(19)
(11)EP 2 861 957 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.05.2018 Bulletin 2018/19

(21)Application number: 13804145.4

(22)Date of filing:  14.06.2013
(51)International Patent Classification (IPC): 
G01N 15/14(2006.01)
(86)International application number:
PCT/US2013/045902
(87)International publication number:
WO 2013/188770 (19.12.2013 Gazette  2013/51)

(54)

FLOW RATE BALANCED, DYNAMICALLY ADJUSTABLE SHEATH DELIVERY SYSTEM FOR FLOW CYTOMETRY

DURCHFLUSSAUSGEGLICHENES, DYNAMISCH EINSTELLBARES HÜLLENABGABESYSTEM MIT AUSGEGLICHENER FLUSSRATE FÜR EINE FLUSSZYTOMETRIE

SYSTÈME DE DISTRIBUTION DE GAINE AJUSTABLE DE MANIÈRE DYNAMIQUE ET À DÉBIT ÉQUILIBRÉ POUR RÉALISER UNE CYTOFLUOROMÉTRIE EN FLUX


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 14.06.2012 US 201261659528 P

(43)Date of publication of application:
22.04.2015 Bulletin 2015/17

(73)Proprietor: Bio-rad Laboratories, Inc.
Hercules, CA 94547 (US)

(72)Inventors:
  • FOX, Daniel, N.
    Bellvue, CO 80512 (US)
  • GASKILL-FOX, Nathan, Michael
    Fort Collins, CO 80526 (US)

(74)Representative: dompatent von Kreisler Selting Werner - Partnerschaft von Patent- und Rechtsanwälten mbB 
Deichmannhaus am Dom Bahnhofsvorplatz 1
50667 Köln
50667 Köln (DE)


(56)References cited: : 
WO-A1-2010/141096
US-A- 5 915 925
US-A1- 2004 031 521
US-A1- 2005 019 949
US-A1- 2011 221 892
US-B1- 6 372 506
US-A- 3 826 364
US-A- 5 915 925
US-A1- 2004 031 521
US-A1- 2010 319 469
US-A1- 2012 070 818
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] Flow cytometers are useful devices for analyzing and sorting various types of particles in fluid streams. These cells and particles may be biological or physical samples that are collected for analysis and/or separation. The sample is mixed with a sheath fluid for transporting the particles through the flow cytometer. The particles may comprise biological cells, calibration beads, physical sample particles, or other particles of interest. Sorting and analysis of these particles can provide valuable information to both researchers and clinicians. In addition, sorted particles can be used for various purposes to achieve a wide variety of desired results. US2004/031521 discloses a method of controlling pressure of a sheath fluid in a pressurized reservoir holding a volume of sheath fluid and a volume of pressurized air in a flow cytometer configured to flow sheath fluid from the pressurized reservoir through a nozzle at an out-flow rate. The method comprises keeping both level of sheath fluid in the pressure reservoir, using a discontinuous feed back loop, and the pressure of the pressurised air constant. US5915925 discloses a liquid supply system for a flow cytometer comprising a non-pressurised sheath fluid reservoir, of which the fluid level is kept constant using a continuous feed back loop. US6372506 discloses a flow cytometer with a liquid supply system comprising a pressurised sheath fluid reservoir, in which the pressure is adjust based on the location of the droplet break-off point.

    SUMMARY



    [0002] An embodiment of the present invention may therefore comprise a method of controlling pressure of a sheath fluid in a pressurized container in a flow cytometer according to claim 1.

    [0003] An embodiment of the present invention may further comprise a sheath fluid system for supplying sheath fluid in a flow cytometer at a substantially constant pressure according to claim 7.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0004] 

    Figure 1 is a schematic illustration of one embodiment of a sheath delivery system.

    Figure 2 is a flow diagram illustrating a process for maintaining a substantially constant sheath height.

    Figure 3 illustrates images of the breakoff point of droplets from streams that indicate the velocity of the streams.


    DETAILED DESCRIPTION OF THE EMBODIMENTS



    [0005] Figure 1 is a schematic illustration of a sheath delivery system 100. The sheath delivery system 100 includes an external sheath container 102 that provides sheath fluid to an internal pressurized reservoir 104. As disclosed below, the external sheath container 102 can be removed by a user and refilled or replaced without stopping the operation of the sheath delivery system 100, while maintaining a substantially constant pressure on the sheath fluid that is delivered through nozzle 112.

    [0006] For flow cytometers to operate properly, it is important that the stream 126, through nozzle 112 has a consistent velocity, which is dependent upon the pressure of the sheath fluid 144 in the sheath delivery tube 124. Otherwise, the flow cytometer must be continuously calibrated. Some systems that supply sheath fluid in flow cytometers have utilized large tanks to avoid the problem of shutting down the system when additional sheath fluid is needed. These large tanks are heavy and expensive. Furthermore, the change in the fluid height in these large tanks during operation results in considerable pressure changes between a full and nearly empty container. The pressure of the fluid that is supplied to the nozzle is the pressure supplied by pressurized air in the tank and the pressure that is supplied by the height of the fluid in the tank. In some systems, the level of the fluid can change by as much as twelve inches between a full and nearly empty container. This is a change of approximately 0.034 bar (0.5 psi). If the sheath pressure is approximately 2.07 bar (30 psi), the change in pressure resulting from the fluid can be as much as a 1.7 percent change in the pressure of the sheath fluid delivered to the nozzle. Additionally, air regulators that supply pressurized air to the tank may drift over time, and the air pressure in a pressurized tank may change, which also changes the pressure of the sheath fluid that is delivered to the nozzle. Some systems have utilized external sheath containers and pumps to pump the sheath fluid into an internal pressurized chamber for use during a short period of operation. However, such systems must be stopped during this filling procedure, which results in short run times and may necessitate recalibration of the system. These systems also do not account for changes in the pressure of the sheath fluid in the nozzle due to changes in the depth of the sheath fluid in the internal container. Other systems have attempted to resolve the short run time issue by using float switches in the internal container that turn a pump on and off to allow sheath fluid from an external sheath reservoir to flow into the internal container when the level drops by a predetermined amount in the internal container. However, this still results in intermittent, abrupt changes in the pressure of the sheath fluid flowing through the nozzle due to the level differences in the internal container, as a result of the non-continuous operation of the pump.

    [0007] The embodiment of Figure 1 operates using a continuous flow of sheath fluid into the pressurized internal reservoir 104 from the external sheath container 102. The sheath fluid provided by the external sheath container 102 is pumped at a rate that substantially matches the out-flow of the sheath fluid 144 through nozzle 112. In addition, if the level 145 of sheath fluid falls in the pressurized internal container because the flow rates are not matched, the in-flow of sheath fluid is slowly changed to make up for changes in the level 145 of the sheath fluid 144 in the pressurized internal reservoir 104. By using a continuous in-flow of sheath fluid 142 from the external sheath container 102 that substantially matches the out-flow of sheath fluid 142 through nozzle 112, intermittent variations in the pressure of the sheath fluid 144 in the nozzle 112 do not occur.

    [0008] The control loop (Figure 2) for the process of matching flow rates between the input to the pressurized internal reservoir 104, and the out-flow to nozzle 112, are tightly controlled and dampened, so that pressure changes from the level 145 of the sheath fluid 144 are negligible. In addition, the control of the pressurized air 146 further reduces variations in the pressure of the sheath fluid 144 flowing through nozzle 112, as described in more detail below.

    [0009] The system illustrated in the embodiment of Figure 1 can utilize two control systems that separately control the level 145 of the sheath fluid 144 in the internal reservoir 104, and the air pressure of the pressurized air 146 that is supplied by compressor 118 and air regulator 108. Utilizing these two control systems, a substantially consistent pressure of the sheath fluid can be provided to the nozzle 112. Since the two control loops utilize feedback from different sources, i.e., the level 145 of sheath fluid 144 and the velocity of the sheath fluid stream 126, the two separate systems can work in concert to automatically provide a substantially constant pressure of sheath fluid to the nozzle 112. The control system that controls the air pressure in the pressurized internal reservoir may be used either on a constant basis in concert with the level control system, or simply when there is a hot swap of the external sheath container, as explained in more detail below.

    [0010] As illustrated in Figure 1, sheath pump 106 pumps sheath fluid 142 into the pressurized internal reservoir 104 to provide a supply of sheath fluid 144 in the pressurized internal reservoir 104. Air regulator 108 provides regulated air 120 to the pressurized internal reservoir 104 to produce a supply of pressurized air 146 in the pressurized internal reservoir 104. Pressurized air tube 140 delivers the pressurized air from the air regulator 108 to the pressurized internal reservoir 104. Compressor 118 provides the compressed air 119 to the air regulator 108. Sheath supply tube 134 supplies the sheath fluid 142 to the sheath pump 106. Pressurized sheath tube 136 provides the sheath fluid from the sheath pump 106 to the pressurized internal reservoir 104. Level controller/monitor 110 comprises an electronic controller that generates a pump speed control 132 that is applied to the sheath pump 106. Level controller/monitor 110 receives a level sensor signal 111 from the level sensor 138. Level sensor 138 can comprise any type of level sensor. As illustrated in the embodiment of Figure 1, level sensor 138 comprises an ultrasonic detector that is disposed at the bottom of the pressurized internal reservoir 104 which measures the height of the sheath fluid 144 in the pressurized internal reservoir 104 with a 0.5 mm resolution. The level sensor signal 111 generated by level sensor 138 is applied to the level controller/monitor 110, which controls the sheath pump 106 via pump control speed signal 132 to maintain a substantially constant level of the sheath fluid 144 in the pressurized internal reservoir 104 in the manner described with respect to Figure 2.

    [0011] Sheath uptake tube 122, illustrated in Figure 1, provides the pressurized sheath fluid 144 from the bottom of the pressurized internal reservoir 104 and delivers the pressurized fluid through the sheath delivery tube 124 to the nozzle 112. In one example, the pressurized air 146 may be pressurized to approximately two atmospheres, which is approximately 2.07 bar (30 psi). The pressure of the pressurized air 146 is added to the pressure of the sheath fluid 144, which is dependent upon the level 145 of the sheath fluid 144 in the pressurized internal reservoir 104. In round numbers, one atmosphere is about 1.03 bar (15 psi). The sheath fluid 144, in round numbers, provides a pressure of about 0.034 bar (0.5 psi) of depth of the sheath fluid 144. Accordingly, the pressure of the sheath fluid 144 in the sheath delivery tube 124 is the pressure of the pressurized air 146 together with the pressure created by the sheath fluid 144 in accordance with the level 145 of the sheath fluid 144 in the pressurized internal reservoir 104 minus any changes in fluid height.

    [0012] A substantially constant pressure of the sheath fluid 144 in the sheath delivery tube 124 of Figure 1 can be achieved by carefully maintaining a substantially constant level 145 of the sheath fluid 144 in the pressurized internal reservoir 104, as well as maintaining a substantially constant pressure of the pressurized air 146. Air pressure controller 116 generates an air pressure control voltage 130 that operates the air regulator 108. The regulated air 120 is supplied to the pressurized internal reservoir 104 via the pressurized air tube 140. Droplet camera 114 determines the position of the bottom of the stream, which corresponds to the location of the breakoff point of the droplets from stream 126 into drops 128. As explained in more detail with respect to Figure 3, the location of the breakoff point of the drops 128 is indicative of the velocity of the stream 126, which is dependent upon the pressure of the sheath fluid 144 that is delivered to nozzle 112. The droplet camera 114 provides the graphic data to the air pressure controller 116 that processes that image data to generate the air pressure control voltage 130. Air pressure controller 116 generates an air pressure control voltage 130 to compensate for drift in the air pressure of the pressurized air 146 due to drift of the operation of the air regulator 108 and compressor 118, as explained in more detail with respect to Figure 3.

    [0013] As also illustrated in Figure 1, a three-way valve 148 is connected to the pressurized sheath tube 136. During normal operation, the three-way valve 148 causes sheath fluid 142, from external sheath container 102, to be directed into the pressurized internal reservoir 104 via pressurized sheath tube 136. However, bubbles may form in the sheath supply tube, causing an airlock in the sheath pump 106. Airlocks of the sheath pump 106 may be created when air bubbles enter the sheath supply tube 134. This may occur when the external sheath container 102 is removed from the system and refilled with sheath fluid 142 or, the external sheath container 102 is replaced with a fill container, during a process referred to as a "hot swap," which is described in more detail with respect to Figure 3. Since the sheath pump 106 is pumping the sheath fluid 142 into pressurized internal reservoir 104, that has a pressure on the order of 2 atmospheres, any air bubbles that enter the sheath pump 106 from the sheath supply tube 134 can easily create an airlock in the sheath pump 106. In order to clear the airlock, the three-way valve 148 is switched, so that the fluid from the sheath pump is directed into a waste disposal 150 that is at the ambient atmospheric pressure. Sheath pump 106 has sufficient power to clear an airlock by pumping the sheath fluid 142 into an ambient pressure waste disposal 150, but may not have sufficient power to clear airlocks into the multiple atmosphere pressurized air 146. Hence, by directing the output of the sheath pump 106 to an ambient atmospheric pressure, the airlock can be cleared.

    [0014] Also, as illustrated in Figure 1, if the level controller/monitor receives a level sensor signal 111 from the level sensor 138 that indicates that the level 145 of the sheath fluid 144 in the pressurized internal reservoir 104 is going down at a rate that is more than should be observed by the level sensor 138 for the rate at which the sheath pump 106 is being operated, the three-way valve 148 is activated to clear an airlock. In other words, the sheath pump 106 is provided a pump speed control 132, which is a voltage that is a percentage of the full voltage at which the sheath pump 106 operates. A comparison of the voltage of the pump speed control 132 with the level sensor signal 111 can indicate that an airlock may exist in the sheath pump 106, which can be used to trigger the level controller/monitor 110 to generate the purge control signal 152.

    [0015] Figure 2 is a flow chart that illustrates the process 200 for maintaining a substantially constant level 145 of the sheath fluid 144. At step 202, the process starts. At step 204, the internal reservoir is pumped or drained to a preselected level, such as 300 ml. This occurs prior to the start of operation of the flow of sheath fluid 144 through nozzle 112. At step 206, the sheath pump 106 is started and the compressor 118 is started, to raise the level of the pressurized air 146 to a desired preset level. At this point, sheath fluid 144 begins to flow through the nozzle. Almost simultaneously, at step 208, the sheath pump 106 is set to a default pump speed, based upon an empirically derived flow rate of the nozzle at the selected level 145 of sheath fluid 144 and air pressure of pressurized air 146. In one example, the flow rate through the nozzle 112 is estimated to be 8 mL/min at a level of 300 mL and a pressure of 2.07 bar (30 psi). The default pump speed is selected in an attempt to match the flow rate through the nozzle, i.e., 8 ml/min. In that regard, empirical data regarding the flow rate of nozzle 112 can be collected. Of course, other ways of initially estimating the amount of sheath fluid delivered by the nozzle 112 can be used to set the default pump flow rate to substantially match the rate of flow of sheath fluid through nozzle 112.

    [0016] The process of setting the default pump speed, at step 208 of Figure 2, involves the use of Equation 1.



    [0017] The pump control percentage is a percentage of the full operation of the pump. With the operating range of a pump, most pumps have a linear response to applied voltage levels. However, most pumps have an offset voltage. The offset voltage is the voltage at which the pump starts to operate and pump fluid. For example, the sheath pump 106 utilized in the embodiment of Figure 1, does not start pumping until ten percent of the full operating voltage of the pump is applied to the pump. For example, in an example of the embodiment of Figure 1, the full operating voltage of the sheath pump 106 is 5 volts. From empirical data, it was determined that sheath pump 106 starts pumping fluid when 0.5 volts is applied to the sheath pump 106. The voltage of 0.5 volts is ten percent of the five volts that causes the sheath pump 106 to operate at full capacity. Hence, the offset of sheath pump 106 is 10%. From 0.5 volts to 5.0 volts, the output of the sheath pump 106 is substantially linearly related to the voltage. Because of this linear relationship, equation 1 can be correlated to the standard Equation 2.



    [0018] In equation 2, b is the offset, which was empirically determined to be 10%. The slope of the curve (m) for the sheath pump 106 of Figure 1 can also be empirically determined and was found, in one example, to be 1.25 from data collected by operating the sheath pump 106. This results in Equation 3, which is created from the collected empirical data for sheath pump 106 of the embodiment of Figure 1.



    [0019] From Equation 3, it can be determined that an initial default pump flow rate of 8 mL/min results in a pump control percentage of 20%, which equates to 1 volt that should be applied to sheath pump 106. Other pumps have different characteristics and empirical data must be collected for each pump to verify Equation 3. However, it can be assumed that pumps from the same manufacturer, with the same model number, may have very similar operating characteristics, such that Equation 3 is most probably valid for same make and model number pumps. Initial default pump float rates can normally be used for pumps that are the same make and model, so that empirical data does not have to be collected for each pump.

    [0020] At step 210 of Figure 2, the process is delayed for a preset period, for example, 5.0 seconds. This delay is used to allow the flow rate to stabilize. The level 145 of the sheath fluid 144 is measured in the pressurized internal reservoir 104 at step 212. To suppress noise in the readings of level 145 of the sheath fluid 144, in one embodiment, 42 readings of the level sensor 138 are taken, the lowest five and the highest five readings are discarded and the mean value of the remaining 32 readings is used as the level 145 of the sheath fluid. This process removes noise and aberrant readings. After the level has been measured, the system delays for a second predetermined time period at step 214. The system illustrated in the embodiment of Figure 1 delays for a second time period of 30 seconds. This delay is somewhat substantial so that a trend can be observed in the level 145 of the sheath fluid 144. At the end of the second predetermined time period, a new level 145 of the sheath fluid is measured at step 216. At step 218, a new pump speed is calculated. In order to calculate a new pump speed, the differential actual outflow of fluid must be calculated. Assuming the level has decreased, Equation 4 calculates the differential actual outflow as follows:

    The level decrease is multiplied by two since the change in fluid level occurs over a 30 second period, and the data is indicated on a per minute basis.

    [0021] For example, if the initial pump speed is set at 8 mL per minute and the level decreases by 0.25 mL in the 30 second delay period, the true differential outflow during that period is 8.5 mL per minute, which is calculated as:



    [0022] The new pump speed is the modified pump speed that is calculated to slowly reduce the difference in the level 145 of the sheath fluid 144 from the desired level. In order to calculate the new pump speed, Equation 6 should be used:

    The error is calculated as the difference between the desired level minus the new level. If the desired level is 300 mL and the new level is 299 mL, the error is equal to 1 mL. The system attempts to return to the new level within a period of 2 minutes, even though the sampling rate is every 30 seconds. That accounts for the "2" in Equation 6. At the end of every 30 second period, a new pump speed is calculated based upon a pump speed that would return the new level to the desired level in a 2 minute period. In this manner, the target of the new pump speed will not be overshot and the control system is adequately dampened to provide a new pump speed that will slowly return to the desired level. In the example given above, the ideal level was 1 mL low, which is the error. The error, 1 mL divided by 2 minutes equals 0.5 mL/minute. Inserting these values in Equation 6:

    The 9.0 mL/minute is then converted to a pump control percentage using the pump control equation (Equation 3). In this case:

    The actual voltage that is applied to the pump is given as follows:

    The process of Figure 2 then returns to step 210 and delays for the first preset period.

    [0023] Of course, other types of controllers can be used, such as standard PID controllers. Proportional integral derivative controllers (PID controllers) use a generic control feedback that is widely used in industrial control systems. A PID controller calculates an error value as the difference between a measured process variable and a desired set point. The controller attempts to minimize the error by adjusting the process control inputs. The PID controller calculation involves three separate parameters that comprise the proportional, the integral and the derivative values. Heuristically, these values can be represented in terms of time wherein P depends on the present error, I depends on the accumulation of past errors and D is a prediction of future errors, based on the current rate of change. A weighted sum of these three values is used to adjust the process, in this case, the voltage applied to sheath pump 106. The accuracy of the PID controllers is very much dependent upon the weighting of each of the PID values.

    [0024] Figure 3 illustrates images 302, 304, 306 of the breakoff point of droplets 310, 314, 318, from streams 309, 312, 316, respectively, that are taken by the camera 114 and sent to the air pressure controller 116. As illustrated in Figure 3, an image 302 shows droplets 310 breaking away from stream 309 at a reference line 308. Reference line 308 is considered a reference for a desired stream velocity that is produced by stream 309. A slower velocity stream 312 is illustrated by image 304, which is the result of a pressure decrease of the stream 312, such that the breakoff point of the droplets 314 from the stream 312 is above the reference line 308 at a higher location. Image 306 shows stream 316, which has a higher velocity, which is the result of a higher pressure on stream 316, resulting in the droplets 318 breaking off from stream 316 at a lower point below the reference line 308. As such, the velocity of the stream and the resultant pressures on the streams can be determined by identifying the breakoff point of the droplets from the stream. As described above, air regulator 108 sets the pressure of the pressurized air 146 in the pressurized internal reservoir 104. Since air regulators may tend to drift over time and with temperature during operation, the droplet camera 114 can be used to accurately determine if there is a change in air pressure based upon the velocity of the stream, as indicated by the images 302, 304, 306 provided by the droplet camera 114. A strobe light may be used with the droplet camera 114 that has a fixed phase relative to the sign wave of a piezoelectric vibrator (not shown) that is used to create droplets, as illustrated in Figure 3. The air pressure controller 116 operates by storing the location of the reference line 308. When the bottom of the stream moves below the reference line 308, as indicated by higher velocity stream 312, there is a pressure increase and the pressure of the pressurized air 146 is decreased by 69 Pa (0.01 psi) per second. Likewise, if the bottom of the stream moves above the reference line 308, the pressure of the pressurized air 146 is increased by 69 Pa (0.01 psi) every second. These changes are slow moving changes in the pressurized air 146 that do not radically change the pressure, which could negatively affect the sorting process. Of course, other types of controllers can be used including different values. For example, a PID controller could be used to calculate appropriate changes in air pressure.

    [0025] Since the embodiment of Figure 1 is able to control the pressure of the pressurized air 146, the external sheath container 102 can be removed and refilled without stopping the sheath delivery system 100 of Figure 1. Removal of the external sheath container 102 for refilling is referred to as a hot swap mode, since the sheath fluid system continues to operate. In the hot swap mode, the sheath pump 106 is stopped completely for the period of time that it takes to remove the external sheath container 102, refill the external sheath container 102, and replace the external sheath container 102 in the sheath delivery system 100 of Figure 1. The user of the sheath delivery system 100 removes the external sheath container 102 and either fills the external container or replaces the external container with a new external container that is filled with sheath fluid. With an average outflow of 8 mL per minute, the sheath fluid level will slowly decrease in the internal pressurized container during the hot swap mode. The change in pressure from the sheath fluid 144 is compensated for by increasing the pressure of the pressurized air 146. The lower pressure of the sheath fluid during the hot swap mode is detected as the slower velocity image 304. When the slower velocity image 304 is detected, the air pressure controller 116 continues to increase the air pressure at a rate of 69 Pa (0.01 psi) per second by applying the air pressure control voltage 130 to the air regulator 108. The air pressure in the internal pressurized sheath fluid reservoir continues to increase until a new bottle of sheath fluid or refilled bottle of sheath fluid 142 is placed in the sheath delivery system 100. Once the new bottle is reattached, the user can exit the hot swap mode. At that point, the sheath pump 106 is restarted, and sheath fluid 142 is pumped into the pressurized internal reservoir 104 at a rate that is calculated by the level of the controller/monitor 110 in the manner set forth above. As the sheath fluid enters the pressurized internal reservoir 104, the air pressure controller 116 slowly reduces the pressure of the pressurized air 146 in the internal reservoir 104 to maintain a substantially constant pressure on the sheath fluid 144 exiting internal reservoir 104 that travels through the nozzle 112. In this manner, the sheath pressure of the sheath fluid 144 that flows through the nozzle 112 is carefully regulated within the requirements for stable sorting to provide a substantially constant pressure.


    Claims

    1. A method of controlling pressure of a sheath fluid (144) in a pressurized reservoir (104) holding a volume of sheath fluid (144) and a volume of pressurized air (146) in a flow cytometer configured to flow sheath fluid (144) from the pressurized reservoir (104) through a nozzle (112) at an out-flow rate, the method comprising:

    continuously pumping, using a pump (106) interposed between an external container (102) and the pressurized reservoir (104), the sheath fluid (142) from the external container (102) into the pressurized reservoir (104) to maintain a substantially constant sheath fluid level (145) in the pressurized reservoir (104) so that an in-flow rate of sheath fluid (142) flowing into the pressurized reservoir (104) is substantially equal to the out-flow rate of the sheath fluid (144) flowing out of the nozzle (112);

    determining the out-flow rate of the sheath fluid (144) flowing out of the nozzle (112) based on data from a visual sensor (114) configured to detect droplet locations of the sheath fluid (144) flowing out of the nozzle (112);

    controlling the pressure of the volume of pressurized air (146) based upon the determination, so that the out-flow rate of the sheath fluid (144) flowing out of the nozzle (112), as determined by the visual sensor (114), remains substantially constant; and

    adjusting the in-flow rate of the sheath fluid (142) flowing into the pressurized reservoir (104) by adjusting a pump speed of the pump (106) whenever the substantially constant sheath fluid level (145) changes.


     
    2. The method of claim 1 wherein the process of adjusting the in-flow rate is performed in response to a dampened feedback control loop.
     
    3. The method of claim 1 wherein the process of adjusting the in-flow rate is performed in response to a proportional integral derivative controller.
     
    4. The method of claim 1 wherein the process of maintaining a substantially constant sheath fluid level (145) comprises:
    setting a default in-flow rate by estimating the out-flow rate at which the sheath fluid (144) is flowing out of the pressurized reservoir (104).
     
    5. The method of claim 4 further comprising:

    detecting a vertical location of a breakoff point at which droplets (128) separate from a stream (126) of the sheath fluid (144) exiting a nozzle (112) of the flow cytometer;

    comparing the vertical location with a desired vertical location;

    adjusting pressure in the pressurized reservoir (104) to cause the vertical location of the breakoff point to substantially match the desired vertical location.


     
    6. The method of claim 5 wherein the process of detecting a vertical location of a breakoff point comprises:
    using a droplet camera (114) to record images of the stream (126).
     
    7. A sheath fluid system (100) for supplying sheath fluid (144) in a flow cytometer at a substantially constant pressure comprising:

    an internal pressurized sheath fluid reservoir (104) configured to hold sheath fluid (144) and to supply the sheath fluid (144) to a nozzle (112) such that the sheath fluid (144) flows through the nozzle (112) at an out-flow rate;

    a level sensor (138) configured to detect the level of sheath fluid (145) in the internal pressurized sheath fluid reservoir (104);

    an external sheath fluid container (102) that is configured to hold the sheath fluid (142) and that can be removed for resupplying the sheath fluid (142) to the sheath container (102);

    a pump (106) that is interposed between the external sheath fluid container (102) and the internal pressurized sheath fluid reservoir (104) and that is configured to continuously pump the sheath fluid (142) from the external sheath fluid container (102) to the internal pressurized sheath fluid reservoir (104) to maintain a substantially constant sheath fluid level (145) in the internal pressurized sheath fluid reservoir (104) so that an in-flow rate of the sheath fluid (142) from the external sheath fluid container (102) to the internal pressurized sheath fluid reservoir (104) is substantially equal to the out-flow rate of the sheath fluid (144) flowing out of the nozzle (112), unless said external sheath fluid container (102) has been removed for resupplying the sheath fluid (142);

    a level controller (110) that is configured to adjust, based on data from the level sensor (138), the in-flow rate of the sheath fluid (142) flowing into the internal pressurized sheath fluid reservoir (104) by adjusting a pump speed of the pump (106) whenever the substantially constant sheath fluid-level (145) changes;

    a compressor (118) that supplies a source of compressed air;

    an air regulator (108) that is connected to the internal pressurized sheath fluid reservoir (104) and that is configured to supply the compressed air (146) to the internal pressurized sheath fluid reservoir (104);

    a visual sensor (114) configured to detect droplet locations of the sheath fluid (144) flowing out of the nozzle (112); and

    an air pressure controller (116) that determines the out-flow rate of the sheath fluid (144) flowing out of the nozzle (112) based on data from the visual sensor (114) and that controls a pressure of the volume of pressurized air (146) based upon the determination so that the out-flow rate of the sheath fluid (144) flowing out of the nozzle (112), as determined by the visual sensor (114), remains substantially constant.


     
    8. The sheath fluid system (100) of claim 7 wherein the external sheath fluid container (102) comprises a bottle of prepackaged sheath fluid (142) that can be replaced with another bottle of prepackaged sheath fluid (142).
     
    9. The sheath fluid system (100) of claim 7 wherein the external sheath fluid container (102) comprises a refillable sheath fluid container (102) that can be refilled with sheath fluid (142).
     


    Ansprüche

    1. Verfahren zur Steuerung des Drucks einer Hüllflüssigkeit (144) in einem druckbeaufschlagten Reservoir (104), das ein Volumen einer Hüllflüssigkeit (144) und ein Volumen Druckluft (146) enthält, in einem Durchflusscytometer, das so konfiguriert ist, dass es Hüllflüssigkeit (144) aus dem druckbeaufschlagten Reservoir (104) mit einer Ausströmgeschwindigkeit durch eine Düse (112) fließen lässt, wobei das Verfahren umfasst:

    kontinuierliches Pumpen der Hüllflüssigkeit (142) mit Hilfe einer Pumpe (106), die zwischen einem externen Behälter (102) und dem druckbeaufschlagten Reservoir (104) eingefügt ist, aus dem externen Behälter (102) in das druckbeaufschlagte Reservoir (104), um in dem druckbeaufschlagten Reservoir (104) ein im Wesentlichen konstantes Hüllflüssigkeitsniveau (145) aufrechtzuerhalten, so dass die Einströmgeschwindigkeit der Hüllflüssigkeit (142), die in das druckbeaufschlagte Reservoir (104) fließt, im Wesentlichen gleich der Ausströmgeschwindigkeit der aus der Düse (112) fließenden Hüllflüssigkeit (144) ist;

    Bestimmen der Ausströmgeschwindigkeit der aus der Düse (112) fließenden Hüllflüssigkeit (144) anhand von Daten von einem visuellen Sensor (114), der so konfiguriert ist, dass er die Orte von Tröpfchen der aus der Düse (112) fließenden Hüllflüssigkeit (144) nachweist;

    Steuern des Drucks des Volumens der Druckluft (146) auf der Basis der Bestimmung, so dass die durch den visuellen Sensor (114) bestimmte Ausströmgeschwindigkeit der aus der Düse (112) fließenden Hüllflüssigkeit (144) im Wesentlichen konstant bleibt; und

    Einstellen der Einströmgeschwindigkeit der Hüllflüssigkeit (142), die in das druckbeaufschlagte Reservoir (104) fließt, durch Einstellen der Pumpgeschwindigkeit der Pumpe (106) immer dann, wenn sich das im Wesentlichen konstante Hüllflüssigkeitsniveau (145) ändert.


     
    2. Verfahren gemäß Anspruch 1, wobei der Vorgang des Einstellens der Einströmgeschwindigkeit als Reaktion auf einen gedämpften Regelkreis durchgeführt wird.
     
    3. Verfahren gemäß Anspruch 1, wobei der Vorgang des Einstellens der Einströmgeschwindigkeit als Reaktion auf einen PID-Regler durchgeführt wird.
     
    4. Verfahren gemäß Anspruch 1, wobei der Vorgang des Aufrechterhaltens eines im Wesentlichen konstanten Hüllflüssigkeitsniveaus (145) umfasst:
    Einstellen einer Standard-Einströmgeschwindigkeit durch Abschätzen der Ausströmgeschwindigkeit, mit der die Hüllflüssigkeit (144) aus dem druckbeaufschlagten Reservoir (104) fließt.
     
    5. Verfahren gemäß Anspruch 4, weiterhin umfassend:

    Nachweisen eines vertikalen Ortes eines Abrisspunkts, an dem sich Tröpfchen (128) von einem Strom (126) der Hüllflüssigkeit (144), die aus einer Düse (112) des Durchflusscytometers austritt, trennen;

    Vergleichen des vertikalen Ortes mit einem gewünschten vertikalen Ort;

    Einstellen des Drucks in dem druckbeaufschlagten Reservoir (104), um zu bewirken, dass der vertikale Ort des Abrisspunkts im Wesentlichen mit dem gewünschten vertikalen Ort übereinstimmt.


     
    6. Verfahren gemäß Anspruch 5, wobei der Vorgang des Nachweisens eines vertikalen Ortes eines Abrisspunkts umfasst:
    das Verwenden einer Tröpfchenkamera (114), um Bilder des Stroms (126) aufzunehmen.
     
    7. Hüllflüssigkeitssystem (100) zum Zuführen von Hüllflüssigkeit (144) in einem Durchflusscytometer unter einem im Wesentlichen konstanten Druck, umfassend:

    ein internes druckbeaufschlagtes Hüllflüssigkeitsreservoir (104), das so konfiguriert ist, dass es Hüllflüssigkeit (144) enthält und die Hüllflüssigkeit (144) einer Düse (112) zuführt, so dass die Hüllflüssigkeit (144) mit einer Ausströmgeschwindigkeit durch die Düse (112) fließt;

    einen Niveausensor (138), der so konfiguriert ist, dass er das Niveau der Hüllflüssigkeit (145) in dem internen druckbeaufschlagten Hüllflüssigkeitsreservoir (104) nachweist;

    einen externen Hüllflüssigkeitsbehälter (102), der so konfiguriert ist, dass er die Hüllflüssigkeit (142) enthält, und der entfernt werden kann, um die Hüllflüssigkeit (142) wieder dem Hüllflüssigkeitsbehälter (102) zuzuführen;

    eine Pumpe (106), die zwischen dem externen Hüllflüssigkeitsbehälter (102) und dem internen druckbeaufschlagten Hüllflüssigkeitsreservoir (104) eingefügt ist und die so konfiguriert ist, dass sie die Hüllflüssigkeit (142) kontinuierlich aus dem externen Hüllflüssigkeitsbehälter (102) in das interne druckbeaufschlagte Hüllflüssigkeitsreservoir (104) pumpt, um in dem internen druckbeaufschlagten Hüllflüssigkeitsreservoir (104) ein im Wesentlichen konstantes Hüllflüssigkeitsniveau (145) aufrechtzuerhalten, so dass die Einströmgeschwindigkeit der Hüllflüssigkeit (142) aus dem externen Hüllflüssigkeitsbehälter (102) in das interne druckbeaufschlagte Hüllflüssigkeitsreservoir (104) im Wesentlichen gleich der Ausströmgeschwindigkeit der aus der Düse (112) fließenden Hüllflüssigkeit (144) ist, es sei denn, der externe Hüllflüssigkeitsbehälter (102) wurde entfernt, um die Hüllflüssigkeit (142) wieder aufzufüllen;

    einen Niveauregler (110), der so konfiguriert ist, dass er auf der Basis von Daten aus dem Niveausensor (138) die Einströmgeschwindigkeit der in das interne druckbeaufschlagte Hüllflüssigkeitsreservoir (104) fließenden Hüllflüssigkeit (142) einstellt, indem er die Pumpgeschwindigkeit der Pumpe (106) immer dann einstellt, wenn sich das im Wesentlichen konstante Hüllflüssigkeitsniveau (145) ändert;

    einen Kompressor (118), der eine Quelle für Druckluft bereitstellt;

    einen Luftregulator (108), der mit dem internen druckbeaufschlagten Hüllflüssigkeitsreservoir (104) verbunden ist und der so konfiguriert ist, dass er die Druckluft (146) dem internen druckbeaufschlagten Hüllflüssigkeitsreservoir (104) zuführt;

    einen visuellen Sensor (114), der so konfiguriert ist, dass er die Orte von Tröpfchen der aus der Düse (112) fließenden Hüllflüssigkeit (144) nachweist; und

    Luftdruckregler (116), der auf der Basis von Daten aus dem visuellen Sensor (114) die Ausströmgeschwindigkeit der aus der Düse (112) fließenden Hüllflüssigkeit (144) bestimmt und der auf der Basis der Bestimmung den Druck des Volumens der Druckluft (146) steuert, so dass die durch den visuellen Sensor (114) bestimmte Ausströmgeschwindigkeit der aus der Düse (112) fließenden Hüllflüssigkeit (144) im Wesentlichen konstant bleibt.


     
    8. Hüllflüssigkeitssystem (100) gemäß Anspruch 7, wobei der externe Hüllflüssigkeitsbehälter (102) eine Flasche voreingefüllter Hüllflüssigkeit (142) umfasst, die gegen eine andere Flasche der voreingefüllten Hüllflüssigkeit (142) ausgetauscht werden kann.
     
    9. Hüllflüssigkeitssystem (100) gemäß Anspruch 7, wobei der externe Hüllflüssigkeitsbehälter (102) einen nachfüllbaren Hüllflüssigkeitsbehälter (102), der mit Hüllflüssigkeit (142) nachbefüllt werden kann, umfasst.
     


    Revendications

    1. Procédé de commande de la pression d'un fluide de gaine (144) dans un réservoir pressurisé (104) contenant un volume de fluide de gaine (144) et un volume d'air comprimé (146) dans un cytomètre en flux configuré pour faire couler du fluide de gaine (144) du réservoir pressurisé (104) par une buse (112) à un débit de flux sortant, le procédé comprenant :

    pomper de manière continue, en utilisant une pompe (106) interposée entre un contenant extérieur (102) et le réservoir pressurisé (104), le fluide de gaine (142) du contenant extérieur (102) dans le réservoir (104) pour maintenir un niveau de fluide de gaine sensiblement constant (145) dans le réservoir pressurisé (104), si bien qu'un débit de flux entrant de fluide de gaine (142) coulant dans le réservoir pressurisé (104) soit sensiblement égal au débit de fluide sortant du fluide de gaine (144) coulant de la buse (112) ;

    déterminer le débit de flux sortant du fluide de gaine (144) coulant de la buse (112), sur la base de données provenant d'un capteur visuel (114) configuré pour détecter des endroits où se trouvent des gouttelettes du fluide de gaine (144) coulant de la buse (112) ;

    commander la pression du volume d'air comprimé (146) sur la base de ce qui vient d'être déterminé, si bien que le débit de flux sortant du fluide de gaine (114) coulant de la buse (112), comme déterminé par le capteur visuel (114), reste sensiblement constant ; et

    ajuster le débit de flux entrant du fluide de gaine (142) coulant dans le réservoir pressurisé (104) en ajustant une vitesse de pompe de la pompe (106) lorsque le niveau (145) sensiblement constant du fluide de gaine change.


     
    2. Procédé selon la revendication 1, caractérisé en ce que le processus d'ajustement du débit de flux entrant de gaine est mis en oeuvre en réponse à une boucle de commande atténue de contre-réaction.
     
    3. Procédé selon la revendication 1, caractérisé en ce que le processus d'ajustement du débit de flux entrant de gaine est mis en oeuvre en réponse à une commande proportionnelle intégrale différentielle.
     
    4. Procédé selon la revendication 1, caractérisé en ce que le processus de maintenir un niveau de fluide de gaine sensiblement constant (145) comprend
    fixer un débit de flux entrant à défaut, en estimant le débit de flux sortant avec lequel le fluide de gaine (144) coule du réservoir intérieur (104).
     
    5. Procédé selon la revendication 4, comprenant en outre :

    détecter une position verticale d'un point de séparation auquel des gouttelettes (128) se séparent d'un flux (126) du fluide de gaine (114) sortant d'une buse (112) du cytomètre en flux ;

    comparer la position verticale à une position verticale souhaitée ;

    ajuster la pression dans le réservoir pressurisé (104) pour faire s'adapter sensiblement la position verticale du point de séparation à la position verticale souhaitée.


     
    6. Procédé selon la revendication 5, caractérisé en ce que le processus de détecter une position verticale du point de séparation comprend :
    utiliser une caméra de gouttelettes (114) pour enregistrer des images du flux (126).
     
    7. Système de fluide de gaine (100) pour fournir un fluide de gaine (144) dans un cytomètre en flux sous une pression sensiblement constante, comprenant :

    un réservoir intérieur pressurisé (104) pour fluide de gaine, configuré pour contenir du fluide de gaine (144) et pour fournir le fluide de gaine (144) à une buse (112) de façon telle que le fluide de gaine (144) coule par la buse (112) à un débit de flux sortant, ;

    un capteur de niveau (138) configuré pour détecter le niveau de fluide de gaine (145) dans le réservoir intérieur pressurisé (104) pour fluide de gaine ;

    un contenant extérieur (102) pour fluide de gaine qui est configuré pour contenir le fluide de gaine (142) et qui peut être enlevé pour réapprovisionner le fluide de gaine (142) au contenant de fluide de gaine (102) ;

    une pompe (106) qui est interposée entre le contenant extérieur (102) pour fluide de gaine et le réservoir intérieur pressurisé (104) pour fluide de gaine et qui est configurée pour pomper de manière continue le fluide de gaine (142) du contenant extérieur (102) pour fluide de gaine dans le réservoir (104) pour fluide de gaine pour maintenir un niveau de fluide de gaine sensiblement constant (145) dans le réservoir intérieur pressurisé (104), si bien que le débit de flux entrant de fluide de gaine (142) coulant du contenant extérieur (102) pour fluide de gaine dans le réservoir intérieur pressurisé (104) pour fluide de gaine soit sensiblement égal au débit de fluide sortant du fluide de gaine (144) coulant de la buse (112), à moins que le contenant extérieur (102) pour fluide de gaine soit enlevé pour réapprovisionner le fluide de gaine (142) ;

    une commande de niveau (110) qui est configurée pour ajuster, sur la base des données provenant du capteur de niveau (138), le débit de flux entrant du fluide de gaine (142) coulant dans le réservoir pressurisé (104) en ajustant une vitesse de pompe de la pompe (106) lorsque le niveau (145) sensiblement constant du fluide de gaine change ;

    un compresseur (118) qui approvisionne une source d'air comprimé ;

    un régulateur d'air (108) qui est connecté au réservoir intérieur pressurisé (104) pour fluide de gaine et qui est configuré pour fournir l'air comprimé (146) au réservoir intérieur pressurisé (104) pour fluide de gaine ;

    un capteur visuel (114) configuré pour détecter des endroits où se trouvent des gouttelettes du fluide de gaine (144) coulant de la buse (112) ; et

    une commande d'air comprimé (116) qui détermine le débit de flux sortant du fluide de gaine (144) coulant de la buse (112), sur la base de données provenant du capteur visuel (114) et qui commande la pression du volume d'air comprimé (146) sur la base de ce qui vient d'être déterminé, si bien que le débit de flux sortant du fluide de gaine (114) coulant de la buse (112), comme déterminé par le capteur visuel (114), reste sensiblement constant.


     
    8. Système de fluide de gaine (100) selon la revendication 7, caractérisé en ce que le contenant extérieur (102) pour fluide de gaine comprend une bouteille de fluide de gaine préconditionné (142) qui peut être remplacée par une autre bouteille de fluide de gaine préconditionnée (142).
     
    9. Système de fluide de gaine (100) selon la revendication 7, caractérisé en ce que le contenant extérieur (102) pour fluide de gaine comprend un contenant rechargeable (102) pour fluide de gaine qui peut être rechargé avec du fluide de gaine (142).
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description