(19)
(11)EP 2 858 215 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
10.05.2017 Bulletin 2017/19

(21)Application number: 12877689.5

(22)Date of filing:  27.09.2012
(51)International Patent Classification (IPC): 
H02K 3/34(2006.01)
H02K 3/52(2006.01)
H02K 3/32(2006.01)
(86)International application number:
PCT/JP2012/074911
(87)International publication number:
WO 2013/179504 (05.12.2013 Gazette  2013/49)

(54)

ROTATING ELECTRICAL MACHINE

ELEKTRISCHE DREHMASCHINE

MACHINE ÉLECTRIQUE TOURNANTE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 29.05.2012 JP 2012122078

(43)Date of publication of application:
08.04.2015 Bulletin 2015/15

(73)Proprietor: Mitsubishi Electric Corporation
Tokyo 100-8310 (JP)

(72)Inventors:
  • Hino, Keiji
    Tokyo 1020073 (JP)
  • Takashima, Kazuhisa
    Tokyo 1008310 (JP)
  • Ichigozaki, Atsushi
    Tokyo 1020073 (JP)
  • Sakamoto, Katsuhiko
    Tokyo 1008310 (JP)

(74)Representative: Hoffmann Eitle 
Patent- und Rechtsanwälte PartmbB Arabellastraße 30
81925 München
81925 München (DE)


(56)References cited: : 
WO-A1-2005/101612
JP-A- S63 299 747
JP-A- 2012 016 133
JP-U- S5 126 443
DE-A1-102007 038 988
JP-A- 2009 201 314
JP-A- 2012 016 133
US-A1- 2004 245 882
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present invention relates to a rotating electrical machine including a stator, to which coils formed by winding a conductor wire around a stator core via insulating bobbins therebetween are mounted.

    Background Art



    [0002] An electrical motor, which is a rotating electrical machine, includes a stator provided on an outer circumference of a rotatable rotor. The stator includes coils mounted to a stator core via insulating bobbins therebetween.

    [0003] As the insulating bobbin, there is known an insulating bobbin including a first insulating bobbin portion and a second bobbin portion, which are inserted from both end-surface sides of the stator core along an axial direction (see Patent Literature 1, for example).Another example of such an insulating bobbin has already been disclosed in US 2004/0245882 A1.

    Citation List


    Patent Literature



    [0004] [PTL 1] JP 2012-16133 A

    Summary of Invention


    Technical Problem



    [0005] However, there is a problem in that the first insulating bobbin portion and the second insulating bobbin portion come off the stator core under vibrations or their own weights during a step of mounting the coil to the stator core after the insertion onto the stator core.

    [0006] The present invention has been made to solve the problem described above, and has an object to provide a rotating electrical machine that prevents an insulating bobbin from coming off a stator core under vibrations or its own weight after the insertion onto the stator core.

    Solution to Problem



    [0007] According to one embodiment of the present invention, there is provided a rotating electrical machine, including:

    a rotor rotatable about a shaft; and

    a stator provided so as to surround the rotor, the stator including a stator core and a coil mounted to the stator core by winding a conductor wire around the stator core through an insulating bobbin therebetween, the stator core including:

    a back yoke portion having a ring-like shape;

    a plurality of tooth portions provided at intervals in a circumferential direction so that distal end portions of the plurality of tooth portions project from the back yoke portion in an axial core direction; and

    shoe portions provided at the distal end portions of the plurality of tooth portions to project in the circumferential direction, in which:

    the insulating bobbin includes a first insulating bobbin portion and a second insulating bobbin portion inserted onto both end surfaces of the stator core in an axial direction, respectively;

    each of the first insulating bobbin portion and the second insulating bobbin portion includes:

    a back yoke engagement portion having an L-like sectional shape, the back yoke engagement portion being configured to be brought into engagement with the back yoke portion;

    a shoe engagement portion to be brought into engagement with each of the shoe portions; and

    a coil winding portion having a U-like sectional shape, around which the conductor wire is to be wound, the coil winding portion having an opening portion on an inner side thereof, into which each of the plurality of tooth portions is to be inserted;

    the back yoke engagement portion includes a convex portion for the back yoke portion, which is configured to be brought into contact with an inner-diameter surface of the back yoke portion, the convex portion being formed on at least one of outer-diameter surfaces of a pair of back yoke-side coil retaining pieces opposed to the inner-diameter surface of the back yoke portion;

    the shoe engagement portion includes a convex portion for the each of the shoe portions, which is configured to be brought into contact with an outer-diameter surface of the each of the shoe portions, the convex portion being formed on at least one of inner-diameter surfaces of a pair of shoe-side coil retaining pieces opposed to the outer-diameter surface of the each of the shoe portions; and

    the pair of back yoke-side coil retaining pieces and the pair of shoe-side coil retaining pieces are biased toward the stator core by the convex portion for the back yoke portion and the convex portion for the each of the shoe portions.


    Advantageous Effects of Invention



    [0008] According to the rotating electrical machine according to one embodiment of the present invention, by the convex portion for the back yoke portion and the convex portion for the shoe portion, which are formed on the each of the first insulating bobbin portion and the second insulating bobbin portion, the back yoke-side coil retaining pieces and the shoe-side coil retaining pieces are biased toward the stator core. As a result, the insulating bobbin can be prevented from coming off the stator core under vibrations or its own weight.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0009] 

    [FIG. 1] FIG. 1 is a front sectional view illustrating an electrical motor 1 according to the first embodiment of the present invention.

    [FIG. 2] FIG. 2 is a sectional side view in FIG. 1.

    [FIG. 3] FIG. 3 is a plan view of a principal part of a stator core illustrated in FIG. 1.

    [FIG. 4] FIG. 4 is a perspective view illustrating a first insulating bobbin portion to be inserted onto the stator core illustrated in FIG. 1.

    [FIG. 5] FIG. 5 is a view illustrating the first insulating bobbin portion illustrated in FIG. 4 as viewed along the arrow A.

    [FIG. 6] FIG. 6 is a view illustrating the first insulating bobbin portion illustrated in FIG. 4 as viewed along the arrow B.

    [FIG. 7] FIG. 7 is a view illustrating the first insulating bobbin portion illustrated in FIG. 4 as viewed along the arrow C.

    [FIG. 8] FIG. 8 is a plan view of a principal part when the first insulating bobbin portion is inserted onto the stator core.

    [FIG. 9] FIG. 9 is a view when the first insulating bobbin portion is mounted to the tooth portion and the shoe portion along a direction indicated by the arrow D in FIG. 4 and the second insulating bobbin portion is mounted to the tooth portion and the shoe portion along a direction opposite to the direction indicated by the arrow D, as viewed along the arrow E in FIG. 4.

    [FIG. 10] FIG. 10 is a sectional view taken along the line X-X in FIG. 9 as viewed from a direction of the arrows

    [FIG. 11] FIG. 11 is an enlarged view of an area Y in FIG. 10.


    Description of Embodiment.


    First Embodiment



    [0010] Now, an electrical motor according to a first embodiment of the present invention is described referring to the drawings.

    [0011] FIG. 1 is a front sectional view illustrating an electrical motor 1 according to the first embodiment of the present invention, and FIG. 2 is a sectional side view in FIG. 1.

    [0012] The electrical motor 1, which is a rotating electrical machine, is used for an electrical power steering device, and includes a frame 4 having a cylindrical shape, a rotor 3 provided inside the frame 4, which is rotatable about a shaft 8, and a stator 2 fixed to an inner wall surface of the frame 4, which surrounds the rotor 3.

    [0013] The stator 2 includes a stator core 5 having a cylindrical shape, which includes slots extending in an axial direction thereof, and coils 6 formed by winding copper wires being conductor wires in the slots of the stator core 5 via insulating bobbins therebetween.

    [0014] The rotor 3 starts rotating with the start of a flow of a current through the coils 6 to excite the stator 2.

    [0015] As illustrated in FIG. 3, the stator core 5 includes a back yoke portion 10 having a ring-like shape, a plurality of tooth portions 11 provided equiangularly so that distal end portions thereof project from the back yoke portion 10 in an axial-core direction, and shoe portions 12 provided at the distal end portions of the tooth portions 11 to project in a circumferential direction.

    [0016] Each of the insulating bobbins partially covers each of the tooth portions 11, around which the copper wire is wound, and each of the shoe portions 12, and is constructed by two parts, that is, a first insulating bobbin portion and a second insulating bobbin portion.

    [0017] FIG. 4 is a perspective view illustrating a first insulating bobbin portion 9a to be inserted onto the stator core 5 illustrated in FIG. 1, FIG. 5 is a view illustrating the first insulating bobbin portion 9a illustrated in FIG. 4 as viewed along the arrow A, FIG. 6 is a view illustrating the first insulating bobbin portion 9a illustrated in FIG. 4 as viewed along the arrow B, and FIG. 7 is a view illustrating the first insulating bobbin portion 9a illustrated in FIG. 4 as viewed along the arrow C.

    [0018] FIG. 4 illustrates a state in which the first insulating bobbin portion 9a is inserted onto one end surface T of the stator core 5 in the axial direction along a direction indicated by the arrow D. The second insulating bobbin portion is inserted onto another end surface of the stator core 5 in the axial direction along a direction opposite to the arrow D.

    [0019] The first insulating bobbin portion 9a includes, as illustrated in FIG. 4, a back-yoke engagement portion 13 having an L-like sectional shape, to be brought into engagement with the back yoke portion 10 of the stator core 5, a shoe engagement portion 17 to be brought into engagement with the shoe portion 12 of the stator core 5, and a coil winding portion 15 having a U-like sectional shape, around which the copper wire is wound, which are formed integrally. Each of the tooth portions 11 is inserted into an opening portion 18 inside the coil winding portion 15.

    [0020] The back-yoke engagement portion 13 includes convex portions 19 for the back yoke portion, which are formed integrally on outer-diameter surfaces of a pair of back yoke-side coil retaining pieces 14. The outer-diameter surfaces are opposed to inner-diameter surfaces 10a of the back yoke portion 10.

    [0021] The shoe engagement portion 17 includes convex portions 20 for the shoe portion, which are formed integrally on inner-diameter surfaces of a pair of shoe-side coil retaining pieces 16. The inner-diameter surfaces are opposed to outer-diameter surfaces 12a of the shoe portion 12.

    [0022] The convex portions 19 for the back yoke portion and the convex portions 20 for the shoe portion are formed at positions symmetric with respect to a center line of each of the tooth portions 11. Each of the convex portions 19 for the back yoke portion and the convex portions 20 for the shoe portion are formed at positions to which distances in the circumferential direction from the center line of each of the tooth portions are different from each other.

    [0023] Moreover, a distance from the end surface T of the stator core 5 to each of the convex portions 19 for the back yoke portion along the axial direction and that to each of the convex portions 20 for the shoe portion are the same. In addition, the convex portions 19 for the back yoke portion and the convex portions 20 for the shoe portion are formed on the side of the end surface T of the stator core 5.

    [0024] A configuration of the second insulating bobbin portion is the same as that of the first insulating bobbin portion 9a, and the description thereof is herein omitted.

    [0025] FIG. 8 is a plan view of a principal part when the first insulating bobbin portion 9a is inserted onto the stator core 5.

    [0026] FIG. 9 is a view when the first insulating bobbin portion 9a is mounted to the tooth portion 11 and the shoe portion 12 along a direction indicated by the arrow D in FIG. 4 and the second insulating bobbin portion 9a is mounted to the tooth portion 11 and the shoe portion 12 along a direction opposite to the direction indicated by the arrow D, as viewed along the arrow E in FIG. 4.

    [0027] Moreover, FIG. 10 is a sectional view taken along the line X-X in FIG. 9 as viewed from a direction of the arrows, and FIG. 11 is an enlarged view of an area Y in FIG. 10.

    [0028] According to the electrical motor 1 of this embodiment, in each of the first insulating bobbin portion 9a and the second insulating bobbin portion 9b, the convex portions 19 for the back yoke portion are respectively formed on the back yoke-side coil retaining pieces 14. Therefore, the convex portions 19 for the back yoke portion come into contact with the inner-diameter surfaces 10a of the back yoke portion 10. As a result, the convex portions 19 for the back yoke portion displace in a direction toward the shoe portion 12.

    [0029] Moreover, the convex portions 20 for the shoe portion are formed respectively on the shoe-side coil retaining pieces 16. Therefore, the convex portions 20 for the shoe portion come into contact with the outer-diameter surfaces 12a of the shoe portion 12. As a result, the convex portions 20 for the shoe portion displace in a direction toward the back yoke portion 10.

    [0030] Therefore, a force for biasing the back yoke-side coil retaining pieces 14 and the shoe-side coil retaining pieces 16 toward the stator core is exerted on the first insulating bobbin portion 9a and the second insulating bobbin portion 9b by the displacement of the convex portions 19 for the back yoke portion and the convex portions 20 for the shoe portion.

    [0031] As described above, the first insulating bobbin portion 9a and the second insulating bobbin portion 9b are retained onto the stator core 5 by the pair of back yoke-side coil retaining pieces 14 for biasing toward the inner-diameter surfaces 10a of the back yoke portion 10 and the pair of shoe-side coil retaining pieces 16 for biasing toward the outer-diameter surfaces 12a of the shoe portion 12. As a result, during a delivery process to a step of mounting the coil 6, the coming-off of the coil under vibrations or its own weight can be reduced.

    [0032] Moreover, the convex portions 19 for the back yoke portion and the convex portions 20 for the shoe portion are formed at symmetric positions with respect to the center line of each of the tooth portions 11. Therefore, the first insulating bobbin portion 9a and the second insulating bobbin portion 9b are evenly retained on both circumferential sides about the tooth portion 11 as a center.

    [0033] As a result, normal postures of the first insulating bobbin portion 9a and the second insulating bobbin portion 9b are ensured for each of the tooth portions 11. Therefore, the insulating bobbin does not impair windability when the conductor wire is wound around the tooth portion 11.

    [0034] Moreover, each of the convex portions 19 for the back yoke portion and each of the convex portions 20 for the shoe portion are formed at positions to which the circumferential distances from the center line of the tooth portion 11 are different. Moreover, the distance to each of the convex portions 19 for the back yoke portion and the distance to each of the convex portions 20 for the shoe portion from the end surface T of the stator core 5 along the axial direction are the same. Therefore, when or after the first insulating bobbin portion 9a and the second insulating bobbin portion 9b are inserted onto the stator core 5, a vector of the biasing force of the back yoke-side coil retaining pieces 14 against the inner-diameter surfaces 10a of the back yoke portion 10 and a vector of the biasing force of the shoe-side coil retaining pieces 16 against the outer-diameter surfaces 12a of the shoe portion 12 are on the same plane, but are not opposed to each other. Therefore, a resultant force of the biasing forces does not increase.

    [0035] Thus, as for the first insulating bobbin portion 9a and the second insulating bobbin portion 9b, insertability is not degraded. Moreover, a retention force is appropriately ensured.

    [0036] Moreover, the convex portions 19 for the back yoke portion and the convex portions 20 for the shoe portion are formed on the side of the end surface T of the stator core 5. Therefore, a structure of a molding die for each of the first insulating bobbin portion 9a and the second insulating bobbin portion 9b can be simplified. In addition, production efficiency of the first insulating bobbin portion 9a and the second insulating bobbin portion 9b can be improved.

    [0037] In the embodiment described above, the convex portions 19 for the back yoke portion and the convex portions 20 for the shoe portion are provided at symmetric positions with respect to the center line of each of the tooth portions 11. However, the convex portions described above are not necessarily required to be provided at symmetric positions, or may also be provided on only one side.

    [0038] Further, concave portions may be formed on the inner-diameter surfaces 10a of the back yoke portion 10, which are opposed to the convex portions 19 for the back yoke portion, whereas concave portions may be formed on the outer-diameter surfaces 12a of the shoe portion 12, which are opposed to the convex portions 20 for the shoe portion. In this manner, the insulating bobbin may be more reliably retained to the stator core.

    [0039] In the embodiment described above, the electrical motor for the electrical power steering device has been described as the rotating electrical machine. However, the electrical motor for the electrical power steering device is an example, and other electrical machines may also be used. Moreover, the present invention is also applicable to power generators.

    Reference Signs List



    [0040] 1 electrical motor (rotating electrical machine), 2 stator, 3 rotor, 4 frame, 5 stator core, 6 coil, 8 shaft, 9a first insulating bobbin portion, 9b second insulating bobbin portion, 10 back yoke portion, 10a inner-diameter surface, 11 tooth portion, 12 shoe portion, 12a outer-diameter surface, 13 back yoke engagement portion, 14 back yoke-side coil retaining piece, 15 coil winding portion, 16 shoe-side coil retaining piece, 17 shoe engagement portion, 18 opening portion, 19 convex portion for back yoke portion, 20 convex portion for shoe portion, T end surface


    Claims

    1. A rotating electrical machine, comprising:

    a rotor (3) rotatable about a shaft (7); and

    a stator (2) provided so as to surround the rotor (3), the stator (2) comprising a stator core (5) and a coil (6) mounted to the stator core (5) by winding a conductor wire around the stator core (5) through an insulating bobbin therebetween, the stator core (5) comprising:

    a back yoke portion (10) having a ring-like shape;

    a plurality of tooth portions (11) provided at intervals in a circumferential direction so that distal end portions of the plurality of tooth portions (11) project from the back yoke portion (10) in an axial core direction; and

    shoe portions (12) provided at the distal end portions of the plurality of tooth portions (11) to project in the circumferential direction, wherein:

    the insulating bobbin comprises a first insulating bobbin portion (9a) and a second insulating bobbin portion (9b) inserted onto both end surfaces of the stator core (5) in an axial direction, respectively;

    each of the first insulating bobbin portion (9a) and the second insulating bobbin portion (9b) comprises:

    a back yoke engagement portion (13) having an L-like sectional shape, the back yoke engagement portion (13) being configured to be brought into engagement with the back yoke portion (10);

    a shoe engagement portion (17) to be brought into engagement with each of the shoe portions (12); and

    a coil winding portion (15) having a U-like sectional shape, around which the conductor wire is to be wound, the coil winding portion (15) having an opening portion (18) on an inner side thereof, into which each of the plurality of tooth portions (11) is to be inserted;

    characterized in that

    the back yoke engagement portion (13) comprises a convex portion (19) for the back yoke portion, which is configured to be brought into contact with an inner-diameter surface of the back yoke portion (10), the convex portion (19) being formed on at least one of outer-diameter surfaces of a pair of back yoke-side coil retaining pieces (14) opposed to the inner-diameter surface of the back yoke portion (10);

    the shoe engagement portion (17) comprises a convex portion (20) for the each of the shoe portions, which is configured to be brought into contact with an outer-diameter surface of the each of the shoe portions (12), the convex portion (20) being formed on at least one of inner-diameter surfaces of a pair of shoe-side coil retaining pieces (16) opposed to the outer-diameter surface of the each of the shoe portions (12); and

    the pair of back yoke-side coil retaining pieces (14) and the pair of shoe-side coil retaining pieces (16) are biased toward the stator core (5) by the convex portion (19) for the back yoke portion and the convex portion (20) for the each of the shoe portions.


     
    2. A rotating electrical machine according to claim 1, wherein the convex portions (19) for the back yoke portion and the convex portions (20) for the each of the shoe portions are respectively formed on both sides in a horizontal direction with respect to a center line of the each of the plurality of tooth portions (11).
     
    3. A rotating electrical machine according to claim 1 or 2, wherein the convex portion (19) for the back yoke portion and the convex portion (20) for the each of the shoe portions are formed at positions to which distances in the circumferential direction from a center line of the each of the plurality of tooth portions (11) are different.
     
    4. A rotating electrical machine according to any one of claims 1 to 3, wherein a distance to the convex portion (19) for the back yoke portion and a distance to the convex portion (20) for the each of the shoe portions from the end surface of the stator core (5) along the axial direction are the same.
     
    5. A rotating electrical machine according to any one of claims 1 to 4, wherein the convex portion (19) for the back yoke portion and the convex portion (20) for the each of the shoe portions are formed on the end surface side of the stator core (5).
     
    6. A rotating electrical machine according to any one of claims 1 to 5, wherein the rotating electrical machine comprises an electrical machine (1) for an electrical power steering device.
     


    Ansprüche

    1. Elektrische Rotationsmaschine, umfassend:

    einen um eine Welle (7) drehbaren Rotor (3); und

    einen Stator (2), der so vorgesehen ist, dass er den Rotor (3) umgibt, wobei der Stator (2) einen Statorkern (5) und eine Spule (6), die an dem Statorkern (5) angebracht ist, indem ein Leitungsdraht um den Statorkern (5) mit einer isolierenden Spule dazwischen gewickelt ist, aufweist, wobei der Statorkern (5) umfasst:

    einen hinteren Jochabschnitt (10) mit einer ringförmigen Form;

    eine Vielzahl von Zahnabschnitten (11), die in Intervallen in einer Umfangsrichtung vorgesehen sind, sodass distale Endabschnitte der Vielzahl von Zahnabschnitten (11) von dem hinteren Jochabschnitt (10) in einer axialen Kernrichtung vorstehen; und

    Schuhabschnitte (12), die an den distalen Endabschnitten der Vielzahl von Zahnabschnitten (11) vorgesehen sind, um in der Umfangsrichtung vorzustehen, wobei:

    die isolierende Spule einen ersten isolierenden Spulenabschnitt (9a) und einen zweiten isolierenden Spulenabschnitt (9b) aufweist, die jeweils an beiden Stirnflächen des Statorkerns (5) in axialer Richtung eingesetzt sind;

    der erste isolierende Spulenabschnitt (9a) und der zweite isolierende Spulenabschnitt (9b) umfassen jeweils:

    einen hinteren Jocheingriffsabschnitt (13) mit einer L-förmigen Querschnittsform, wobei der hintere Jocheingriffsabschnitt (13) dazu eingerichtet ist, dass er mit dem hinteren Jochabschnitt (10) in Eingriff gebracht wird;

    einen Schuheingriffsabschnitt (17), der mit jedem der Schuhabschnitte (12) in Eingriff gebracht wird; und

    einen Spulenwicklungsabschnitt (15) mit einer U-förmigen Querschnittsform, um den der Leitungsdraht gewickelt werden soll, wobei der Spulenwicklungsabschnitt (15) einen Öffnungsabschnitt (18) an einer Innenseite aufweist, in den jeder der Vielzahl von Zahnabschnitte (11) einzusetzen ist;

    dadurch gekennzeichnet, dass

    der hintere Jocheingriffsabschnitt (13) einen konvexen Abschnitt (19) für den hinteren Jochabschnitt umfasst, der dazu eingerichtet ist, dass er mit einer Innendurchmesserfläche des hinteren Jochabschnitts (10) in Kontakt gebracht wird, wobei der konvexe Abschnitt (19) an mindestens einer von Außendurchmesserflächen eines Paars von hinteren Jochseitenspulenhalteteilen (14), die der Innendurchmesserfläche des hinteren Jochabschnitts (10) gegenüberliegen, ausgebildet ist;

    der Schuheingriffsabschnitt (17) für jeden der Schuhabschnitte einen konvexen Abschnitt (20) umfasst, der dazu eingerichtet ist, dass er mit einer Außendurchmesserfläche jedes der Schuhabschnitte (12) in Kontakt gebracht wird, wobei der konvexe Abschnitt (20) an mindestens einer von Innendurchmesserflächen eines Paars von Schuhseitenspulenhalteteilen (16) ausgebildet ist, die der Außendurchmesserfläche jedes Schuhabschnitts (12) gegenüberliegt; und

    wobei das Paar von hinteren Jochseitenspulenhalteteilen (14) und das Paar von Schuhseitenspulenhalteteilen (16) in Richtung des Statorkerns (5) durch den konvexen Abschnitt (19) für den hinteren Jochabschnitt und den konvexen Abschnitt (20) für jeden der Schuhabschnitte vorgespannt sind.


     
    2. Elektrische Rotationsmaschine nach Anspruch 1, bei der die konvexen Abschnitte (19) für den hinteren Jochabschnitt und die konvexen Abschnitte (20) für jeden der Schuhabschnitte jeweils beidseitig in einer horizontalen Richtung in Bezug auf eine Mittellinie jedes der Vielzahl von Zahnabschnitten (11) ausgebildet sind.
     
    3. Elektrische Rotationsmaschine nach Anspruch 1 oder 2, bei der der konvexe Abschnitt (19) für den hinteren Jochabschnitt und der konvexe Abschnitt (20) für jeden der Schuhabschnitte an Positionen ausgebildet sind, an denen Abstände in der Umfangsrichtung von einer Mittellinie jedes der Vielzahl von Zahnabschnitten (11) verschieden sind.
     
    4. Elektrische Rotationsmaschine nach einem der Ansprüche 1 bis 3, bei der ein Abstand zum konvexen Abschnitt (19) für den hinteren Jochabschnitt und ein Abstand zum konvexen Abschnitt (20) für jeden der Schuhabschnitte von der Stirnfläche des Statorkerns (5) entlang der axialen Richtung gleich sind.
     
    5. Elektrische Rotationsmaschine nach einem der Ansprüche 1 bis 4, bei der der konvexe Abschnitt (19) für den hinteren Jochabschnitt und der konvexe Abschnitt (20) für jeden der Schuhabschnitte an der Stirnflächenseite des Statorkerns (5) ausgebildet sind.
     
    6. Elektrische Rotationsmaschine nach einem der Ansprüche 1 bis 5, bei der die elektrische Rotationsmaschine eine elektrische Maschine (1) für eine elektrische Servolenkungsvorrichtung umfasst.
     


    Revendications

    1. Machine électrique rotative comprenant :

    - un rotor (3) pouvant tourner par rapport à un arbre (7) ; et

    - un stator (2) ménagé de manière à entourer le rotor (3), le stator (2) comprenant un noyau de stator (5) et une bobine (6) montée sur le noyau de stator (5) en enroulant un fil conducteur autour du noyau de stator (5) via une bobine isolante située entre eux, le noyau de stator (5) comprenant :

    - une partie de culasse arrière (10) ayant une forme annulaire ;

    - une pluralité de parties dentées (11) ménagées à des intervalles dans une direction circonférentielle de sorte que des parties d'extrémité distale de la pluralité de parties dentées (11) font saillie à partir de la partie de culasse arrière (10) dans une direction axiale de noyau ; et

    - des parties de patin (12) ménagées au niveau des parties d'extrémité distale de la pluralité de parties dentées (11) pour faire saillie dans la direction circonférentielle, dans laquelle :

    - la bobine isolante comprend une première partie de bobine isolante (9a) et une seconde partie de bobine isolante (9b) insérée sur les deux surfaces d'extrémité du noyau de stator (5) dans une direction axiale, respectivement;

    - chacune parmi la première partie de bobine isolante (9a) et la seconde partie de bobine isolante (9b) comprend :

    - une partie d'engagement de culasse arrière (13) ayant une forme de section transversale en L, la partie d'engagement de culasse arrière (13) étant configurée pour être amenée en engagement avec la partie de culasse arrière (10) ;

    - une partie d'engagement de patin (17) destinée à être amenée en engagement avec chacune des parties de patin (12) ; et

    - une partie d'enroulement de bobine (15) ayant une forme de section transversale en U, autour de laquelle le fil conducteur est destiné à être enroulé, la partie d'enroulement de bobine (15) comportant une partie d'ouverture (18) sur un côté interne de celle-ci, dans laquelle chaque partie dentée de la pluralité de parties dentées (11) est destinée à être insérée ;

    caractérisée en ce que

    - la partie d'engagement de culasse arrière (13) comprend une partie convexe (19) pour la partie de culasse arrière, qui est configurée pour être mise en contact avec une surface de diamètre intérieur de la partie de culasse arrière (10), la partie convexe (19) étant formée sur au moins l'une de surfaces de diamètre extérieur d'une paire de pièces de retenue de bobine côté culasse arrière (14) opposées à la surface de diamètre intérieur de la partie de culasse arrière (10) ;

    - la partie d'engagement de patin (17) comprend une partie convexe (20) pour chacune des parties de patin, qui est configurée pour être mise en contact avec une surface de diamètre extérieur de chacune des parties de patin (12), la partie convexe (20) étant formée sur au moins l'une de surfaces de diamètre interne d'une paire de pièces de retenue de bobine côté patin (16) opposées à la surface de diamètre extérieur de chacune des parties de patin (12) ; et

    - la paire de pièces de retenue de bobine côté culasse arrière (14) et la paire de pièces de retenue de bobine côté patin (16) sont sollicitées vers le noyau de stator (5) par la partie convexe (19) pour la partie de culasse arrière et par la partie convexe (20) pour chacune des parties de patin.


     
    2. Machine électrique rotative selon la revendication 1, dans laquelle les parties convexes (19) pour la partie de culasse arrière et les parties convexes (20) pour chacune des parties de patin sont respectivement formées des deux côtés dans une direction horizontale par rapport à une ligne médiane de chacune de la pluralité de parties dentées (11).
     
    3. Machine électrique rotative selon la revendication 1 ou 2, dans laquelle la partie convexe (19) pour la partie de culasse arrière et la partie convexe (20) pour chacune des parties de patin sont formées dans des emplacements dans lesquels des distances dans la direction circonférentielle à partir d'une ligne médiane de chacune de la pluralité de parties dentées (11) sont différentes.
     
    4. Machine électrique rotative selon l'une quelconque des revendications 1 à 3, dans laquelle une distance jusqu'à la partie convexe (19) pour la partie de culasse arrière et une distance jusqu'à la partie convexe (20) pour chacune des parties de patin à partir de la partie de la surface d'extrémité du noyau de stator (5) le long de la direction axiale sont identiques.
     
    5. Machine électrique rotative selon l'une quelconque des revendications 1 à 4, dans laquelle la partie convexe (19) pour la partie de culasse arrière et la partie convexe (20) pour chacune des parties de patin sont formées sur le côté de surface d'extrémité du noyau de stator (5).
     
    6. Machine électrique rotative selon l'une quelconque des revendications 1 à 5, dans laquelle la machine électrique rotative comprend une machine électrique (1) pour un dispositif de direction assistée électrique.
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description