(19)
(11)EP 2 866 465 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.07.2020 Bulletin 2020/30

(21)Application number: 13190289.2

(22)Date of filing:  25.10.2013
(51)International Patent Classification (IPC): 
H04R 1/40(2006.01)
H04R 5/027(2006.01)

(54)

Spherical microphone array

Sphärisches Mikrofonarray

Réseau de microphones sphérique


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
29.04.2015 Bulletin 2015/18

(73)Proprietor: Harman Becker Automotive Systems GmbH
76307 Karlsbad (DE)

(72)Inventor:
  • Christoph, Markus
    94315 Straubing (DE)

(74)Representative: Westphal, Mussgnug & Partner Patentanwälte mbB 
Werinherstrasse 79
81541 München
81541 München (DE)


(56)References cited: : 
WO-A1-03/061336
US-A1- 2008 019 551
US-A1- 2007 110 257
  
  • DANIEL JEROME ET AL: "Improving Spherical Microphone Arrays", AES CONVENTION 124; MAY 2008, AES, 60 EAST 42ND STREET, ROOM 2520 NEW YORK 10165-2520, USA, 1 May 2008 (2008-05-01), XP040508695,
  • GUILLAUME M ET AL: "Sound Field Analysis with a Two-Dimensional Microphone Array", ACOUSTICS, SPEECH AND SIGNAL PROCESSING, 2006. ICASSP 2006 PROCEEDINGS . 2006 IEEE INTERNATIONAL CONFERENCE ON TOULOUSE, FRANCE 14-19 MAY 2006, PISCATAWAY, NJ, USA,IEEE, PISCATAWAY, NJ, USA, 1 January 2006 (2006-01-01), pages V-V, XP031101510, ISBN: 978-1-4244-0469-8
  • INES HAFIZOVIC ET AL: "Transformation Between Uniform Linear and Spherical Microphone Arrays With Symmetric Responses", IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IEEE, vol. 20, no. 4, 1 May 2012 (2012-05-01), pages 1189-1195, XP011412236, ISSN: 1558-7916, DOI: 10.1109/TASL.2011.2173194
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The disclosure relates to a microphone array, in particular to a spherical microphone array for use in a modal beamforming system.

BACKGROUND



[0002] A microphone-array-based modal beamforming system commonly comprises a spherical microphone array of a multiplicity of microphones equally distributed over the surface of a solid or virtual sphere for converting sounds into electrical audio signals and a modal beamformer that combines the audio signals generated by the microphones to form an auditory scene representative of at least a portion of an acoustic sound field. This combination allows for picking up acoustic signals dependent on their direction of propagation. As such, microphone arrays are also sometimes referred to as spatial filters. Spherical microphone arrays exhibit low- and high-frequency limitations, so that the sound field can only be accurately described over a limited frequency range. Low-frequency limitations essentially result when the directivity of the particular microphones of the array is poor compared to the wavelength and the high amplification necessary in this frequency range, which leads to a high amplification of (self-)noise and thus to the need to limit the usable frequency range up to a maximum lower frequency. High-frequency issues can be explained by spatial aliasing effects. Similar to time aliasing, spatial aliasing occurs when a spatial function, e.g., spherical harmonics, is under-sampled. For example, in order to distinguish 16 harmonics, at least 16 microphones are needed. In addition, the positions and, depending on the type of sphere used, the directivity of the microphones are important. A spatial aliasing frequency characterizes the upper critical frequency of the frequency range in which the spherical microphone array can be employed without generating any significant artifacts. Reducing the unwanted effects of spatial aliasing is widely desired.

[0003] International patent application publication WO 03/061336 A1 discloses an audio system which is based on at least second-order eigenbeams. The technical publication "Improving Spherical Microphone Arrays" of Daniel Jerome et al., which was presented at the 124th Convention of the Audio Engineering Society on May 2008 discloses a strategy for improving spherical microphone arrays without using more sensors. United States patent application publication US 2008/0019551 A1 discloses sound receiver with a microphone array. The technical publication "Sound Field Analysis With Two-Dimensional Microphone Array" of Guillaume M et al., which was published in Acoustic, Speech And Signal Processing 2006 discloses a strategy for sound filed analysis in sound fields with large frequency bandwidth. Ines Hafizovic et al., "Transformation Between Uniform Linear and Spherical Microphone Arrays With Symmetric Responses", IEEE Transactions on Audio, Speech and language processing, IEEE, vol. 20, no. 4, 1 May 2012, pages 1189-1195 discloses a linear transformation between the processing methods for spherical and uniform linear arrays. This transformation can be used to synthesize symmetric beam patterns for spherical arrays using existing weight expressions for uniform linear arrays.

SUMMARY



[0004] A spherical microphone array includes a sound-diffracting structure that has a closed three-dimensional shape of at least one non-regular, regular or semi-regular convex polyhedron with congruent faces of regular or non-regular polygons, and at least one cavity disposed in the sound-diffracting structure, the at least one cavity having an aperture, an end, and a center line between the end of the cavity and the center of aperture, wherein the center line is arranged perpendicular to the aperture plane. The microphone array further includes an omnidirectional center microphone positioned on the center line and at the end of the cavity most distant from the aperture, and a plurality of further omnidirectional microphones disposed in the at least one cavity in the sound-diffracting structure. At least two microphones of the plurality of further microphones are disposed on an inner oval line whose center is disposed on the center line, wherein the center line subtends the center of the inner oval line perpendicular to the surface generated by the inner oval line, and the center of the inner oval line is closer to the aperture than the omnidirectional center microphone. At least two further microphones of the plurality of further microphones are disposed on an outer oval line whose center is disposed on the center line, wherein the center line subtends the center of the outer oval line perpendicular to the surface generated by the outer oval line and the outer oval line is arranged closer to the aperture than the inner oval line.

[0005] .

BRIEF DESCRIPTION OF THE DRAWINGS



[0006] The system may be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like referenced numerals designate corresponding parts throughout the different views.

Figure 1 is a schematic diagram of an exemplary microphone array for use in a modal beamformer system.

Figure 2 is a top view of an alternative diffracting structure corresponding to the sphere shown in Figure 1 that has the shape of a truncated icosahedron.

Figure 3 is a cross-sectional view of a cavity shaped as an inverse spherical cap with a sound-reflective surface and a first microphone patch.

Figure 4 is a cross-sectional view of a cavity shaped as an inverse spherical cap with a sound-reflective surface and a second microphone patch.

Figure 5 is a circuit diagram of a summing circuit connected downstream of the microphone patches of Figures 3 and 4.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS



[0007] Figure 1 is a schematic diagram of a common array 1 of microphones (herein referred to as microphone array 1) for use in a modal beamformer system 2 that further includes a beamformer unit 3 connected downstream of microphone array 1. Microphone patches 4 may be disposed in a regular or semi-regular fashion over the surface of the rigid sphere. Modal beamformer 3 may include a decomposer (also known as an eigenbeamformer), a steering unit, a compensation unit and a summation unit. Each microphone patch 4 of microphone array 1 generates an audio signal that is transmitted to modal beamformer unit 3 via some suitable (e.g., wired or wireless) connection.

[0008] For example, microphone array 1 may comprise 32 microphone patches 4 mounted in optional cavities 5 arranged at the surface of an acoustic rigid sphere 6 in a "truncated icosahedron" pattern serving as a diffracting structure. There are only five possibilities to divide the surface of a sphere into equal areas. These five geometries, which are known as regular polyhedrons or Platonic solids, consist of four, six, eight, 12 and 20 faces, respectively. Another geometry that comes close to a regular division (it is hence called "semi-regular" or "quasi-regular") is the truncated icosahedron, which is an icosahedron with vertices cut off (thus the term "truncated"). This results in a solid consisting of 20 hexagons and 12 pentagons. Other possible microphone arrangements may be based, for example, on other types of platonic solids, Archimedean solids or Catalan solids.

[0009] A platonic solid is a regular convex polyhedron with congruent faces of regular polygons and the same number of faces meeting at each vertex. Five solids meet those criteria, and each is named after its number of faces: tetrahedron (four faces), cube or hexahedron (six faces), octahedron (eight faces), dodecahedron (twelve faces) and icosahedron (twenty faces). An Archimedean solid is a highly symmetric, semi-regular convex polyhedron composed of two or more types of regular polygons meeting in identical vertices. They are distinct from the Platonic solids, which are composed of only one type of polygon meeting in identical vertices. A Catalan solid, or Archimedean dual, is a dual polyhedron to an Archimedean solid. The Catalan solids are all convex. They are face-transitive but not vertex-transitive. This is because the dual Archimedean solids are vertex-transitive and not face-transitive. Unlike Platonic solids and Archimedean solids, the faces of Catalan solids are not regular polygons. However, the vertex figures of Catalan solids are regular, and they have constant dihedral angles. Additionally, two of the Catalan solids are edge-transitive: the rhombic dodecahedron and the rhombic triacontahedron. These are the duals to the two semi-regular Archimedean solids. Two of the Catalan solids are chiral: the pentagonal icositetrahedron and the pentagonal hexecontahedron, dual to the chiral snub cube and snub dodecahedron. These each come in two enantiomorphs. Not counting the enantiomorphs, there are a total of 13 Catalan solids.

[0010] A more general diffracting structure that corresponds to the sphere shown in Figure 1 and that has the shape of truncated icosahedron 7 is schematically shown in Figure 2. In particular, truncated icosahedron 7 is configured to carry 32 microphones and includes icosahedron 9 (Platonic solid with 20 faces, i.e., hexagons) and dodecahedron 8 (Platonic solid with 12 faces, i.e., pentagons). Such an arrangement, where the 12 pentagons of dodecahedron 8 are placed at the poles of a sphere (six at each pole) and the residual 20 hexagons are placed around the equator, leading to a somewhat higher sensor-density there, provides higher accuracy in acoustical applications since humans also have a higher localization accuracy in the horizontal plane than in the vertical plane. The locations of the centers of microphone patches 4 are disposed at the centers of the polygons, e.g., the hexagons and pentagons.

[0011] In general, the more microphone patches used, i.e., the lower the inter-microphone distance, the higher the upper maximum frequency will be. On the other hand, the cost increases with the number of microphones. The upper maximum frequency, also known as the spatial aliasing frequency, characterizes the upper critical frequency of the frequency range in which the spherical microphone array can be employed without generating any significant artifacts.

[0012] In the arrangement shown in Figure 1, each microphone patch 4 (represented by their center) positioned at the center of a pentagon has five neighbors at a distance of 0.65a, where a is the radius of sphere 6. Each microphone patch 4 positioned at the center of a hexagon has six neighbors, of which three are at a distance of 0.65a and the other three are at a distance of 0.73a. Applying the sampling theorem and taking the worst case, the maximum frequency is 4.7 kHz when radius a = 5 cm. In practice, a slightly higher maximum frequency can be expected since most microphone distances are less than 0.73a, namely 0.65a. The upper frequency limit can be increased by reducing the radius of the sphere. On the other hand, reducing the radius of the sphere would reduce the achievable directivity at low frequencies.

[0013] One way to improve spherical microphone arrays is to make the microphones more directive. The theory behind this is that the directivity of each sensor should be as close as possible to the desired mode (eigenbeam), which corresponds to high-degree harmonics that have a null contribution. A more directive sensing can be obtained by disposing an omnidirectional microphone at the end of a cavity within the sphere, as disclosed in US patent application publication 2007/0110257A and in Nicolas Epain and Jerome Daniel's paper, "Improving Spherical Microphone Arrays", presented at the 124th Convention of the Audio Engineering Society, 17-20 May 2008, Amsterdam, the Netherlands.

[0014] Another approach to prevent the microphone from receiving high-degree spherical harmonics is to use spatial low-pass filtering, i.e., to make the microphones less sensitive to fast variations of the sound field over the surface of the sphere. This is possible if each microphone of the array is able to measure the sound field on an extended area around its angular position. This can be achieved by using larger-membrane microphones. These microphones integrate the pressure variations over their membranes, which can be seen as spatial low-pass filtering.

[0015] In the microphone array described herein, cavities 5 are shaped to form both a spatial low-pass filter and a focusing element so that sound entering the cavities from a direction perpendicular to the perimeter of the sphere is collected and transferred to the microphone(s) with the least attenuation. Low-pass filtering may be provided, for example, by cavity shapes whose opening areas are larger than the membrane areas of the microphones. Focusing may be achieved by cavity shapes that concentrate acoustic waves coming in to the cavity along an axis perpendicular to the perimeter of the sphere, at a particular point where the respective microphone is to be arranged. Waves coming in from directions other than perpendicular are reflected (diffracted) by the walls of the cavity, which is more efficient the higher the frequency is. Waves with lower frequencies still make their way to the bottom of the cavity, where a center microphone may be disposed, due to diffraction effects occurring at the edge of the cavity. The cutoff frequency is determined by the diameter of the cavity at its edge. The higher the frequency of incoming sound is, sound from a slanting direction is reflected, partly away from the cavity so they do not make their way to the microphone disposed in the cavity. The higher the frequency and the greater the diameter, the more spatial the low pass effect is.

[0016] Figure 3 is directed to an unclaimed example and shows cavity 5 shaped as an inverse spherical cap 10 with a sound reflective, i.e., solid surface. A spherical cap may be a portion of a sphere cut off by a plane. If this plane passes through the center of sphere so that the height of the cap is equal to the radius of the sphere, the spherical cap is called a dome or hemisphere. Accordingly, the inverse cap 10 is the cavity into which such cap fits. In the inverse cap 10, i.e., in cavity 5, nine omnidirectional microphones 11a - 11i are disposed, which may have small membranes. One microphone, optional omnidirectional center microphone 11a, is disposed on a (virtual) center line 12 between the end of the cavity and the center of the aperture 13 of the cavity 5. Center line 12 may be arranged perpendicular of the aperture plane. The other microphones, omnidirectional peripheral microphones 11b - 11i, are disposed on a (virtual) oval line, which is in the present example circle line 14, which subtends the center of circle 14 perpendicular to the surface generated by circle line 14. A circle line as a special case of an oval line is employed in connection with pure icosahedron shapes.

[0017] Peripheral microphones 11b - 11i are arranged equidistantly on the circle line 14 to form together with the center microphone 11a a regular microphone pattern, herein also referred to as microphone patch. The bottom part of Figure 3 shows the patch in a view through the aperture to the end of the cavity 5. The upper part of Figure 3 is a sectional side view of the arrangement of microphones 11d, 11a and 11h, in which the aperture 13 is on the top and the end of the cavity is at the bottom. As can be seen, microphones 11d, 11a and 11h are in line (line 15) from both perspectives so that the front sides of the microphones 11d, 11a and 11h are coplanar and the center microphone 11a is not disposed at the end of the cavity 5.

[0018] Figure 4 shows an embodiment of the invention with a different patch arranged in cavity 5. The different patch includes, for example, nine microphones 16a-16i. One microphone, omnidirectional center microphone 16a, is disposed on center line 12 between the end of the cavity and the center of the aperture 13 of the cavity 5. The other microphones, omnidirectional peripheral microphones 16b - 16i, are disposed on two (virtual) circle lines 17 and 18. Center line 12 subtends the centers of circle lines 17 and 18 perpendicular to the surfaces generated by circle lines 17 and 18. Peripheral microphones 16b - 16e are arranged equidistantly on the (inner) circle line 17 and peripheral microphones 16f - 16i are arranged equidistantly on the (outer) circle line 18. As can be seen from the upper part of Figure 4, the center microphone 16a and the microphones on lines 17 and 18 are arranged at different distances from the aperture 13. Peripheral microphones 16f - 16i arranged on (outer) circle line 18 are closer to aperture 15 than peripheral microphones 16b - 16e arranged on (inner) circle line 17. Center microphone 16a is disposed at the end of cavity 5 and, thus, is arranged most distant from aperture 15. Alternatively, cavity 5 may be shaped as inverse circular paraboloid. The center microphone may be disposed at the focal point of the inverse circular paraboloid in the arrangement shown in Figure 4.

[0019] Referring to Figure 5, a summing circuit 19 is used to couple the microphones of the patches shown in Figures 3 and 4. The summing circuit 19 includes, for example, an operational amplifier 20 with an inverting input, a non-inverting input and an output. A resistor 21 is connected between output and inverting input of operational amplifier 20 and the microphones 11a-11i or 16a-16i are connected to the inverting input via resistors 22a-22i. The non-inverting input is connected to a reference point 23. The summing circuit 19 sums up electrical signals generated by the at least two peripheral microphones and the optional one center microphone to provide an audio output signal. Resistors 22a-22 may have different resistances and, thus, the summing circuit 19 may attenuate each of the electrical microphone signals with a microphone specific weighting factor such as a windowing function over the particular microphones.

[0020] The usable spectral ranges of beamformer generally depend on the distance of neighboring microphones. Spatial aliasing is present at a limiting frequency which will be higher the shorter this distance is. Furthermore, especially when taking modal beamforming into account, microphones have to be placed at the surface of the base body in such a way that certain criteria (e.g., orthonormality error matrix should tend to zero) will be fulfilled as, for example, the principle of orthonormality. By grouping several microphones in a patch around such a point at the surface of the base body, which marks the center of orthonormality, the usable frequency range of such a microphone array can be extended. All microphones placed within one patch are summed by analog or digital circuitry eventually employing weighting the microphone signals. Even though a higher number of microphones is used, the number of channels for post-processing is equal to the number of patches and, thus, the subsequent signal processing load is not increased. Another positive effect when using microphone patches is that the microphone membrane area is increased, which leads to an increase in directivity, but the noise generated by the patch is less than that of single microphones having the same microphone membrane area as the patch. Noise reduction NR can be described as follows: NR [dB] = 10log10(Qp), wherein Qp is the number of microphones per patch.


Claims

1. A spherical microphone array comprising:

a sound-diffracting structure having a closed three-dimensional shape of at least one non-regular, regular or semi-regular convex polyhedron with congruent faces of regular or non-regular polygons;

at least one cavity (5) disposed in the sound-diffracting structure, the at least one cavity (5) comprising an aperture (13), an end, and a center line (12) between the end of the cavity and the center of aperture (13), the center line (12) being arranged perpendicular to the aperture plane;

an omnidirectional center microphone (16a) positioned on the center line (12) and at the end of the cavity (5) most distant from the aperture (13); and

a plurality of further omnidirectional microphones (16b-16i) disposed in the at least one cavity in the sound-diffracting structure;

wherein at least two microphones (16b-16e) of the plurality of further microphones (16b - 16i) are disposed on an inner oval line (17) whose center is disposed on the center line (12), wherein the center line (12) subtends the center of the inner oval line (17) perpendicular to the surface generated by the inner oval line (17), and the center of the inner oval line (17) is closer to the aperture than the omnidirectional center microphone (16a); and

wherein at least two further microphones (16f-16i) of the plurality of further microphones (16b-16i) are disposed on an outer oval line (18) whose center is disposed on the center line (12), wherein the center line (12) subtends the center of the outer oval line (18) perpendicular to the surface generated by the outer oval line (18) and the outer oval line (18) is arranged closer to the aperture (13) than the inner oval line (17).


 
2. The microphone array of claim 1, wherein the sound-diffracting structure has the shape of a combination of at least two regular or semi-regular convex polyhedrons with congruent faces of regular polygons.
 
3. The microphone array of claim 1 or 2, wherein the sound-diffracting structure has the shape of an icosahedron (9), a dodecahedron (8) or a combination thereof.
 
4. The microphone array of any of the preceding claims, wherein at least one oval line is a circle line (17, 18).
 
5. The microphone array of claim 4, wherein the sound-diffracting structure has the shape of an icosahedron (9), and the center line (12) subtends the center of one of the polygons defining the icosahedron (9).
 
6. The microphone array of any of the preceding claims, wherein the at least one cavity (5) is shaped as an inverse spherical cap (10) or inverse circular paraboloid.
 
7. The microphone array of any of the preceding claims, wherein the walls of the cavity (5) are configured to reflect sound.
 
8. The microphone array of any of the preceding claims, further comprising a summing circuit (19) that sums up electrical signals generated by the center microphone (16a) and the plurality of further microphones (16b - 16i) to provide an audio output signal;
wherein the summing circuit (19) is configured to attenuate each of the electrical signals with a microphone-specific weighting factor.
 


Ansprüche

1. Sphärisches Mikrofonarray, umfassend:

eine Schallbeugungsstruktur, die eine geschlossene dreidimensionale Form von zumindest einem von einem unregelmäßigen, regelmäßigen oder teilweise regelmäßigen konvexen Polyeder mit kongruenten Flächen von regelmäßigen oder nicht regelmäßigen Polyedern aufweist;

zumindest einen Hohlraum (5), der in der Schallbeugungsstruktur angeordnet ist, wobei der zumindest eine Hohlraum (5) eine Öffnung (13), ein Ende und eine Mittellinie (12) zwischen dem Ende des Hohlraums und der Mitte der Öffnung (13) umfasst, wobei die Mittellinie (12) senkrecht zu der Öffnungsebene angeordnet ist;

ein omnidirektionales mittleres Mikrofon (16a), das auf der Mittellinie (12) und an dem Ende des Hohlraums (5) positioniert ist, das am weitesten von der Öffnung (13) entfernt ist; und

eine Vielzahl von weiteren omnidirektionalen Mikrofonen (16b-16i), die in dem zumindest einen Hohlraum in der Schallbeugungsstruktur angeordnet sind;

wobei zumindest zwei Mikrofone (16b-16e) der Vielzahl von weiteren Mikrofonen (16b-16i) an einer inneren ovalen Linie (17) angeordnet sind, deren Mitte auf der Mittellinie (12) angeordnet ist, wobei die Mittellinie (12) die Mitte der inneren ovalen Linie (17) senkrecht zu der Fläche berührt, die durch die innere ovale Linie (17) gebildet ist, und die Mitte der inneren ovalen Linie (17) näher an der Öffnung liegt als das omnidirektionale mittlere Mikrofon (16a); und

wobei zumindest zwei weitere Mikrofone (16f-16i) der Vielzahl von weiteren Mikrofonen (16b-16i) an einer äußeren ovalen Linie (18) angeordnet sind, deren Mitte auf der Mittellinie (12) angeordnet ist, wobei die Mittellinie (12) die Mitte der äußeren ovalen Linie (18) senkrecht zu der Fläche berührt, die durch die äußere ovale Linie (18) erzeugt wird, und die äußere ovale Linie (18) näher an der Öffnung (13) angeordnet ist als die innere ovale Linie (17).


 
2. Mikrofonarray nach Anspruch 1, wobei die Schallbeugungsstruktur die Form einer Kombination aus zumindest zwei regelmäßigen oder teilweise regelmäßigen konvexen Polyedern mit kongruenten Flächen von regelmäßigen Polyedern aufweist.
 
3. Mikrofonarray nach Anspruch 1 oder 2, wobei die Schallbeugungsstruktur die Form eines Ikosaeders (9), Dodekaeders (8) oder einer Kombination davon aufweist.
 
4. Mikrofonarray nach einem der vorangehenden Ansprüche, wobei die zumindest eine ovale Linie eine Kreislinie (17, 18) ist.
 
5. Mikrofonarray nach Anspruch 4, wobei die Schallbeugungsstruktur die Form eines Ikosaeders (9) aufweist und die Mittellinie (12) die Mitte von einem der Polyeder berührt, die das Ikosaeder (9) definieren.
 
6. Mikrofonarray nach einem der vorangehenden Ansprüche, wobei der zumindest eine Hohlraum (5) als eine umgekehrte Kugelkalotte (10) oder ein umgekehrtes kreisförmiges Paraboloid geformt ist.
 
7. Mikrofonarray nach einem der vorangehenden Ansprüche, wobei die Wände des Hohlraums (5) konfiguriert sind, um Schall zu reflektieren.
 
8. Mikrofonarray nach einem der vorangehenden Ansprüche, ferner umfassend eine Addierschaltung (19), die elektrische Signale addiert, die durch das mittlere Mikrofon (16a) und die Vielzahl von weiteren Mikrofonen (16b-16i) erzeugt werden, um ein akustisches Ausgabesignal bereitzustellen;
wobei die Addierschaltung (19) konfiguriert ist, um jedes von den elektrischen Signalen mit einem mikrofonspezifischen Gewichtungsfaktor zu dämpfen.
 


Revendications

1. Réseau de microphones sphérique comprenant :

une structure de diffraction du son ayant une forme tridimensionnelle fermée d'au moins un polyèdre convexe non régulier, régulier ou semi-régulier avec des faces congruentes de polygones réguliers ou non réguliers ;

au moins une cavité (5) disposée dans la structure de diffraction du son, l'au moins une cavité (5) comprenant une ouverture (13), une extrémité, et une ligne centrale (12) entre l'extrémité de la cavité et le centre de l'ouverture (13), la ligne centrale (12) étant disposée perpendiculairement au plan d'ouverture ;

un microphone central omnidirectionnel (16a) positionné sur la ligne centrale (12) et à l'extrémité de la cavité (5) la plus éloignée de l'ouverture (13) ; et

une pluralité d'autres microphones omnidirectionnels (16b-16i) disposés dans l'au moins une cavité dans la structure de diffraction du son ;

dans lequel au moins deux microphones (16b-16e) de la pluralité d'autres microphones (16b-16i) sont disposés sur une ligne ovale intérieure (17) dont le centre est disposé sur la ligne centrale (12), dans lequel la ligne centrale (12) sous-tend le centre de la ligne ovale intérieure (17) perpendiculairement à la surface générée par la ligne ovale intérieure (17), et le centre de la ligne ovale intérieure (17) est plus proche de l'ouverture que le microphone central omnidirectionnel (16a) ; et

dans lequel au moins deux autres microphones (16f-16i) de la pluralité d'autres microphones (16b-16i) sont disposés sur une ligne ovale extérieure (18) dont le centre est disposé sur la ligne centrale (12), dans lequel la ligne centrale (12) sous-tend le centre de la ligne ovale extérieure (18) perpendiculairement à la surface générée par la ligne ovale extérieure (18) et la ligne ovale extérieure (18) est disposée plus proche de l'ouverture (13) que la ligne ovale intérieure (17) .


 
2. Réseau de microphones selon la revendication 1, dans lequel la structure de diffraction du son a la forme d'une combinaison d'au moins deux polyèdres convexes réguliers ou semi-réguliers avec des faces congruentes de polygones réguliers.
 
3. Réseau de microphones selon la revendication 1 ou 2, dans lequel la structure de diffraction du son a la forme d'un icosaèdre (9), d'un dodécaèdre (8) ou d'une combinaison de ceux-ci.
 
4. Réseau de microphones selon l'une quelconque des revendications précédentes, dans lequel au moins une ligne ovale est une ligne circulaire (17, 18).
 
5. Réseau de microphones selon la revendication 4, dans lequel la structure de diffraction du son a la forme d'un icosaèdre (9), et la ligne centrale (12) sous-tend le centre d'un des polygones définissant l'icosaèdre (9).
 
6. Réseau de microphones selon l'une quelconque des revendications précédentes, dans lequel l'au moins une cavité (5) a la forme d'une calotte sphérique inverse (10) ou d'un paraboloïde circulaire inverse.
 
7. Réseau de microphones selon l'une quelconque des revendications précédentes, dans lequel les parois de la cavité (5) sont configurées pour réfléchir le son.
 
8. Réseau de microphones selon l'une quelconque des revendications précédentes, comprenant en outre un circuit de sommation (19) qui résume les signaux électriques générés par le microphone central (16a) et la pluralité d'autres microphones (16b-16i) pour fournir un signal de sortie audio ;
dans lequel le circuit de sommation (19) est configuré pour atténuer chacun des signaux électriques avec un facteur de pondération spécifique au microphone.
 




Drawing

















Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description