(19)
(11)EP 2 855 604 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
25.05.2016 Bulletin 2016/21

(21)Application number: 13717183.1

(22)Date of filing:  19.03.2013
(51)Int. Cl.: 
C09D 5/02  (2006.01)
C09D 7/12  (2006.01)
C09K 3/30  (2006.01)
C08K 3/22  (2006.01)
A61K 6/02  (2006.01)
A61C 13/00  (2006.01)
A61C 9/00  (2006.01)
(86)International application number:
PCT/EP2013/055642
(87)International publication number:
WO 2013/139767 (26.09.2013 Gazette  2013/39)

(54)

SOLUTION FOR THE APPLICATION OF A CONTRAST PATTERN FOR THREE-DIMENSIONAL IMAGING

LÖSUNG FÜR DEN AUFTRAG VON EINEM KONTRASTMUSTER FÜR DREIDIMENSIONALE BILDGEBUNG

SOLUTION POUR L'APPLICATION DE MOTIF DE CONTRASTE POUR IMAGERIE TRIDIMENSIONNELLE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 19.03.2012 US 201213424200

(43)Date of publication of application:
08.04.2015 Bulletin 2015/15

(73)Proprietor: Arges Imaging, Inc.
San Clemente CA 92673 (US)

(72)Inventors:
  • LU, Jian
    San Gabriel, California 91775 (US)
  • LICATA, David
    Los Angeles, California 90034 (US)

(74)Representative: Sommer, Peter 
SOMMER Patentanwalt Augustaanlage 22
68165 Mannheim
68165 Mannheim (DE)


(56)References cited: : 
WO-A1-2011/056574
WO-A2-03/077839
US-A- 3 431 208
US-A- 6 077 898
WO-A2-01/62209
WO-A2-2012/142110
US-A- 3 808 686
US-A1- 2011 236 587
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD



    [0001] The subject matter described herein relates to a solution for the application of a contrast pattern on the surface of an object to be viewed and rendered by three-dimensional imaging system or platform.

    BACKGROUND



    [0002] A number of conventional platforms exist for the collection of two-dimensional image data of the surface of an subject (or object) and using that two-dimensional data to render (or otherwise represent) the object as a three dimensional computer model. The majority of these systems use electromagnetic radiation in the form of visible wavelengths to illuminate the surface of the object so that the reflections can then be received by an appropriate sensor or camera and placed into electrical format. These platforms have sophisticated hardware and software that process the received information in a fashion where the collected two-dimensional information can be used to render the three dimensional model.

    [0003] A feature which has proved useful in accurately recognizing the surface of the object to be imaged is the application of reference markers to the object's surface. These reference markers are typically both reflective and opaque, and provide a high degree of contrast with the surroundings, enabling them to serve as reliable position indicators for the imaging optics.

    [0004] An application for these platforms is the imaging of human teeth, such as for dentistry and orthodontics. A hand-held scanner is brought into proximity with the teeth, illuminates them, captures the reflected light, and sends that information to the processing segment, which can then use it to generate a three-dimensional model of part of a tooth, an entire tooth, or multiple teeth, etc. Crowns, orthodontics, molds, and the like can then be generated from the model. However, the human tooth is translucent and can vary in color, and its surface features are not always readily distinguishable by the imaging optics. It is therefore difficult to assess the surface features and an accurate location of the tooth exterior without the aid of the aforementioned reference markers.

    [0005] The attempts to apply reference markers to the teeth described in prior publications are either insufficient or come with significant limitations. For instance, the composition disclosed in Intl. Publication No. WO 2009/150596 (Ernst) is in reality a bi-layer approach that requires application of a reference marker composition in two steps. A glue-type layer is applied first, and this is followed by the application of the reference markers in powdered form. The application of a composition bearing reference markers can be hindered if it does not dry fast enough. The patient can accidentally remove the composition with his or her tongue or saliva while it is applied or before the teeth have been fully imaged. Also, if the composition remains in liquid form long enough, the powder can run off or settle in an uneven manner across the tooth's surface (e.g., into crevices) resulting in reference markers being disproportionately allocated and hindering the creation of a dense, evenly distributed pattern. To combat this, Ernst uses a third, drying step in between application of the glue and the powder. A multiple step application process is time consuming and relatively more complex.

    [0006] Intl. Publication No. WO 2011/162965 (Johnson) addresses the problem of slow drying compositions by applying a contrast composition that varies in viscosity based on changes in temperature. The composition is described as having low viscosity at ambient temperature and higher viscosity at body temperature, such that when the composition heats after application to the teeth it acts more like a gel and less like a liquid. However, a highly viscous composition tends to be thick when applied to the teeth. This can be problematic for the imaging system which must compensate for thickness of the composition to determine where the actual tooth surface lies. Also, because the composition does not fully dry, there remains a risk that it will rub or run off.

    [0007] Intl. Publication No. WO 2011/056574 (Hall-Holt) recognizes the desirability of applying reference markers to teeth but does not describe the enabling specifics of a composition that can be used to apply those markers in practice. Hall-Holt suggests compositions that have a high viscosity, but does not disclose compositions that dry rapidly.

    [0008] Intl. Publication No. WO 03/077839 (Butcher) discloses a composition that is predominantly alcohol and also uses a denture adhesive as a binding agent. Because of the high alcohol content (40%-94% by weight), this composition can potentially cause discomfort to a patient because of the thermal transfer that occurs during the evaporation of such a high alcohol content. This can be particularly troublesome with patients that have "cold-sensitive" teeth. Also, such a large alcohol content will typically take upwards of several minutes to dry.

    [0009] New compositions and methods of their use are therefore needed to address these and other deficiencies in the current state of the art.

    SUMMARY



    [0010] Provided herein are solutions for the application of a contrast pattern to the surface of an object to be imaged and modeled three-dimensionally. These solutions can contain a multitude of reference markers that have a high contrast as compared to their surroundings and will be referred to as contrast pattern compositions herein. The reference markers are in the form of particles (or particulates) that can be disbursed in a dense and evenly distributed pattern across the surface of the object to be imaged. The solution according to the present invention comprises a plurality of particles suspended in the solution, some of the particles consists of titanium dioxide spherical particles; a propellant; an intermediary solvent soluble in the propellant; and a polymeric bonder adapted to bond the plurality of particles to the surface of the object, the polymeric bonder being soluble in the intermediary solvent, wherein the plurality of particles consists of said titanium dioxide spherical particles and of vitreous carbon spherical particles. The compositions are suitable for numerous applications, including use on the teeth, where the compositions provide unique optical patterns against what can be a shiny and featureless surface. The composition can be applied from solution and can fully cover the underlying surface, substantially reducing or eliminating any undesirable surface reflections. The composition includes a bonding agent that bonds (or adheres) the particles to the surface relatively quickly enabling the composition to be "quick-drying" in certain embodiments.

    BRIEF DESCRIPTION OF THE FIGURES



    [0011] The details of the subject matter set forth herein, both as to its structure and operation, may be apparent by study of the accompanying figures, in which like reference numerals refer to like parts. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the subject matter. Moreover, all illustrations are intended to convey concepts, where relative sizes, shapes and other detailed attributes may be illustrated schematically rather than literally or precisely.
    FIG. 1
    is a perspective view of a device for applying a contrast pattern composition to a tooth.
    FIG. 2A
    is a side view showing spherical reference markers on the surface of a tooth.
    FIG. 2B
    is a side view showing flake-like reference markers on the surface of a tooth.
    FIG. 3A
    is a table listing the percent by weight of the components of the contrast pattern composition for working examples two through sixteen.
    FIG. 3B
    is a table listing the percent by weight of the components of the contrast pattern composition for working examples seventeen through thirty.

    DETAILED DESCRIPTION



    [0012] The contrast pattern compositions disclosed herein are typically manufactured and/or stored as a solution and subsequently applied as a spray. The composition includes: (1) a particulate component that acts as an array or pattern of reference markers; (2) a bonding agent that bonds the particles to the surface of the object that is being imaged; and (3) a propellant for using of the composition as a spray. One or more intermediary solvents (cosolvent) is/are included to place the bonding agent in solution within the propellant. In other words, the bonding agent is soluble within the intermediary solvent and the intermediary solvent is in turn soluble within the propellant. In addition, the contrast pattern composition can include artificial or natural flavoring for use within or near the mouth.

    [0013] The preferred application for the contrast pattern composition is in imaging of the teeth. Thus, a number of embodiments will be described herein with reference to that preferred application. However, it should be understood these embodiments are not for use solely in that context but have a wide range of applications, including the imaging of other parts of the human body (e.g., eye, nose, head, ear, or the like) or another living or non-living entity.

    [0014] These embodiments will also be described with reference to a preferred method of application of the composition, i.e., as a spray, but it should be understood that the composition can be applied in a number of different ways, either in the form disclosed or in forms customized for other application techniques. These include, but are not limited to, application with a brush, airbrush, marker, paint pen-type applicator, mouthwash, by hand, and the like. These compositions can be applied as a powder, a liquid, and/or a gel. Preferably, the composition is initially applied in liquid form but rapidly dries into a solid (or semi-solid, gel, or sol).

    [0015] Each component within the contrast pattern compositions is described herein both broadly as a class (or genus) and also as one or more subclasses (or sub-genuses or species). All combinations of classes and subclasses for one component are to be considered usable with all classes and subclasses of all other components unless noted otherwise. In other words, the various combinations of components that are within the scope of this disclosure should be interpreted broadly.

    [0016] FIG. 1 is a perspective view depicting a spray device 34 for application of the contrast pattern composition. Spray device 34 includes a canister 30 for holding the contrast pattern composition under pressure. Spray device 34 includes a head 31 having a nozzle 32, which is in physical communication with the contents of the canister 30. The nozzle is preferably configured to atomize the contents of the canister as they are released. Head 31 also includes an actuator 33 for opening nozzle 32. Preferably, the contrast pattern composition includes a propellant that has a boiling point below room temperature, in combination with a product that contains the reference markers and a bonding agent. Opening of the nozzle allows the pressurized propellant to boil and spray the product outwards towards the object to be imaged.

    [0017] Turning now to embodiments of the composition themselves, it should be understood that the type of particle used in the contrast pattern composition is very much dependent on the capabilities and requirements of the imaging platform with which it is to be used. Factors such as imager aperture size, sensor resolution, the number of channels, and the coding (e.g., by color, polarization, shape, etc.) of the channels, are examples of the considerations that are taken into account when selecting a particle. The size, shape, color and number of particles (percentage of the overall composition) are variables that can be adjusted to meet the desired specifications. The particles are preferably biocompatible and insoluble within the contrast spray composition. It is generally desirable to use the smallest particle size that is still distinguishable by the imaging system; however, particles less than one micron in size begin to risk absorption into the body in ways that may no longer justify referral to them as biocompatible. Preferably, the particles have a range of size of from about 1 micron to 50 microns, more preferably 5 microns to 20 microns, and more preferably 9 microns to 20 microns. Other sizes outside these ranges may also be used.

    [0018] Generally, the thickness of the composition after application to the teeth should be minimized so that the particles being imaged most accurately represent the exterior surface of the tooth. The contrast pattern compositions, after application, preferably had a thickness in the range of 9-40 microns, more preferably 20-40 microns. Viewed from a different perspective, the contrast pattern compositions preferably have a thickness in the range of one to three (nonoverlapping) particles in thickness, more preferably one to two particles in thickness. This refers to the long dimension of the particle in the case where the particles are significantly asymmetric.

    [0019] Particles that have a mostly planar shape, e.g., such as a flake or splinter, tend to stack up, one on top of the other, when applied to a surface. This can have the result of generating a greater than desired variability in particle size as imaged on the sensor. FIG. 2A depicts an example of evenly spaced spherical particles across a tooth surface, while FIG. 2B depicts an example of how particulate stacking can result in a higher variability in particle size. In FIG. 2B, two white flakes 201 and 202 are sitting above a black flake 203, where each are of equal size. Black flake 203 is partially obscured and appears to be only one-fourth the size of a white flake (e.g., 201). As a result, black flake 203 may be rendered too small to be accurately or reliably imaged by the sensor. In addition, the white flakes 201, 202 complement each other so as to appear larger than is needed for the sensor to distinguish them, which leads to inefficiencies in creating the densest possible pattern.

    [0020] Spherical particles tend to space themselves apart and not stack up due to their fully rounded profile. Thus, spherical shapes and other similar shapes that do not significantly stack (referred to herein as "generally spherical" shapes) have proven most useful. These generally spherical shapes include, but are not limited to: balls of ovoid, elliptical, or irregular profiles; tall cylinders; tall prisms; rods; and polyhedrons without overtly planar shapes or box-like shapes (e.g., rounded or sharp edges, including pyramidal shapes, various pentahedrons, hexahedrons, and so forth). Those of skill in the art will readily recognize other shapes that will tend to avoid stacking.

    [0021] The color of the particles is dependent on the needs of the application. The term "color" is used here broadly to refer to all the colors of the visible spectrum (black, white, red, orange, yellow, green, blue, indigo, violet, etc.) as well as all shades, tints, variations in grayscale, and the like. In one embodiment, the imaging system has two (or more) colored channels that are, e.g., red and blue (see the embodiments described with respect to FIG. 4). The particles are also divided into two colors, which provide a pattern having an inherent contrast with itself, making it more readily distinguishable when analyzed by the processing system. Black and white particles are one example of the color arrangement that can be used since each are distinguishable in both the red and blue channels.

    [0022] Any color arrangement can be used so long as the one or more colors are distinguishable from each other and the surroundings. For instance, other color combinations that can be used in a blue and red channel system include green and white, green and black, violet and black, etc. If only a single blue channel is used, color combinations that are suitable include green and white, red and white, and blue and black (the blue appears white in a blue channel), etc. The particles themselves can also be given multiple colors, for instance, a spherical particle can have a black hemisphere and a white hemisphere. A number of other patterns or color combinations will be readily apparent to those of ordinary skill in the art. In addition to color variations, the particles can vary in polarization and appearance in the ultraviolet and infrared spectrums.

    [0023] In terms of the material composition of the particles, it is generally desirable to use biocompatible materials that are inert and durable, such as ceramics, carbon variants, minerals, and certain polymers. Examples of suitable ceramics and minerals include, but are not limited to, titanium oxide, aluminum oxide, zinc oxide, zirconium dioxide, and talc, each of which generally are used for their white color. Examples of suitable polymers include, but are not limited to, polyethylene and polyethylene coated non-polymeric particles, polyester, and polyolefin. Polyethylene can be given any number of desired colors, including green, white, and black. Black particles can also be manufactured using carbon in a vitreous (e.g., glassy) or graphite form, or as a biocompatible ball coated with carbon nanotubes.

    [0024] In the inventive solution titanium dioxide spherical particles and vitreous carbon spherical particles are comprised.

    [0025] The particle is preferably inert since charged or polarized particles can be attracted or repelled by each other or by charges contained within the remainder of the composition. Such a phenomena can result in clumping or loss of the particles from the object's surface. The particles preferably have a high durability to avoid physically breaking down as fractured particles reduce the particle size and could render them undetectable by the sensor. Techniques to increase durability, such as sintering, are desirable where applicable. Black particles made from graphite tend to break down and thus are less preferred as compared to vitreous carbon. Also, particles made from conglomerates can tend to break down unless compensated for, such as through sintering.

    [0026] The particles require an agent to fix them in position on the tooth, and the contrast pattern compositions include a bonding agent for that purpose. The bonding agent should have adhesive qualities, i.e., should be "sticky," and should be appropriate for human use. The bonding agents should also preferably be soluble in the propellant without the need of a slow drying intermediary solvent such as water. The bonding agent is also preferably water soluble to facilitate removal of the contrast pattern composition from the teeth and to allow better bonding when in the mouth.

    [0027] The inventors have found that food grade polymers are a class of substances that can meet these requirements, either directly or indirectly. "Food grade" refers to those substances that have been qualified as food grade by the U.S. Food and Drug Administration (FDA). Polyvinylpyrrolidone (PVP) is an example of a polymeric bonding agent that is both food grade quality and relatively quick drying, making it particularly suitable for dental applications. The relative amount of PVP used is based upon the amount of particles in the composition; generally the minimum amount of PVP that will provide the desired amount of stickiness or adhesion to the teeth should be used.

    [0028] PVP is not soluble in many propellants and therefore can require the use of an intermediary solvent to place it in solution. A suitable class of intermediary solvents that can be used are alcohols, including but not limited to denatured alcohol SBA 40, as they have the benefit of being relatively quick drying. The alcohol should not be highly toxic since the composition can be used within a patient's mouth. Other solvents for the bonding agent that are soluble within the chosen propellant can be used as well (e.g., water, glycerol, sorbitol, and xylitol).

    [0029] Polyvinyl alcohol (PVAL) is another example of a suitable polymeric bonding agent. PVAL is not directly soluble in many propellants and can require an intermediary solvent such as alcohol or water. However, water typically adds to the dry time of the composition and this can require compensation. Other examples of bonding agents that can be used are solid polyvinyl acetate (widely used in chewing gums), starch, collagen, and other food polymers/thickeners.

    [0030] The propellant can be any hydrofluorocarbon (HFC) (also referred to as hydrofluoroalkane (HFA)) in which the polymer or intermediary solvent is soluble. HFC examples include, but are not limited to: pentane; 2H, 3H decafluoropentane (HPFP); perfluoropentane (PFPt); propane; 1,1,1,2,3,3,3-heptafluoropropane (HFC 227); perfluoropropane (PFPr); ethane; 1,1,1,2-tetrafluoroethane (HFC 134a); 1,1,1,3,3,3-hexafluoropropane (HFC 236fa) and perfluoroethane (PFEt). Dimethyl ether (DME) can also be used (also referred to as methoxymethane). Chlorofluorocarbons (CFCs) can also be used but are heavily regulated in most markets, including the US. Preferably the propellant is of neutral polarity, non-flammable, and pharmaceutical grade. "Pharmaceutical grade" is intended to refer to the class of compounds that are approved for pharmaceutical use by the U.S. Food and Drug Administration. While pharmaceutical grade propellants are desirable, they are not required. Examples of pharmaceutical grade, non-flammable HFCs that can be used are HFC 134a (e.g., Zephex 134a), HFC 227ea (e.g., Zephex 227ea), and HFC 236fa (e.g., Dymel 236fa). Of these compounds, the inventors have found that HFC 227ea is most preferred.

    [0031] In addition, the composition can be flavored and/or sweetened to make it more appealing to the patient. Those of ordinary skill in the art will recognize that a great number of flavorings (or combinations thereof) can be used. The flavoring preferably does not significantly interfere with the dry time are bonding characteristics of the composition.

    [0032] The following working examples are provided to demonstrate a non-exhaustive list of compositions that the inventors found can function as a contrast pattern composition for three-dimensional imaging.

    WORKING EXAMPLE ONE



    [0033] In this example, the composition is applied as a spray and uses HFC 227ea as the propellant. Table 1 shows the components in the percent by which they make up the composition.
    TABLE 1
    SubstancePercent (by weight)
    1,1,1,2,3,3,3-heptafluoropropane (Zephex 227ea) 92.285
    denatured alcohol (SDA) 40B 3.600
    titanium dioxide (9-20 microns) 2.000
    glassy carbon (10-20 microns) 1.500
    polyvinylpyrrolidone(PVP) 0.400
    spearmint flavor 0.200
    sodium saccharin sweetener 0.015


    [0034] Titanium dioxide spherical particles were used as the white reference markers while glassy (vitreous) carbon spherical particles were used as the black reference markers. The bonding agent used to bond these particles to the teeth is PVP (also referred to as kollidon 30). PVP is not typically soluble in Zephex 227ea so an intermediary solvent (cosolvent) is used, which is denatured alcohol (SBA) 40B in this example. PVP is advantageous because it is soluble in alcohol without needing water. It has been found that the minimum amount of PVP that provides adequate bonding of the particles to the teeth, in this example, is a ratio of about 1:8.75 as compared to the amount of white and black particles. Thus, in applications that require relatively more or less particles for imaging, the amount of PVP can be adjusted while maintaining the same or similar ratio (e.g., between about 1:8 and 1:10). A broader ratio can be used, however, such as between about 1:6 and 1:12 (PVP:particles). An alcohol content of about 9:1 as compared to the PVP content is used to place the PVP in solution. A relatively small amount of spearmint flavoring and saccharin for sweetness are also included.

    [0035] This composition, while kept in solution within the spray canister, dries very rapidly upon exiting the canister and coming to rest on the teeth. This "quick dry" composition is beneficial in that the composition has little time to be wiped away when coming into contact with the teeth and also very little time for the particles to group or drain off of the teeth in a way that would interfere with creating an evenly-distributed and dense reference grid. This also provides immediate feedback for the administering user as to the sufficiency of coverage of the teeth. The use of PVP results in a firm bond that is not easily wiped away with the tongue, cheeks or lips and, therefore, will remain in place throughout the imaging procedure. However, because PVP is water soluble, it can be readily removed by use of a water stream such as a dentist's water jet. It can also be removed by a mouthwash or other removal applicator, such as a brush.

    [0036] An additional twenty-nine working examples are set forth in FIG. 3A (examples 2-16) and FIG. 3B (examples 17-30). In these examples, percent compositions for each of various components (propellant, intermediary solvent, polymeric bonder, black particles, and white particles) to arrive at functioning compositions with varying degrees of performance. (No flavoring was included in these examples.) Unless otherwise stated in the tables of FIGs. 3A-B, the propellant in each example is HFC 227ea, the intermediary solvent is denatured alcohol SBA 40, the polymeric binder is PVP, the black particles are glassy carbon, and the white particles are titanium dioxide. Some working examples did not have a polymeric bonder (examples 3, 11, 16, 18, 20, 22-23, 25, 27, and 29). Also, working example 5 did not have an intermediary solvent. The diameters of the white particles ranged from nine to twenty microns, except that the diameters for examples 17-22 ranged from nine to thirty-two microns, the diameters for example 23 were less than five microns, and the diameters for examples 24-29 ranged from one to ten microns. The diameters of the black particles ranged from ten to twenty microns for each example.

    [0037] Methods of use of the contrast pattern compositions are also provided herein. In one example embodiment, the contrast pattern composition is applied to the teeth from a spray canister. The spray is applied to all surfaces of all teeth to be imaged. The composition exists in the canister in an un-dried or non-solid form (e.g., as a gas or liquid solution) carrying the suspended particle reference markers, but the propellant and other components begin to dry immediately upon exiting the spray canister assembly (e.g., the nozzle). The contrast pattern composition is therefore quick drying and dries (or sets) in the range of immediately after exiting the nozzle to about ten seconds after initial contact with the tooth under ambient conditions (conditions of the human mouth in an external environment at room temperature).

    [0038] In another embodiment, the contrast pattern composition dries (or sets) in the range of immediately after exiting the nozzle to about seven seconds after initial contact with the tooth under ambient conditions. In yet another embodiment, the contrast pattern composition dries (or sets) in the range of immediately after exiting the nozzle to about five seconds after initial contact with the tooth under ambient conditions. In still yet another embodiment, the contrast pattern composition dries (or sets) in the range of immediately after exiting the nozzle to about one second after initial contact with the tooth under ambient conditions.

    [0039] The contrast pattern composition dries (or sets) without the application of heat or gas (e.g., air) from an external heating source, blowing apparatus, or other device (i.e., without the application of heat or gas from a source other than the body of the patient and the ambient surroundings). For instance, no affirmative "drying step" is required to cause the composition to dry. Also, no significant "waiting period" (on the order of 10 seconds or more) is required to allow the composition to dry (or set) on the teeth. Use of the term "dry" refers to the state where the particles are set in position and are no longer moveable, which corresponds to the composition being in a solid or substantially solid state. The method can also include the removal of the dried (or set) composition with the use of a water spray apparatus (e.g., a dental water jet).

    [0040] These contrast pattern compositions can be customized or varied to work with any number of three-dimensional imaging systems. Embodiments of a typical imaging system with which the contrast pattern composition is particularly suited are now described. It should be noted that this typical imaging system is an example only and is in no way intended to limit the types of imaging systems or techniques of imaging with which the composition can be used.


    Claims

    1. A solution for the application of a contrast pattern to a surface of an object to be imaged in three dimensions, comprising:

    - a plurality of particles suspended in the solution, some of the particles consists of titanium dioxide spherical particles;

    - a propellant;

    - an intermediary solvent soluble in the propellant;

    and

    - a polymeric bonder adapted to bond the plurality of particles to the surface of the object, the polymeric bonder being soluble in the intermediary solvent,

    - wherein the plurality of particles consists of said titanium dioxide spherical particles and of vitreous carbon spherical particles.


     
    2. The solution of claim 1, wherein the propellant is a hydrofluorocarbon (HFC).
     
    3. The solution of claim 2, wherein the propellant is selected from the group consisting of 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane, and 1,1,1,3,3,3-hexafluoropropane.
     
    4. The solution of one of the claims 1 to 3, wherein the polymeric bonder is a food grade polymer.
     
    5. The solution of one of the claims 1 to 4, wherein the polymeric bonder is selected from the group consisting of polyvinylpyrrolidone and polyvinyl alcohol.
     
    6. The solution of one of the claims 1 to 5, wherein the intermediary solvent is a food grade alcohol.
     
    7. The solution of one of the claims 1 to 5, wherein the intermediary solvent is denatured alcohol SDA 40B.
     
    8. The solution of one of the claims 1 to 7, further comprising artificial flavor.
     
    9. The solution of one of the claims 1 to 8, wherein the ratio of the plurality of particles to the polymeric bonding agent is between twelve-to-one and six-to-one.
     
    10. The solution of one of the claims 1 to 9, wherein the ratio of the plurality of particles to the polymeric bonding agent is between nine-to-one and eight-to-one.
     


    Ansprüche

    1. Lösung zur Auftragung eines Kontrastmusters auf eine Oberfläche eines Objekts, das in drei Dimensionen dargestellt werden soll, umfassend:

    - eine Vielzahl von in der Lösung suspendierten Partikeln, wobei einige der Partikel aus kugelförmigen Titandioxidpartikeln bestehen;

    - ein Treibmittel;

    - ein im Treibmittel lösliches
    Zwischenlösungsmittel;

    und

    - einen Polymerbinder, der so gestaltet ist, dass er die Vielzahl von Partikeln an die Oberfläche des Objekts bindet, wobei der Polymerbinder in dem Zwischenlösungsmittel löslich ist,

    - wobei die Vielzahl von Partikeln aus den kugelförmigen Titandioxidpartikeln und aus glasartigen kugelförmigen Kohlenstoffpartikeln besteht.


     
    2. Lösung nach Anspruch 1, wobei das Treibmittel ein Hydrofluorkohlenstoff (HFC) ist.
     
    3. Lösung nach Anspruch 2, wobei das Treibmittel ausgewählt ist aus der Gruppe bestehend aus 1,1,1,2-Tetrafluorethan, 1,1,1,2,3,3,3-Heptafluorpropan und 1,1,1,3,3,3-Hexafluorpropan.
     
    4. Lösung nach einem der Ansprüche 1 bis 3, wobei der Polymerbinder ein lebensmittelunbedenkliches Polymer ist.
     
    5. Lösung nach einem der Ansprüche 1 bis 4, wobei der Polymerbinder ausgewählt ist aus der Gruppe bestehend aus Polyvinylpyrrolidon und Polyvinylalkohol.
     
    6. Lösung nach einem der Ansprüche 1 bis 5, wobei das Zwischenlösungsmittel ein lebensmittelunbedenklicher Alkohol ist.
     
    7. Lösung nach einem der Ansprüche 1 bis 5, wobei das Zwischenlösungsmittel denaturierter Alkohol SDA 40B ist.
     
    8. Lösung nach einem der Ansprüche 1 bis 7, die ferner einen künstlichen Geschmacksstoff umfasst.
     
    9. Lösung nach einem der Ansprüche 1 bis 8, wobei das Verhältnis der Vielzahl von Partikeln zum Polymerbindemittel zwischen zwölf zu eins und sechs zu eins beträgt.
     
    10. Lösung nach einem der Ansprüche 1 bis 9, wobei das Verhältnis der Vielzahl von Partikeln zum Polymerbindemittel zwischen neun zu eins und acht zu eins beträgt.
     


    Revendications

    1. Solution pour l'application d'un motif de contraste sur une surface d'un objet à imager en trois dimensions, comprenant:

    - une pluralité de particules en suspension dans la solution, certaines des particules étant constituées de particules sphériques de dioxyde de titane;

    - un propulseur;

    - un solvant intermédiaire soluble dans le propulseur;

    et

    - un liant polymère conçu pour lier la pluralité de particules à la surface de l'objet, le liant polymère étant soluble dans le solvant intermédiaire,

    - dans laquelle la pluralité de particules est constituée desdites particules sphériques de dioxyde de titane et de particules sphériques de carbone vitreux.


     
    2. Solution selon la revendication 1, dans laquelle le propulseur est un hydrocarbure fluoré (HFC).
     
    3. Solution selon la revendication 2, dans laquelle le propulseur est choisi dans le groupe constitué de 1,1,1,2-tétrafluoroéthane, 1,1,1,2,3,3,3-heptafluoropropane et 1,1,1,3,3,3-hexafluoropropane.
     
    4. Solution selon l'une des revendications 1 à 3, dans laquelle le liant polymère est un polymère de qualité alimentaire.
     
    5. Solution selon l'une des revendications 1 à 4, dans laquelle le liant polymère est choisi dans le groupe constitué de polyvinylpyrrolidone et d'alcool polyvinylique.
     
    6. Solution selon l'une des revendications 1 à 5, dans laquelle le solvant intermédiaire est un alcool de qualité alimentaire.
     
    7. Solution selon l'une des revendications 1 à 5, dans laquelle le solvant intermédiaire est l'alcool dénaturé SDA 40B.
     
    8. Solution selon l'une des revendications 1 à 7, comprenant en outre un arôme artificiel.
     
    9. Solution selon l'une des revendications 1 à 8, dans laquelle le rapport de la pluralité de particules sur l'agent de liaison polymère est compris entre douze pour un et six pour un.
     
    10. Solution selon l'une des revendications 1 à 9, dans laquelle le rapport de la pluralité de particules sur l'agent de liaison polymère est compris entre neuf pour un et huit pour un.
     




    Drawing















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description