosure, the cooling assembly 110 comprises: a wind channel arranged in the battery heater 102; and a fan arranged at one end of the wind channel. The fan is used to dissipate heat for the battery heater 102.

    [0034] In another embodiment of the present disclosure, the cooling assembly 110 comprises: a coolant channel arranged in the battery heater 102; a coolant inlet and a coolant outlet arranged in the battery heater 102 respectively. The heat dissipation effect and the sealing performance of the battery heater may be improved by using the coolant to cool the battery heater.

    [0035] Referring to Fig. 6, the electric distribution box 104 comprises: a primary contactor 601 and a pre-contactor 602. The primary contactor 601 is configured to distribute the voltage output by the battery group 101 to a power consumption equipment, such as the motor 105 of the hybrid electric vehicle. The pre-contactor 602 is connected with the first input terminal 603 or the second input terminal 604 of the motor controller 106, and configured to charge the pre-charging capacitor C2 under the control of the battery management device 103 before the motor controller 106 controls the motor 105 to start.

    [0036] In one embodiment of the present disclosure, when the residual electric quantity (also named as SOC (state of charge)) of the battery group 101 is larger than a parking electric quantity threshold but lower than a running electric quantity threshold, the hybrid electric vehicle is allowed to enter in a parking heating mode; and when the residual electric quantity of the battery group 101 is larger than the running electric quantity threshold, the hybrid electric vehicle is allowed to enter in an electric vehicle mode or a hybrid electric vehicle mode. The running electric quantity threshold is larger than the parking electric quantity threshold.

    [0037] When the hybrid electric vehicle is in the electric vehicle mode, besides the battery group 101 being heated by the battery heater 102, other high voltage power consumption equipments of the hybrid electric vehicle such as the motor and the air conditioner may work simultaneously under a limited power. Accordingly, the parking heating mode means that except the battery group 101 being heated by the battery heater 102, the other high voltage power consumption equipments of the hybrid electric vehicle such as the motor and the air conditioner do not work. The running electric quantity threshold is a first predetermined residual electric quantity of the battery group when the hybrid electric vehicle is allowed to enter in the electric vehicle mode, and the parking electric quantity threshold is a second predetermined residual electric quantity of the battery when the hybrid electric vehicle is allowed to enter in the parking heating mode.

    [0038] In one embodiment of the present disclosure, the power system further comprises a heating button connected with the battery management device 103. When the heating button is pressed, the battery management device 103 sends a heating signal to the battery heater 102 to control the battery heater 102 to heat the battery group 101. The battery management device 103 is further configured to: after controlling the battery heater 102 to heat the battery group 101, if the heating button is pressed again, judge whether the operation of pressing the heating button satisfies a preset condition (i.e., judge whether the heating button is pressed and held for a preset time), if yes, control the hybrid electric vehicle and/or the battery heater 102 according to the temperature and the residual electric quantity of the battery group 101. Specifically, if the temperature of the battery group 101 is lower than a first temperature threshold, the battery management device 103 indicates to inhibit the hybrid electric vehicle from being heated, driven or charged; and if the temperature of the battery group 101 is higher than the first temperature threshold, the battery management device 103 further judges whether the residual electric quantity of the battery group 101 is larger than a first electric quantity threshold. Specifically, if the residual electric quantity of the battery group 101 is lower than the first electric quantity threshold and the temperature of the battery group 101 is higher than the first temperature threshold, the battery management device 103 indicates to inhibit the hybrid electric vehicle from being heated, driven or charged; and if the residual electric quantity of the battery group 101 is larger than the first electric quantity threshold and the temperature of the battery group 101 is higher than the first temperature threshold, the battery management device 103 allows the hybrid electric vehicle to run under a limited power.

    [0039] In one embodiment of the present disclosure, the first temperature threshold may be -20°C, and the first electric quantity threshold may be 25% of the total electric quantity of the battery group 101.

    [0040] In one embodiment of the present disclosure, the battery management device 103 is configured to adjust the output power of the battery heater 102 according to the real-time temperature of the battery group 101 to heat the battery group 101 by different heating procedures. Specifically, when the temperature of the battery group 101 is higher than a third heating threshold and lower than a fourth heating threshold, the battery management device 103 controls the battery heater 102 to heat the battery group 101 with a first heating power; when the temperature of the battery group 101 is higher than a fourth heating threshold and lower than a fifth heating threshold, the battery management device 103 controls the battery heater 102 to heat the battery group 101 with a second heating power, in which the second heating power is lower than the first heating power; when the temperature of the battery group 101 is higher than a fifth heating threshold and lower than a sixth heating threshold, the battery management device 103 controls the battery heater 102 to heat the battery group 101 with a third heating power, in which the third heating power is lower the second heating power; and when the temperature of the battery group 101 is higher than a sixth heating threshold and lower than a seventh heating threshold, the battery management device 103 controls the battery heater 102 to heat the battery group 101 with a fourth heating power, in which the fourth heating power is lower than the third heating power. In one embodiment of the present disclosure, the third heating threshold may be -30°C, the fourth heating threshold may be -25°C, the fifth heating threshold may be -20°C, the sixth heating threshold may be -15°C, and the seventh heating threshold may be -10°C.

    [0041] In one embodiment of the present disclosure, the battery management device 103 is further configured to judge whether the current throttle depth change rate of the hybrid electric vehicle reaches the preset throttle depth change rate threshold, and to control the battery heater to stop heating the battery group when the current throttle depth change rate of the hybrid electric vehicle reaches the preset throttle depth change rate threshold and if the hybrid electric vehicle is not in the hybrid electric vehicle mode. At this time, the battery group only supplies power to a power consumption equipment of the hybrid electric vehicle and a driving of the hybrid electric vehicle. It should be understood that the throttle depth change rate is determined according to a change value of the throttle depth within a certain time. In other words, a driver determines whether the battery heater is controlled to heat the battery group according to the change in the throttle depth within a certain time. In one embodiment of the present disclosure, if the hybrid electric vehicle has finished running uphill or finished an urgent acceleration procedure, the battery management device controls the battery heater to continue heating the battery group; or else, the battery management device controls the battery heater to stop heating the battery group, and the battery group only supplies power to the power consumption equipment of the hybrid electric vehicle and the driving of the hybrid electric vehicle.

    [0042] With the power system of the hybrid electric vehicle of the present disclosure, by using the battery group to discharge with large current and by the heating of the internal resistor of the battery group, the battery group may be heated. Without any external power supply, the electric quantity for heating is totally provided by the battery group. A heating management may be performed for the battery group by the battery management device and the battery heater, which may greatly reduce the restriction on the use of the hybrid electric vehicle at the low temperature and satisfy the requirement of running and charging at the low temperature, that is, the battery group may be heated while the hybrid electric vehicle may run under a limited power. Moreover, the power system of the hybrid electric vehicle heats the battery group directly, and therefore, a higher heating efficiency, a lower cost, a better utility, an improved safety and an easy industrialization may be achieved.

    [0043] According to an embodiment of the present disclosure, a hybrid electric vehicle is provided. The hybrid electric vehicle comprises the power system of the hybrid electric vehicle mentioned above. The hybrid electric vehicle may run in a low temperature environment, and the hybrid electric vehicle may run while the battery group may be heated, thus ensuring a safe and smooth running.

    [0044] In the following, a method for heating a battery group of a hybrid electric vehicle is described in detail with reference to Figs. 8-10. In Figs. 8-10, the detailed values (such as, -10°C) are only illustrative to explain various thresholds (such as the first heating threshold), but not used to limit the scope of the present disclosure. The values of various thresholds may be changed according to actual conditions, which is obvious for a person skilled in the art. Furthermore, the executing orders of the steps in Figs. 8-10 are only illustrative and exemplary, but not used to limit the scope of the present disclosure. The executing order of the steps may be changed according to actual conditions, which is also obvious for a person skilled in the art.

    [0045] Referring to Fig. 8, a method for heating a battery group of a hybrid electric vehicle is provided. The method comprises the following steps.

    [0046] At step S801, a temperature and a residual electric quantity of the battery group are detected.

    [0047] At step S802, if the temperature of the battery group is lower than a first heating threshold and the residual electric quantity of the battery group is larger than a running electric quantity threshold, a mode the hybrid electric vehicle is in is judged.

    [0048] At step S8021, the battery heater is controlled to heat the battery group with a first power if the hybrid electric vehicle is in an electric vehicle mode.

    [0049] At step S8022, the battery heater is controlled to heat the battery group with a second power if the hybrid electric vehicle is in a hybrid electric vehicle mode, in which the second power is higher than the first power.

    [0050] At step S803, the battery group is inhibited from being heated or charged and the hybrid electric vehicle is inhibited from being driven if the temperature of the battery group is lower than the first heating threshold and the residual electric quantity of the battery group is lower than the parking electric quantity threshold.

    [0051] According to an embodiment of the present disclosure, referring to Fig. 9A, Fig. 9B and Fig. 9C, the method for heating the battery group of the hybrid electric vehicle may comprise the following steps.

    [0052] At step S901, the hybrid electric vehicle is powered on.

    [0053] At step S902, the temperature and the residual electric quantity of the battery group are detected.

    [0054] At step S903, it is judged whether the temperature of the battery group is lower than the first heating threshold, if yes, step S905 is followed, and if no, step S904 is followed.

    [0055] At step S904, the battery management device controls the pre-contactor to be switched on, and after the pre-charging is finished, the primary contactor is switched on. The hybrid electric vehicle runs normally. Specifically, the battery management device controls the pre-contactor in the electric distribution box to be switched on to charge the pre-charging capacitor and controls the pre-contactor to be switched off after the pre-charging is finished.

    [0056] At step S905, the battery management device calculates whether the residual electric quantity of the battery group is larger than the running electric quantity threshold, if yes, step S907 is followed, and if no, step S906 is followed.

    [0057] At step S906, the battery management device sends a message to the meter to display that the residual electric quantity of the battery group is too low so that the hybrid electric vehicle is not allowed to be heated, driven or charged.

    [0058] At step S907, the battery management device sends a heating signal to the battery heater to heat the battery group.

    [0059] At step S908, the battery heater performs a self-test to detect whether there is a failure, if yes, step S909 is followed, and if no, step S910 is followed.

    [0060] At step S909, the battery management device stops supplying power and sending a message to the battery heater, and sends a message to the meter to display that there is a failure in the battery heater so that the hybrid electric vehicle is not allowed to be heated, driven or charged.

    [0061] At step S910, the battery management device sends a message to the meter to display that the battery group is allowed to be heated, and a heating button is pressed by a driver to heat the battery group.

    [0062] At step S911, it is judged whether the heating button is pressed, if yes, step S912 is followed, and if no, step S910 is followed.

    [0063] At step S912, the battery management device controls the pre-contactor to be switched on, and after the pre-charging is finished, the primary contactor is switched on and then the battery group is heated, while the battery heater keeps on performing a self-test. Specifically, the battery management device calculates the current temperature and the current residual electric quantity of the battery group, calculates the maximum output power of the battery group according to the current temperature and the current residual electric quantity of the battery group, and controls the hybrid electric vehicle to run under a limited power according to the maximum output power.

    [0064] At step S913, it is judged whether a current SOC value is larger than a preset electric quantity threshold (such as 50% of the total electric quantity of the battery group), if yes, the hybrid electric vehicle enters in an EV (Electric Vehicle) mode and step S915 is followed, and if no, the hybrid electric vehicle enters in a HEV (Hybrid Electric Vehicle) mode and step S914 is followed.

    [0065] At step S914, the hybrid electric vehicle enters in the HEV mode.

    [0066] At step S915, it is judged whether a running uphill procedure or an urgent acceleration procedure is required, if yes, step S917 is followed, and if no, step S926 is followed.

    [0067] At step S916, it is judged whether the hybrid electric vehicle is in the running uphill procedure or the urgent acceleration procedure according to the throttle depth change rate and the current speed of the hybrid electric vehicle, if yes, step S919 is followed, and if no, step S926 is followed.

    [0068] At step S917, it is judged whether a HEV button is pressed, if yes, step S920 is followed, and if no, step S918 is followed. In an embodiment, when the HEV button is pressed, the hybrid electric vehicle enters in the HEV mode, the output power of the hybrid electric vehicle is mainly provided by the engine, and the battery heater keeps on working.

    [0069] At step S918, the battery management device stops supplying power to the battery heater, and the battery heater stops heating the battery group, and step S921 is followed. In this step, the hybrid electric vehicle is in an electric vehicle mode, and the output power is mainly provided by the second motor, which reaches a power required by the running uphill procedure or the urgent acceleration procedure.

    [0070] At step S919, the battery management device adjusts the output power mainly provided by the engine and the battery heater does not stop working, and step S922 is followed.

    [0071] At step S920, it is detected whether the running uphill procedure or the urgent acceleration procedure is finished, if yes, step S923 is followed, and if no, step S917 is followed.

    [0072] At step S921, it is detected whether the running uphill procedure or the urgent acceleration procedure is finished, if yes, step S924 is followed, and if no, step S918 is followed.

    [0073] At step S922, it is detected whether the running uphill procedure or the urgent acceleration procedure is finished, if yes, step S925 is followed, and if no, step S919 is followed.

    [0074] At step S923, an EV button is pressed and the hybrid electric vehicle enters in the EV mode, and step S926 is followed.

    [0075] At step S924, the battery management device controls the battery heater to heat the battery group again, and step S926 is followed.

    [0076] At step S925, the motor controller adjusts the output power to a normal running power, and step S926 is followed.

    [0077] At step S926, it is detected whether there is a failure in the battery heater, if yes, step S927 is followed, and if no, step S928 is followed.

    [0078] At step S927, the battery heater stops working and the meter displays an alarm so that the hybrid electric vehicle is not allowed to be heated, driven or charged.

    [0079] At step S928, it is detected whether the heating button is pressed and held for a preset time, if yes, step S929 is followed, and if no, step S930 is followed. In an embodiment, the preset time may be about 2 seconds.

    [0080] At step S929, the battery heater stops working and the battery management device sends a message to the meter to display that the battery group is not allowed to be heated.

    [0081] At step S930, it is detected whether the temperature of any single battery in the battery group is higher than the second heating threshold, if yes, step S933 is followed, and if no, step S931 is followed.

    [0082] At step S931, it is detected whether the temperature of the battery group is larger than the first heating threshold, if yes, step S933 is followed, and if no, step S932 is followed.

    [0083] At step S932, it is detected whether the continuous heating time is larger than the heating time threshold, if yes, step S933 is followed, and if no, step S912 is followed.

    [0084] At step S933, the heating is finished and the battery heater stops working.

    [0085] In one embodiment of the present disclosure, the first heating threshold may be -10°C, the second heating threshold may be 20°C, and the heating time threshold may be 20 minutes.

    [0086] Specifically, the method for heating the battery group in the hybrid electric vehicle comprises the following steps.
    1. (1) The hybrid electric vehicle is powered on, the battery management device controls the pre-contactor to be switched on, the motor controller receives a starting message to start to charge the pre-charging capacitor, and after the pre-charging is finished, the primary contactor is not switched on at that time. Because an instant charging may cause a large impact on the motor controller, a pre-charging capacitor is needed. The pre-charging capacitor may be fully charged and then discharge smoothly, so that the motor controller can be protected.
    2. (2) The battery management device judges whether the temperature of the battery group (collected by a battery information collector) is lower than a first heating threshold (for example, the first heating threshold may be in a range from about -10°C to about -5°C. As battery groups of different vehicles may have different properties, and the battery groups may possess different discharging temperature ranges, so the first heating threshold may vary accordingly). If the temperature of the battery group is higher than the first heating threshold, the battery management device controls the primary contactor in the electric distribution box to be switched on and the hybrid electric vehicle runs normally. If the temperature of the battery group is lower than the first heating threshold, the battery management device detects whether the residual electric quantity of the battery group satisfies the requirement of a running heating mode.
    3. (3) If the residual electric quantity of the battery group does not satisfy the requirement of the running heating mode, the battery management device sends a message to the meter to display that the residual electric quantity of the battery group is too low so that the hybrid electric vehicle is not allowed to be heated, driven or charged. If the residual electric quantity of the battery group satisfies the requirement of the running heating mode, the battery management device sends a heating signal to the battery heater to heat the battery group.
    4. (4) The battery heater performs a self-test to detect whether there is a failure, if there is a failure, the battery management device stops supplying power and sending a message to the battery heater, and sends a message to the meter to display that there is a failure in the battery heater so that the hybrid electric vehicle is not allowed to be heated, driven or charged; and if there is no failure, the battery management device sends a message to the meter to display that the battery group is allowed to be heated, and a heating button is pressed by a driver to heat the battery group. The driver can heat the battery group via a switch of the battery heater, if the switch is switched on, the battery management device controls the primary contactor to be switched on to heat the hybrid electric vehicle, and sends a current maximum output power to the power system. The battery group has poor discharging performance in a low temperature environment, which cannot provide large current discharging while heating the hybrid electric vehicle, and thus the output power of the motor needs to be limited.
    5. (5) The battery management device judges whether a current SOC value is larger than a preset electric quantity threshold (such as 50% of the total electric quantity of the battery group), if yes, the hybrid electric vehicle enters in an EV mode, and if no, the hybrid electric vehicle enters in a HEV mode. In the HEV mode, the driving power is mainly provided by the engine, and therefore the heating power in the HEV mode is higher than that in the EV mode.
    6. (6) The driver judges whether a running uphill procedure or an urgent acceleration procedure is required. In the EV mode, the driver can control a HEV button to achieve the power required by the running uphill procedure or the urgent acceleration procedure. Since the power is mainly provided by the engine, the battery heater does not need to be turned off. If the HEV button is not pressed, the battery management device judges whether the hybrid electric vehicle is in the running uphill procedure or the urgent acceleration procedure according to the throttle depth change rate and the current speed of the hybrid electric vehicle, if yes, the battery management device stops supplying power to the battery heater and the battery heater stops heating the battery group, and the battery management device controls the battery heater to heat the battery group again until the running uphill procedure or the urgent acceleration procedure is finished. In the HEV mode, the battery management device is capable of judging whether the running uphill procedure or the urgent acceleration procedure is required according to the throttle depth change rate and the current speed of the hybrid electric vehicle, if yes, the battery management device controls the output power. Because the output power is mainly provided by the engine, the battery heater does not need to be turned off. If the battery heater needs to be turned off, the switch of the heating controller is switched off. After the running uphill procedure or the urgent acceleration procedure is finished, if the temperature of the battery group still does not reach a preset temperature, then the switch of the battery heater is switched on.
    7. (7) The battery management device keeps on detecting the temperature and the heating time of the battery group. The battery management device detects whether the temperature of any single battery in the battery group is higher than the second heating threshold (for example, the second heating threshold may be about 10°C to about 20°C), if yes, the battery heater stops working, the battery management device adjusts the SOC, and the hybrid electric vehicle runs normally; and if no, the battery heater continues heating the battery group. The battery management device judges whether the continuous heating time is larger than the heating time threshold (for example, the heating time threshold may be about 5 minutes to about 10 minutes), if yes, the battery heater stops heating the battery group; and if no, the battery heater continues heating the battery group. The battery management device further judges whether the temperature of the battery group is higher than the first heating threshold (for example, the first heating threshold may be about -10°C to about 10°C), if yes, the battery heater stops heating the battery group; and if no, the battery heater continues heating the battery group.
    8. (8) The battery management device detects whether the control switch of the battery heater is switched off, if yes, the battery heater stops heating the battery group, and the battery management device sends a message to the meter to display that the battery heater stops heating the battery group.
    9. (9) During the heating process, the heating system performs the self-test to detect whether there is a failure, if yes, the battery heater stops working and the meter displays an alarm so that the hybrid electric vehicle is not allowed to be heated, driven or charged.


    [0087] According to an embodiment of the present disclosure, referring to Fig. 10A, Fig. 10B and Fig. 10C, the method for
    heating the battery group of the hybrid electric vehicle may comprise the following steps.

    [0088] At step S1001, the hybrid electric vehicle is powered on.

    [0089] At step S1002, the temperature and the residual electric quantity of the battery group are detected.

    [0090] At step S1003, it is judged whether the temperature of the battery group is lower than the first heating threshold, if yes, step S1005 is followed, and if no, step S1004 is followed.

    [0091] At step S1004, the battery management device controls the pre-contactor to be switched on, and after the pre-charging is finished, the primary contactor is switched on. The hybrid electric vehicle runs normally.

    [0092] At step S1005, the battery management device calculates whether the residual electric quantity of the battery group is larger than the running electric quantity threshold, if yes, step S1008 is followed, and if no, step S1006 is followed.

    [0093] At step S1006, the battery management device calculates whether the residual electric quantity of the battery group is larger than the parking electric quantity threshold, if yes, step S1008 is followed, and if no, step S1007 is followed. The running electric quantity threshold is larger than the parking electric quantity threshold.

    [0094] At step S1007, the battery management device sends a message to the meter to display that the residual electric quantity of the battery group is too low so that the hybrid electric vehicle is not allowed to be heated, driven or charged.

    [0095] At step S1008, the user confirms whether the battery group needs to be heated, if yes, step S1009 is followed, and if no, step S1010 is followed.

    [0096] At step S1009, the battery heater performs a self-test to detect whether there is a failure, if yes, step S1011 is followed, and if no, step S1012 is followed.

    [0097] At step S1010, the battery management device sends a message to the meter to display that the hybrid electric vehicle is not allowed to be heated. The battery management device judges whether the temperature of the battery group is higher than a first temperature threshold and the residual electric quantity of the battery group is larger than a first electric quantity threshold, if yes, the hybrid electric vehicle is allowed to run under a limited power; and if no, the hybrid electric vehicle is not allowed to be driven or charged. In one embodiment, the first temperature threshold may be -20°C, and the first electric quantity threshold may be about 25% of the total electric quantity of the battery group.

    [0098] At step S1011, the battery management device stops supplying power and sending a message to the battery heater, and sends a message to the meter to display that there is a failure in the battery heater so that the hybrid electric vehicle is not allowed to be heated, driven or charged.

    [0099] At step S1012, the battery management device sends a heating signal to the battery heater to heat the battery group.

    [0100] At step S1013, the battery management device controls the pre-contactor to be switched on, and after the pre-charging is finished, the primary contactor is switched on and then the battery group is heated, while the battery heater keeps on performing a self-test. Specifically, the battery management device calculates the current temperature and the current residual electric quantity of the battery group, calculates the maximum output power of the battery group according to the current temperature and the current residual electric quantity of the battery group, and controls the hybrid electric vehicle to run under a limited power according to the maximum output power.

    [0101] At step S1014, the temperature of the battery group is detected.

    [0102] At step S1015, when the temperature of the battery group is higher than the third heating threshold and lower than the fourth heating threshold, the battery management device controls the battery heater to heat the battery group with the first heating power; when the temperature of the battery group is higher than the fourth heating threshold and lower than the fifth heating threshold, the battery management device controls the battery heater to heat the battery group with the second heating power, in which the second heating power is lower than the first heating power; when the temperature of the battery group is higher than the fifth heating threshold and lower than the sixth heating threshold, the battery management device controls the battery heater to heat the battery group with the third heating power, in which the third heating power is lower than the second heating power; and when the temperature of the battery group is higher than the sixth heating threshold and lower than the seventh heating threshold, the battery management device controls the battery heater to heat the battery group with the fourth heating power, in which the fourth heating power is lower than the third heating power.

    [0103] At step S1016, the battery management device judges whether the throttle depth change rate of the hybrid electric vehicle reaches the preset throttle depth change rate threshold according to the throttle depth message, if yes, step S1017 is followed, and if no, step S1019 is followed.

    [0104] At step S1017, the battery heater stops working and the battery group only supplies power to the power consumption equipment of the hybrid electric vehicle and the driving of the hybrid electric vehicle.

    [0105] At step S1018, it is judged whether a running uphill procedure or an urgent acceleration procedure is finished, if yes, step S1013 is followed, and if no, step S1017 is followed.

    [0106] At step S1019, the battery management device judges whether the heating time reaches the first preset time T1, if yes, step S1020 is followed, and if no, step S1021 is followed.

    [0107] At step S1020, the battery heater suspends working and the battery management device judges whether the suspension time reaches a second preset time T2, if yes, step S1013 is followed, and if no, step S1020 is followed.

    [0108] At step S1021, it is judged whether the heating button is pressed and held for a preset time, if yes, step S1022 is followed, and if no, step S1027 is followed. In one embodiment, the preset time may be 2 seconds.

    [0109] At step S1022, it is judged whether the temperature of the battery group is lower than the first temperature threshold, if yes, step S1023 is followed, and if no, step S1024 is followed.

    [0110] At step S1023, the hybrid electric vehicle is not allowed to be heated, driven or charged.

    [0111] At step S1024, it is detected whether the residual electric quantity is larger than the first electric quantity threshold, if yes, step S1025 is followed, and if no, step S1026 is followed.

    [0112] At step S1025, the hybrid electric vehicle is allowed to run under a limited power.

    [0113] At step S1026, the battery management device sends a message to the meter to display that the user stops heating so that the hybrid electric vehicle is not allowed to be heated, driven or charged.

    [0114] At step S1027, it is detected whether there is a failure in the battery heater, if yes, step S1028 is followed, and if no, step S1029 is followed.

    [0115] At step S1028, the battery heater stops working and the meter displays an alarm so that the hybrid electric vehicle is not allowed to be heated, driven or charged.

    [0116] At step S1029, it is detected whether the temperature of the battery group is higher than the first heating threshold, if yes, step S1032 is followed, and if no, step S1030 is followed.

    [0117] At step S1030, it is detected whether the temperature of any single battery in the battery group is higher than the second heating threshold, if yes, step S1032 is followed, and if no, step S1031 is followed.

    [0118] At step S1031, it is detected whether the continuous heating time is larger than the heating time threshold, if yes, step S1032 is followed, and if no, step S1013 is followed.

    [0119] At step S1032, the heating is finished and the battery heater stops working.

    [0120] In one embodiment of the present disclosure, the third heating threshold may be -30°C, the fourth heating threshold may be -25°C, the fifth heating threshold may be -20°C, the sixth heating threshold may be -15°C, the seventh heating threshold may be -10°C, the first heating threshold may be -10°C, the second heating threshold may be 20°C, the first temperature threshold may be - 20°C, the first electric quantity threshold may be 25% of the total electric quantity of the battery group, and the heating time threshold may be 20 minutes.

    [0121] In some embodiments, when the hybrid electric vehicle is powered on, the battery management device detects the temperature of the battery group and the status of the primary contactor. The temperature of the battery group is an average of temperatures of all single batteries in the battery group. The battery management device samples the temperature of each single battery in the battery group through an information collector and calculates the temperature of the battery group. If the temperature of the battery group is lower than the first heating temperature and the residual electric quantity of the battery group is larger than the parking electric quantity threshold, the user presses and holds the heating button for 2 seconds, and then the battery management device sends a message to the battery heater through the CAN cable to allow the battery group to be heated. Before heating the battery group in the running heating mode, that is, before the motor works, the battery management device sends the control signal to the electric distribution box to control the pre-contactor to be switched on so that the battery group charges the pre-charging capacitor C2. When the voltage of the pre-charging capacitor C2 is substantially equal to that of the battery group, the motor is allowed to work.

    [0122] In one embodiment of the present disclosure, the heating button is disposed on the meter. Provided that the temperature of the battery group is lower than the first heating threshold and the residual electric quantity of the battery group is larger than the parking electric quantity threshold, when the heating button is pressed, the battery heater is allowed to work. If the heating button is pressed again and held for 2 seconds, the battery heater is forced to stop working.

    [0123] The primary contactor is disposed in the electric distribution box and configured to connect the motor controller to a power supply or disconnect the motor controller from a power supply. When the residual electric quantity of the battery group is larger than the running electric quantity threshold, the battery management device sends the control signal to the electric distribution box to control the primary contactor to be switched on so that the motor is allowed to work. The motor controller converts the DC to the three-phase AC required by the motor through the driving circuit, to supply power to the motor and to allow the hybrid electric vehicle to run under a limited power.

    [0124] The pre-contactor is also disposed in the electric distribution box and connected to the pre-charging capacitor C2 in series. In particular, the pre-charging capacitor C2 is charged before the motor works. The reasons may be as follows. In one aspect, a current shock may be avoided in the pre-charging procedure and an agglomeration caused when the primary contactor is switched on may be avoided. A current limiting resistor is connected in series between the pre-charging capacitor and the pre-contactor. When the pre-charging is finished, the battery management device controls the primary contactor to be switched on and then controls the pre-contactor to be switched off. In another aspect, since the current is larger at the start moment of the motor, the voltage of the whole battery group is reduced. Therefore, the pre-charging capacitor C2 is charged firstly until the voltage thereof is substantially equal to that of the battery group, and then the motor is started. Because the voltage of the pre-charging capacitor can not change suddenly, by connecting the pre-charging capacitor and the motor in parallel, the affect on the voltage of the battery group resulting from the start of the motor may be decreased.

    [0125] When the battery heater receives the heating signal sent by the battery management device, the battery heater performs a self-test to detect whether there is a failure in the battery heater. In one embodiment of the present disclosure, the battery heater sends a single pulse of 0.5ms to detect whether there is a failure in the battery heater. If there is not any failure, the battery heater sends a control pulse (for example with a cycle of 20ms and a duty ratio of 20%) to the internal switch module to make the battery group short the circuit in a short time. So the heating purpose is achieved. Meanwhile, the battery heater sends a CAN signal to the meter. The meter receives the CAN signal and displays that "the battery group is being heated".

    [0126] When the battery group is heated, the battery management device and the battery heater keep on detecting the status of the battery group. If the temperature of the battery group is higher than the first heating threshold, or the continuous heating time is larger than the heating time threshold, or the maximum temperature of a single battery in the battery group is higher than the second heating threshold, the battery heater stops sending the control pulse to the internal switch module to stop heating the battery group. The battery heater sends a CAN signal to the meter. The meter receives the CAN signal and displays that "the heating is finished". The heating procedure is finished. In one embodiment of the present disclosure, the second heating threshold may be 20°C, and the heating time threshold may the 20 minutes. Preferably, in order to avoid a repeated start of the heating procedure, during the heating process, if the temperature of the battery group is detected to be higher than the first heating threshold by 5°C, the battery group is stopped from being heated.

    [0127] If the temperature of the battery group is higher than the first heating threshold, the battery management device works normally. If the temperature of the battery group is lower than the first heating threshold and the residual electric quantity of the battery group is less than the parking electric quantity threshold, the primary contactor is not switched on and the battery management device sends the CAN signal to the battery heater and the meter, so that the battery group is not allowed to be heated. When the meter receives the CAN signal, the meter displays that "the residual electric quantity of the battery group is not enough" so that the hybrid electric vehicle is not allowed to be heated, driven or charged.

    [0128] If a failure of the battery heater, including under voltage protection, over-voltage protection, overheat protection, pulse width interval protection or maximum turn-on time protection, appears during the self-test process, it is not allowed to heat the battery group. The battery heater sends a failure signal. The meter receives the failure signal and displays that "a failure in the battery heater". The heating is not allowed.

    [0129] If any of a failure of the battery heater, including under voltage protection, over-voltage protection, overheat protection, pulse width interval protection or maximum turn-on time protection, appears during the heating process, the battery heater stops heating the battery group and sends a failure signal. The meter receives the failure signal and displays that "a failure in the battery heater". The heating is ceased.

    [0130] In some embodiments of the present disclosure, the battery heater comprises a protection circuit to prevent the failures mentioned above. The protection circuit will be described in detail as follows.
    1. (1) When there is a failure signal, an IGBT in the battery heater is turned off. An ERROR (failure) pin of the protection circuit is at a low level, a failure signal is output through an optical coupler, and thus an ERROUT (failure output) pin is at the low level. To release the protection status, the PWM (pulse width modulation) wave should be maintained at a high level for 2 seconds, and then the failure signal is reset and the protection circuit is recovered to a normal status. If the failure signal can not be reset by the PWM wave in 2 seconds, a permanent error occurs in the protection circuit so that the protection circuit can not work normally.
    2. (2) To ensure a normal work of a discharge module of the IGBT, the frequency of the pulse sent by a DSP (digital signal processor) may not be too high and the pulse width may not be too long. For example, the maximum pulse width may be 5ms and the minimum interval may be 7-10 ms, or else a failure signal will be output.
    3. (3) In one embodiment of the present disclosure, a DC-DC isolation power supply is used to drive the IGBT. The positive bias voltage for the gate terminal of the IGBT may be +15V, and the negative bias voltage for the gate terminal of the IGBT may be -7V. The negative bias voltage for the gate terminal of IGBT may turn off the IGBT quickly and avoid a malfunction of turning on IGBT because of the overlarge surge current.
    4. (4) In one embodiment of the present disclosure, the protection circuit comprises an under voltage protection circuit. The under voltage protection circuit may avoid an increase in the power consumption of the IGBT caused by the deficient driving voltage. When the driving voltage decreases to a first voltage threshold, the under voltage protection circuit starts to work. In one embodiment of the present disclosure, the first voltage threshold may be 9V.
    5. (5) The over-heat protection circuit may avoid the damage to the IGBT caused by the high temperature. The protection circuit samples the temperature by using a thermistor. When the temperature of the IGBT is higher than a safe temperature threshold, the over-heat protection circuit starts to work. The protection circuit may also be configured to detect whether there is an open circuit in the thermistor. When there is an open circuit in the thermistor, the equivalent impedance is infinite and a protection signal is output. In one embodiment of the present disclosure, the safe temperature threshold may be 85°C.
    6. (6) Because there is a large inductance in the discharge loop, when the IGBT is turned off, an over-high voltage may be excited by the collector terminal of the IGBT. So a high voltage capacitor is connected in parallel between the collector terminal and the emitter terminal of the IGBT. The over-voltage protection circuit may avoid the over high voltage of the collector terminal to damage the IGBT at the moment of turning off the IGBT. When the voltage of the collector terminal is larger than a second voltage threshold, a protection signal will be output. In one embodiment of the present disclosure, the second voltage threshold may be 800V.


    [0131] During the heating process of the battery group, if the user suddenly presses and holds the heating button for 2 seconds, the battery heater stops heating the battery group so that the battery group is not allowed to be charged and the hybrid electric vehicle is not allowed to be driven.

    [0132] With the method for heating the battery of the power system of the hybrid electric vehicle according to embodiments of the present disclosure, the battery group of the hybrid electric vehicle may be heated without any external power supply. The battery group is heated to a required temperature and then may be charged or discharged normally. So the restriction on the use of the hybrid electric vehicle at the low temperature may be greatly reduced and the requirements of running and charging at the low temperature may be satisfied.

    [0133] Furthermore, the invention comprises in particular the following aspect for the above described method:
    controlling the battery heater to heat the battery group in a parking heating mode when the residual electric quantity of the battery group is larger than the parking electric quantity threshold but lower than the running electric quantity threshold, in which the running electric quantity threshold is larger than the parking electric quantity threshold.

    [0134] Furthermore, the invention comprises in particular the following aspects for the above described method:

    judging whether a current throttle depth change rate of the hybrid electric vehicle reaches a preset throttle depth change rate threshold when the hybrid electric vehicle is in the electric vehicle mode; and

    controlling the battery heater to stop heating the battery group if the hybrid electric vehicle is not in the hybrid electric vehicle mode and when the current throttle depth change rate of the hybrid electric vehicle reaches the preset throttle depth change rate threshold.



    [0135] Furthermore, the invention also comprises in particular the following aspect for the above described method:

    judging whether a heating button is pressed;

    if yes, controlling the battery heater to heat the battery group; and

    if no, indicating the battery group is inhibited from being heated or charged and the hybrid electric vehicle is inhibited from being driven.



    [0136] Furthermore, the invention also comprises in particular the following aspect for the above described method:
    if the heating button is pressed again, judging whether an operation of pressing the heating button again satisfies a preset condition, and if yes, controlling the hybrid electric vehicle and/or the battery heater according to the temperature of the battery group and the residual electric quantity of the battery group.

    [0137] Further, the invention also comprises in particular the following aspect for the above described method:
    adjusting a heating power of the battery heater according to the temperature of the battery group.

    [0138] In the preceding specification, the subject matter has been described with reference to specific exemplary embodiments. It will, however, be evident that various modifications and changes may be made without departing from the broader spirit and scope of the claimed subject matter as set forth in the claims that follow. The specification and drawings are accordingly to be regarded as illustrative rather than restrictive. Other embodiments may be apparent to those skilled in the art from consideration of the specification and practice of the embodiments disclosed herein.


    Claims

    1. A power system of a hybrid electric vehicle, comprising:

    a battery group (101);

    a battery heater (102), connected with the battery group and configured to charge and discharge the battery group to heat the battery group;

    a battery management device (103), connected with the battery group and the battery heater respectively, and configured to: if a temperature of the battery group is lower than a first heating threshold and a residual electric quantity of the battery group is larger than a running electric quantity threshold, control the battery heater to heat the battery group with a first power when the hybrid electric vehicle is in an electric vehicle mode, and heat the battery group with a second power when the hybrid electric vehicle is in a hybrid electric vehicle mode, wherein the second power is larger than the first power;

    an engine (702) configured to charge the battery group (101) ;

    a motor (105);

    an electric distribution box (104), configured to distribute a voltage output by the battery group to a power consumption equipment of the hybrid electric vehicle, said power consumption equipment comprising the motor (105);

    a motor controller (106), connected with the motor and the electric distribution box respectively, comprising a first input terminal, a second input terminal and a pre-charging capacitor connected between the first input terminal and the second input terminal, and configured to supply power to the motor according to a control command and a voltage distributed by the electric distribution box; and

    an isolation inductor (L2), connected between the battery group and the electric distribution box, wherein an inductance, L, of the isolation inductor is determined in accordance with a capacitance, C, of the pre-charging capacitor according to the formula:

    where T is an equivalent load work cycle of the motor (105).


     
    2. The power system of claim 1, wherein the motor comprises a first motor and a second motor, in which the first motor is connected with the engine, and the motor controller is connected with the first motor, the second motor and the electric distribution box respectively, and configured to supply power to the first motor and the second motor according to the control command and the voltage distributed by the electric distribution box respectively.
     
    3. The power system of claim 1, wherein the battery management device is further configured to:
    control the battery heater to heat the battery group in a parking heating mode when the residual electric quantity of the battery group is larger than the parking electric quantity threshold but lower than the running electric quantity threshold, in which the running electric quantity threshold is larger than the parking electric quantity threshold.
     
    4. The power system of claim 1, wherein the battery management device is further configured to:

    judge whether a current SOC value is larger than a preset electric quantity threshold, if yes, the hybrid electric vehicle enters in the electric vehicle mode, and if no, the hybrid electric vehicle enters in the hybrid electric vehicle mode;

    judge whether a current throttle depth change rate of the hybrid electric vehicle reaches a preset throttle depth change rate threshold when the hybrid electric vehicle is in the electric vehicle mode; and control the battery heater to stop heating the battery group if the hybrid electric vehicle is not in the hybrid electric vehicle mode and when the current throttle depth change rate of the hybrid electric vehicle reaches the preset throttle depth change rate threshold.


     
    5. The power system of claim 1, further comprising:
    a heating button, connected with the battery management device, wherein the battery management device sends a heating signal to the battery heater to control the battery heater to heat the battery group when the heating button is pressed.
     
    6. The power system of claim 5, wherein the battery management device is further configured to: after controlling the battery heater to heat the battery group, if the heating button is pressed again, judge whether an operation of pressing the heating button satisfies a preset condition, if yes, control the hybrid electric vehicle and/or the battery heater according to the temperature of the battery group and the residual electric quantity of the battery group.
     
    7. The power system of claim 6, wherein
    if the temperature of the battery group is lower than a first temperature threshold, the battery management device indicates the battery group is inhibited from being heated or charged and the hybrid electric vehicle is inhibited from being driven;
    if the temperature of the battery group is higher than the first temperature threshold and the residual electric quantity of the battery group is lower than a first electric quantity threshold, the battery management device indicates the battery group is inhibited from being heated or charged and the hybrid electric vehicle is inhibited from being driven; and
    if the temperature of the battery group is higher than the first temperature threshold and the residual electric quantity of the battery group is larger than the first electric quantity threshold, the battery management device allows the hybrid electric vehicle to run under a limited power.
     
    8. The power system of any of claims 1-7, wherein the battery management device is further configured to adjust a heating power of the battery heater according to the temperature of the battery group.
     
    9. The power system of any of claims 1-7, wherein the battery heater comprises:

    said first switch module, a first terminal of the first switch module connected with a first electrode of the battery group and the isolation inductor respectively;

    said first capacitor, a first terminal of the first capacitor connected with a second terminal of the first switch module, and a second terminal of the first capacitor connected with a second electrode of the battery group;

    said first inductor, a first terminal of the first inductor connected with a node between the first switch module and the first capacitor; and

    said second switch module, a first terminal of the second switch module connected with a second terminal of the first inductor, and a second terminal of the second switch module connected with the second electrode of the battery group,

    wherein a control terminal of the first switch module and a control terminal of the second switch module are connected with the battery management device, and the battery management device sends the heating signal to the control terminal of the first switch module and the control terminal of the second switch module to control the first switch module and the second switch module to turn on in turn, in which the first switch module is on when the second switch module is off, and the first switch module is off when the second switch module is on.


     
    10. The power system of claim 1, wherein the electric distribution box comprises:

    a primary contactor, configured to distribute the voltage output by the battery group to a power consumption equipment of the hybrid electric vehicle; and

    a pre-contactor, connected with the first input terminal or the second input terminal of the motor controller, and configured to charge the pre-charging capacitor under a control of the battery management device before the motor controller controls the motor to start.


     
    11. A hybrid electric vehicle comprising the power system of any one of claims 1-10.
     
    12. A method of heating a battery group of a power system of a hybrid electric vehicle according to claims 1 to 10, comprising:

    powering on the hybrid electric vehicle;

    detecting a temperature and a residual electric quantity of the battery group;

    if the temperature of the battery group is lower than a first heating threshold and the residual electric quantity of the battery group is larger than a running electric quantity threshold, judging a mode the hybrid electric vehicle is in;

    controlling the battery heater to heat the battery group with a first power if the hybrid electric vehicle is in an electric vehicle mode;

    controlling the battery heater to heat the battery group with a second power if the hybrid electric vehicle is in a hybrid electric vehicle mode, wherein the second power is higher than the first power; and

    indicating the battery group is inhibited from being heated or charged and the hybrid electric vehicle is inhibited from being driven if the temperature of the battery group is lower than the first heating threshold and the residual electric quantity of the battery group is lower than the parking electric quantity threshold, wherein the running electric quantity threshold is larger than the parking electric quantity threshold, and

    if the temperature of the battery group is higher than a first temperature threshold and the residual electric quantity of the battery group is lower than a first electric quantity threshold, indicating the battery group is inhibited from being heated or charged and the hybrid electric vehicle is inhibited from being driven, wherein the first electric quantity threshold is a predetermined percentage value of the total electric quantity of the battery group.


     
    13. The method of claim 12, further comprising:
    if the temperature of the battery group is lower than the first temperature threshold, indicating the battery group is inhibited from being heated or charged and the hybrid electric vehicle is inhibited from being driven;
    and
    if the temperature of the battery group is higher than the first temperature threshold and the residual electric quantity of the battery group is larger than the first electric quantity threshold, allowing the hybrid electric vehicle to run under a limited power.
     
    14. The method of claim 12, further comprising:

    calculating a current temperature of the battery group and a current residual electric quantity of the battery group;

    calculating a maximum output power of the battery group according to the current temperature of the battery group and the current residual electric quantity of the battery group; and

    controlling the hybrid electric vehicle to run under a limited power according to the maximum output power of the battery group.


     
    15. The method of claim 12, further comprising: controlling the battery heater to stop heating the battery group when any of following conditions is satisfied:

    the temperature of the battery group is higher than the first heating threshold;

    a temperature of any single battery in the battery group is higher than a second heating threshold, wherein the second heating threshold is larger than the first heating threshold; and

    a continuous heating time of the battery heater is larger than a heating time threshold.


     


    Ansprüche

    1. Stromversorgungssystem eines hybriden Elektrofahrzeugs, umfassend:

    eine Batteriegruppe (101);

    eine Batterieheizung (102), welche mit der Batteriegruppe verbunden und konfiguriert ist, die Batteriegruppe zu laden und zu entladen, um die Batteriegruppe zu heizen;

    eine Batterieverwaltungsvorrichtung (103), welche mit der Batteriegruppe bzw. der Batterieheizung verbunden und konfiguriert ist, um: wenn eine Temperatur der Batteriegruppe niedriger ist als eine erste Heizschwelle und eine elektrische Restmenge der Batteriegruppe größer ist als eine elektrische Betriebsmengenschwelle, die Batterieheizung zu steuern, um die Batteriegruppe mit einer ersten Leistung zu heizen, wenn das hybride Elektrofahrzeug sich in einem Elektrofahrzeugmodus befindet, und die Batteriegruppe mit einer zweiten Leistung zu heizen, wenn das hybride Elektrofahrzeug sich in einem hybriden Elektrofahrzeugmodus befindet, wobei die zweite Leistung größer ist als die erste Leistung;

    einen Maschine (702), welche konfiguriert ist, die Batteriegruppe (101) zu laden;

    einen Motor (105);

    einen elektrischen Verteilerkasten (104), welcher konfiguriert ist, eine von der Batteriegruppe ausgegebene Spannung an ein Leistungsverbrauchsgerät des hybriden Elektrofahrzeugs zu verteilen, wobei das Leistungsverbrauchsgerät den Motor (105) umfasst;

    eine Motorsteuerung (106), welche mit dem Motor bzw. dem elektrischen Verteilerkasten verbunden ist, welche eine erste Eingangsklemme, eine zweite Eingangsklemme und einen Vorladekondensator, welcher zwischen der ersten Eingangsklemme und der zweiten Eingangsklemme verbunden ist, umfasst und konfiguriert ist, Leistung entsprechend einem Steuerbefehl und einer von dem elektrischen Verteilerkasten verteilten Spannung an den Motor zu liefern; und

    eine Trenninduktivität (L2), welche zwischen der Batteriegruppe und dem elektrischen Verteilerkasten verbunden ist, wobei eine Induktivität, L, der Trenninduktivität in Übereinstimmung mit einer Kapazität, C, des Vorladekondensators entsprechend folgender Formel bestimmt wird:

    wobei T ein äquivalenter Lastarbeitszyklus des Motors (105) ist.


     
    2. Stromversorgungssystem nach Anspruch 1, wobei der Motor einen ersten Motor und einen zweiten Motor umfasst, wobei der erste Motor mit der Maschine verbunden ist, und die Motorsteuerung mit dem ersten Motor, dem zweiten Motor bzw. dem elektrischen Verteilerkasten verbunden und konfiguriert ist, Leistung an den ersten Motor und den zweiten Motor entsprechend dem Steuerbefehl bzw. der von dem elektrischen Verteilerkasten verteilten Spannung zu liefern.
     
    3. Stromversorgungssystem nach Anspruch 1, wobei die Batterieverwaltungsvorrichtung weiter konfiguriert ist, um:
    die Batterieheizung zu steuern, um die Batteriegruppe in einem Parkheizmodus zu heizen, wenn die elektrische Restmenge der Batteriegruppe größer als die elektrische Parkmengenschwelle, jedoch niedriger als die elektrische Betriebsmengenschwelle ist, wobei die elektrische Betriebsmengenschwelle größer ist als die elektrische Parkmengenschwelle.
     
    4. Stromversorgungssystem nach Anspruch 1, wobei die Batterieverwaltungsvorrichtung weiter konfiguriert ist, um:

    zu beurteilen, ob ein aktueller SOC-Wert größer ist als eine voreingestellte elektrische Mengenschwelle, falls ja, tritt das hybride Elektrofahrzeug in den Elektrofahrzeugmodus ein, und falls nein, tritt das hybride Elektrofahrzeug in den hybriden Elektrofahrzeugmodus ein;

    zu beurteilen, ob eine aktuelle Vergasertiefenänderungsrate des hybriden Elektrofahrzeugs eine voreingestellte Schwelle der Vergasertiefenänderungsrate erreicht, wenn das hybride Elektrofahrzeug sich in dem Elektrofahrzeugmodus befindet; und die Batterieheizung zu steuern, um das Heizen der Batteriegruppe zu stoppen, wenn das hybride Elektrofahrzeug sich nicht in dem hybriden Elektrofahrzeugmodus befindet und wenn die Vergasertiefenänderungsrate des hybriden Elektrofahrzeugs die voreingestellte Schwelle der Vergasertiefenänderungsrate erreicht.


     
    5. Stromversorgungssystem nach Anspruch 1, weiter umfassend:
    einen Heizknopf, welcher mit der Batterieverwaltungsvorrichtung verbunden ist, wobei die Batterieverwaltungsvorrichtung ein Heizsignal an die Batterieheizung sendet, um die Batterieheizung zu steuern, um die Batteriegruppe zu heizen, wenn der Heizknopf gedrückt wird.
     
    6. Stromversorgungssystem nach Anspruch 5, wobei die Batterieverwaltungsvorrichtung weiter konfiguriert ist, um: nach Steuern der Batterieheizung, die Batteriegruppe zu heizen, wenn der Heizknopf erneut gedrückt wird, zu beurteilen, ob ein Vorgang des Drückens des Heizknopfs eine voreingestellte Bedingung erfüllt, falls ja, Steuern des hybriden Elektrofahrzeugs und/oder der Batterieheizung entsprechend der Temperatur der Batteriegruppe und der elektrischen Restmenge der Batteriegruppe.
     
    7. Stromversorgungssystem nach Anspruch 6, wobei
    wenn die Temperatur der Batteriegruppe niedriger ist als eine erste Temperaturschwelle, die Batterieverwaltungsvorrichtung anzeigt, dass die Batteriegruppe daran gehindert wird, geheizt oder geladen zu werden, und das hybride Elektrofahrzeug daran gehindert wird, gefahren zu werden;
    wenn die Temperatur der Batteriegruppe höher ist als die erste Temperaturschwelle und die elektrische Restmenge der Batteriegruppe niedriger ist als eine erste elektrische Mengenschwelle, die Batterieverwaltungsvorrichtung anzeigt, dass die Batteriegruppe daran gehindert wird, geheizt oder geladen zu werden, und das hybride Elektrofahrzeug daran gehindert wird, gefahren zu werden; und
    wenn die Temperatur der Batteriegruppe höher ist als die erste Temperaturschwelle und die elektrische Restmenge der Batteriegruppe größer ist als die erste elektrische Mengenschwelle, die Batterieverwaltungsvorrichtung erlaubt, dass das hybride Elektrofahrzeug unter einer eingeschränkten Leistung betrieben wird.
     
    8. Stromversorgungssystem nach einem der Ansprüche 1-7, wobei die Batterieverwaltungsvorrichtung weiter konfiguriert ist, eine Heizleistung der Batterieheizung entsprechend der Temperatur der Batteriegruppe anzupassen.
     
    9. Stromversorgungssystem nach einem der Ansprüche 1-7, wobei die Batterieheizung umfasst:

    das erste Schaltermodul, wobei eine erste Klemme des ersten Schaltmoduls mit einer ersten Elektrode der Batteriegruppe bzw. der Trenninduktivität verbunden ist;

    den ersten Kondensator, wobei eine erste Klemme des ersten Kondensators mit einer zweiten Klemme des ersten Schaltermoduls verbunden ist, und eine zweite Klemme des ersten Kondensators mit einer zweiten Elektrode der Batteriegruppe verbunden ist;

    die erste Induktivität, wobei eine erste Klemme der ersten Induktivität mit einem Knoten zwischen dem ersten Schaltermodul und dem ersten Kondensator verbunden ist; und

    das zweite Schaltermodul, wobei eine erste Klemme des zweiten Schaltermoduls mit einer zweiten Klemme der ersten Induktivität verbunden ist, und eine zweite Klemme des zweiten Schaltermoduls mit der zweiten Elektrode der Batteriegruppe verbunden ist,

    wobei eine Steuerklemme des ersten Schaltermoduls und eine Steuerklemme des zweiten Schaltermoduls mit der Batterieverwaltungsvorrichtung verbunden sind, und die Batterieverwaltungsvorrichtung das Heizsignal an die Steuerklemme des ersten Schaltermoduls und die Steuerklemme des zweiten Schaltermoduls sendet, um das erste Schaltermodul und das zweite Schaltermodul zu steuern, um abwechselnd einzuschalten, wobei das erste Schaltermodul eingeschaltet ist, wenn das zweite Schaltermodul ausgeschaltet ist, und das erste Schaltermodul ausgeschaltet ist, wenn das zweite Schaltermodul eingeschaltet ist.


     
    10. Stromversorgungssystem nach Anspruch 1, wobei der elektrische Verteilerkasten umfasst:

    einen primären Schaltschütz, welcher konfiguriert ist, die von der Batteriegruppe ausgegebene Spannung an ein Leistungsverbrauchsgerät des hybriden Elektrofahrzeugs zu verteilen; und

    einen Vorschaltschütz, welcher mit der ersten Eingangsklemme oder der zweiten Eingangsklemme der Motorsteuerung verbunden und konfiguriert ist, den Vorladekondensator unter einer Steuerung der Batterieverwaltungsvorrichtung zu laden, bevor die Motorsteuerung den Motor steuert, um zu starten.


     
    11. Hybrides Elektroahrzeug, umfassend das Stromversorgungssystem nach einem der Ansprüche 1-10.
     
    12. Verfahren zum Heizen einer Batteriegruppe eines Stromversorgungssystems eines hybriden Elektrofahrzeugs nach Ansprüchen 1 bis 10, umfassend:

    Einschalten des hybriden Elektrofahrzeugs;

    Erkennen einer Temperatur und einer elektrischen Restmenge der Batteriegruppe;

    wenn die Temperatur der Batteriegruppe niedriger ist als eine erste Heizschwelle und die elektrische Restmenge der Batteriegruppe größer ist als eine elektrische Betriebsmengenschwelle, Beurteilen eines Modus, in welchem sich das hybride Elektrofahrzeug befindet;

    Steuern der Batterieheizung, um die Batteriegruppe mit einer ersten Leistung zu heizen, wenn das hybride Elektrofahrzeug sich in einen Elektrofahrzeugmodus befindet;

    Steuern der Batterieheizung, um die Batteriegruppe mit einer zweiten Leistung zu heizen, wenn das hybride Elektrofahrzeug sich in einem hybriden Elektrofahrzeugmodus befindet, wobei die zweite Leistung höher ist als die erste Leistung; und

    Anzeigen, dass die Batteriegruppe daran gehindert wird, geheizt oder geladen zu werden, und dass das hybride Elektrofahrzeug daran gehindert wird, gefahren zu werden, wenn die Temperatur der Batteriegruppe niedriger ist als die erste Heizschwelle und die elektrische Restmenge der Batteriegruppe niedriger ist als die elektrische Parkmengenschwelle, wobei die elektrische Betriebsmengenschwelle größer ist als die elektrische Parkmengenschwelle, und

    wenn die Temperatur der Batteriegruppe höher ist als eine erste Temperaturschwelle und die elektrische Restmenge der Batteriegruppe niedriger ist als eine erste elektrische Mengenschwelle, Anzeigen, dass die Batteriegruppe daran gehindert wird, geheizt oder geladen zu werden, und das hybride Elektrofahrzeug daran gehindert wird, gefahren zu werden, wobei die erste elektrische Mengenschwelle ein vorbestimmter Prozentsatz der gesamten elektrischen Menge der Batteriegruppe ist.


     
    13. Verfahren nach Anspruch 12, weiter umfassend:

    wenn die Temperatur der Batteriegruppe niedriger ist als die erste Temperaturschwelle, Anzeigen, dass die Batteriegruppe daran gehindert wird, geheizt oder geladen zu werden, und das hybride Elektrofahrzeug daran gehindert wird, gefahren zu werden; und

    wenn die Temperatur der Batteriegruppe höher ist als die erste Temperaturschwelle und die elektrische Restmenge der Batteriegruppe größer ist als die erste elektrische Mengenschwelle, Erlauben, dass das hybride Elektrofahrzeug unter einer eingeschränkter Leistung betrieben wird.


     
    14. Verfahren nach Anspruch 12, weiter umfassend:

    Berechnen einer aktuellen Temperatur der Batteriegruppe und einer aktuellen elektrischen Restmenge der Batteriegruppe;

    Berechnen einer maximal ausgegebenen Leistung der Batteriegruppe entsprechend der aktuellen Temperatur der Batteriegruppe und der aktuellen elektrischen Restmenge der Batteriegruppe; und

    Steuern des hybriden Elektrofahrzeugs, um unter einer eingeschränkten Leistung entsprechend der maximal ausgegebenen Leistung der Batteriegruppe betrieben zu werden.


     
    15. Verfahren nach Anspruch 12, weiter umfassend: Steuern der Batterieheizung, um Heizen der Batteriegruppe zu stoppen, wenn eine beliebige der folgenden Bedingungen erfüllt ist:

    die Temperatur der Batteriegruppe ist höher als die erste Heizschwelle;

    eine Temperatur einer beliebigen einzelnen Batterie in der Batteriegruppe ist höher als eine zweite Heizschwelle, wobei die zweite Heizschwelle größer ist als die erste Heizschwelle; und

    eine Dauerheizzeit der Batterieheizung ist größer als die Heizzeitschwelle.


     


    Revendications

    1. Système d'alimentation d'un véhicule électrique hybride, comprenant :

    un groupe batterie (101) ;

    un chauffe-batterie (102), relié au groupe batterie et configuré pour charger et décharger le groupe batterie pour chauffer le groupe batterie ;

    un dispositif de gestion de batterie (103), respectivement relié au groupe batterie et au chauffe-batterie et configuré pour : si une température du groupe batterie est inférieure à un premier seuil de chauffage et si une quantité électrique résiduelle du groupe batterie est supérieure à un seuil de quantité électrique en fonctionnement, commander le chauffe-batterie pour chauffer le groupe batterie avec une première puissance quand le véhicule électrique hybride est dans un mode de véhicule électrique, et chauffer le groupe batterie avec une seconde puissance quand le véhicule électrique hybride est dans un mode de véhicule électrique hybride, dans lequel la seconde puissance est supérieure à la première puissance ;

    un moteur (702) configuré pour charger le groupe batterie (101) ;

    un moteur électrique (105) ;

    un coffret de distribution électrique (104), configuré pour distribuer une tension sortie par le groupe batterie à un équipement de consommation électrique du véhicule électrique hybride, ledit équipement de consommation électrique comprenant le moteur électrique (105) ;

    une unité de commande de moteur électrique (106), respectivement reliée au moteur électrique et au coffret de distribution électrique, comprenant une première borne d'entrée, une seconde borne d'entrée et un condensateur de précharge relié entre la première borne d'entrée et la seconde borne d'entrée, et configurée pour fournir une alimentation au moteur électrique selon un ordre de commande et une tension distribuée par le coffret de distribution électrique ; et

    une bobine d'inductance d'isolement (L2), reliée entre le groupe batterie et le coffret de distribution électrique, dans laquelle une inductance, L, de la bobine d'inductance d'isolement est déterminée selon une capacité, C, du condensateur de précharge selon la formule :

    où T est un cycle de travail à charge équivalente du moteur électrique (105).


     
    2. Système d'alimentation selon la revendication 1, dans lequel le moteur électrique comprend un premier moteur électrique et un second moteur électrique, dans lequel le premier moteur électrique est relié au moteur, et l'unité de commande de moteur électrique est respectivement reliée au premier moteur électrique, au second moteur électrique et au coffret de distribution électrique, et configuré pour respectivement fournir une alimentation au premier moteur électrique et au second moteur électrique selon l'ordre de commande et la tension distribuée par le coffret de distribution électrique.
     
    3. Système d'alimentation selon la revendication 1, dans lequel le dispositif de gestion de batterie est en outre configuré pour :
    commander le chauffe-batterie pour chauffer le groupe batterie dans un mode de chauffage en stationnement quand la quantité électrique résiduelle du groupe batterie est supérieure au seuil de quantité électrique en stationnement mais inférieure au seuil de quantité électrique en fonctionnement, dans lequel le seuil de quantité électrique en fonctionnement est supérieur au seuil de quantité électrique en stationnement.
     
    4. Système d'alimentation selon la revendication 1, dans lequel le dispositif de gestion de batterie est en outre configuré pour :

    déterminer si une valeur SOC courante est supérieure à un seuil de quantité électrique définie à l'avance, si oui, le véhicule électrique hybride entre dans le mode de véhicule électrique, et si non, le véhicule électrique hybride entre dans le mode de véhicule électrique hybride ;

    déterminer si une vitesse de changement d'enfoncement d'accélérateur courante du véhicule électrique hybride atteint un seuil de vitesse de changement d'enfoncement d'accélérateur défini à l'avance quand le véhicule électrique hybride est dans le mode de véhicule électrique ; et commander le chauffe-batterie pour arrêter de chauffer le groupe batterie si le véhicule électrique hybride n'est pas dans le mode de véhicule électrique hybride et quand la vitesse de changement d'enfoncement d'accélérateur courante du véhicule électrique hybride atteint le seuil de vitesse de changement d'enfoncement d'accélérateur défini à l'avance.


     
    5. Système d'alimentation selon la revendication 1, comprenant en outre :
    un bouton de chauffage, relié au dispositif de gestion de batterie, dans lequel le dispositif de gestion de batterie envoie un signal chauffant au chauffe-batterie pour commander le chauffe-batterie pour chauffer le groupe batterie quand le bouton de chauffage est pressé.
     
    6. Système d'alimentation selon la revendication 5, dans lequel le dispositif de gestion de batterie est en outre configuré pour : après commande du chauffe-batterie pour chauffer le groupe batterie, si le bouton de chauffage est de nouveau pressé, déterminer si une opération de pression du bouton de chauffage satisfait à une condition définie à l'avance, si oui, commander le véhicule électrique hybride et/ou le chauffe-batterie selon la température du groupe batterie et la quantité électrique résiduelle du groupe batterie.
     
    7. Système d'alimentation selon la revendication 6, dans lequel
    si la température du groupe batterie est inférieure à un premier seuil de température, le dispositif de gestion de batterie indique que le groupe batterie est empêché d'être chauffé ou chargé et le véhicule électrique hybride est empêché d'être conduit ;
    si la température du groupe batterie est supérieure au premier seuil de température et que la quantité électrique résiduelle du groupe batterie est inférieure à un premier seuil de quantité électrique, le dispositif de gestion de batterie indique que le groupe batterie est empêché d'être chauffé ou chargé et que le véhicule électrique hybride est empêché d'être conduit ; et
    si la température du groupe batterie est supérieure au premier seuil de température et que la quantité électrique résiduelle du groupe batterie est supérieure au premier seuil de quantité électrique, le dispositif de gestion de batterie permet au véhicule électrique hybride de fonctionner sous une puissance limitée.
     
    8. Système d'alimentation selon l'une quelconque des revendications 1 à 7, dans lequel le dispositif de gestion de batterie est en outre configuré pour ajuster une puissance de chauffage du chauffe-batterie selon la température du groupe batterie.
     
    9. Système de puissance selon l'une quelconque des revendications 1 à 7, dans lequel le chauffe-batterie comprend :

    ledit premier module de commutation, une première borne du premier module de commutation respectivement reliée à une première électrode du groupe batterie et à la bobine d'inductance d'isolement ;

    ledit premier condensateur, une première borne du premier condensateur reliée à une seconde borne du premier module de commutation, et une seconde borne du premier condensateur reliée à une seconde électrode du groupe batterie ;

    ladite première bobine d'inductance, une première borne de la première bobine d'inductance reliée à un noeud entre le premier module de commutation et le premier condensateur; et

    ledit second module de commutation, une première borne du second module de commutation reliée à une seconde borne de la première bobine d'inductance, et une seconde borne du second module de commutation reliée à la seconde électrode du groupe batterie,

    dans lequel une borne de commande du premier module de commutation et une borne de commande du second module de commutation sont reliées au dispositif de gestion de batterie, et le dispositif de gestion de batterie envoie le signal de chauffage à la borne de commande du premier module de commutation et à la borne de commande du second module de commutation pour commander le premier module de commutation et le second module de commutation pour devenir passant à leur tour, dans lequel le premier module de commutation est passant quand le second module de commutation est bloquant, et le premier module de commutation est bloquant quand le second module de commutation est passant.


     
    10. Système d'alimentation selon la revendication 1, dans lequel le coffret de distribution électrique comprend :

    un contacteur primaire, configuré pour distribuer la tension sortie par le groupe batterie à un équipement de consommation électrique du véhicule électrique hybride ; et

    un précontacteur, relié à la première borne d'entrée ou à la seconde borne d'entrée de l'unité de commande de moteur électrique, et configuré pour charger le condensateur de précharge sous une commande du dispositif de gestion de batterie avant que l'unité de commande de moteur électrique ne commande le démarrage du moteur électrique.


     
    11. Véhicule électrique hybride comprenant le système d'alimentation selon l'une quelconque des revendications 1 à 10.
     
    12. Procédé de chauffage d'un groupe batterie d'un système d'alimentation d'un véhicule électrique hybride selon les revendications 1 à 10, comprenant :

    la mise en marche du véhicule électrique hybride ;

    la détection d'une température et d'une quantité électrique résiduelle du groupe batterie ;

    si la température du groupe batterie est inférieure à un premier seuil de chauffage et si la quantité électrique résiduelle du groupe batterie est supérieure à un seuil de quantité électrique en fonctionnement, la détermination d'un mode dans lequel le véhicule électrique hybride est ;

    la commande du chauffe-batterie pour chauffer le groupe batterie avec une première puissance si le véhicule électrique hybride est dans un mode de véhicule électrique ;

    la commande du chauffe-batterie pour chauffer le groupe batterie avec une seconde puissance si le véhicule électrique hybride est dans un mode de véhicule électrique hybride, dans lequel la seconde puissance est supérieure à la première puissance ; et

    l'indication que le groupe batterie est empêché d'être chauffé ou chargé et que le véhicule électrique hybride est empêché d'être conduit si la température du groupe batterie est inférieure au premier seuil de chauffage et que la quantité électrique résiduelle du groupe batterie est inférieure au seuil de quantité électrique en stationnement, dans lequel le seuil de quantité électrique en fonctionnement est supérieur au seuil de quantité électrique en stationnement, et

    si la température du groupe batterie est supérieure à un premier seuil de température et que la quantité électrique résiduelle du groupe batterie est inférieure à un premier seuil de quantité électrique, l'indication que le groupe batterie est empêché d'être chauffé ou chargé et que le véhicule électrique hybride est empêché d'être conduit, dans lequel le premier seuil de quantité électrique est une valeur de pourcentage prédéterminée de la quantité électrique totale du groupe batterie.


     
    13. Procédé selon la revendication 12, comprenant en outre :

    si la température du groupe batterie est inférieure au premier seuil de température, l'indication que le groupe batterie est empêché d'être chauffé ou chargé et que le véhicule électrique hybride est empêché d'être conduit ;
    et

    si la température du groupe batterie est supérieure au premier seuil de température et que la quantité électrique résiduelle du groupe batterie est supérieure au premier seuil de quantité électrique, la permission au véhicule électrique hybride de fonctionner sous une puissance limitée.


     
    14. Procédé selon la revendication 12, comprenant en outre :

    le calcul d'une température courante du groupe batterie et d'une quantité électrique résiduelle courante du groupe batterie ;

    le calcul d'une puissance de sortie maximale du groupe batterie selon la température courante du groupe batterie et la quantité électrique résiduelle courante du groupe batterie ; et

    la commande du véhicule électrique hybride pour fonctionner sous une puissance limitée selon la puissance de sortie maximale du groupe batterie.


     
    15. Procédé selon la revendication 12, comprenant en outre : la commande du chauffe-batterie pour arrêter de chauffer le groupe batterie quand l'une quelconque des conditions suivantes est satisfaite :

    la température du groupe batterie est supérieure au premier seuil de chauffage ;

    une température de n'importe quelle batterie unitaire dans le groupe batterie est supérieure à un second seuil de chauffage, dans lequel le second seuil de chauffage est supérieur au premier seuil de chauffage ; et

    un temps de chauffage continu du chauffe-batterie est supérieur à un seuil de temps de chauffage.


     




    Drawing




































    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description