(19)
(11)EP 2 867 689 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
25.03.2020 Bulletin 2020/13

(21)Application number: 13813853.2

(22)Date of filing:  28.06.2013
(51)International Patent Classification (IPC): 
G01R 33/50(2006.01)
G01R 33/561(2006.01)
A61B 5/055(2006.01)
G01R 33/563(2006.01)
(86)International application number:
PCT/SE2013/000105
(87)International publication number:
WO 2014/007715 (09.01.2014 Gazette  2014/02)

(54)

METHODS AND SYSTEMS FOR IMPROVED MAGNETIC RESONANCE ACQUISTION

VERFAHREN UND SYSTEME FÜR VERBESSERTE MAGNETISCHE RESONANZERFASSUNG

PROCÉDÉS ET SYSTÈMES D'ACQUISITION DE RÉSONANCE MAGNÉTIQUE AMÉLIORÉE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 02.07.2012 US 201213540027

(43)Date of publication of application:
06.05.2015 Bulletin 2015/19

(73)Proprietor: Syntheticmr AB
582 24 Linköping (SE)

(72)Inventor:
  • WARNTJES, Marcel
    SE-590 72 Ljungsbro (SE)

(74)Representative: AWA Sweden AB 
Junkersgatan 1
582 35 Linköping
582 35 Linköping (SE)


(56)References cited: : 
WO-A1-2008/132686
WO-A1-2011/114264
US-A1- 2009 267 945
US-A1- 2011 018 537
WO-A1-2011/114264
WO-A1-2012/050487
US-A1- 2010 127 704
US-A1- 2011 018 537
  
  • STEHNING C ET AL: "Volumetric Simultaneous T1, T2, T2* and Proton Density Mapping in One Minute Using Interleaved Inversion Recovery SSFP and Multi Gradient Echo Imaging", PROCEEDINGS OF THE INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE, 16TH ANNUAL MEETING AND EXHIBITION, TORONTO, CANADA, 3-9 MAY 2008, vol. 16, 19 April 2008 (2008-04-19), page 241, XP040603448,
  • MICHAEL MARKL ET AL: "Gradient echo imaging", JOURNAL OF MAGNETIC RESONANCE IMAGING, vol. 35, no. 6, 15 June 2012 (2012-06-15), pages 1274-1289, XP055091475, ISSN: 1053-1807, DOI: 10.1002/jmri.23638
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present invention relates to a method, system and computer program product for improved magnetic resonance acquisition. In particular the present invention relates to a method, system and computer program product for the simultaneous measurement of the physical properties R1 and R2 relaxation rate, proton density and the apparent diffusion coefficient using a single magnetic resonance acquisition.

BACKGROUND



[0002] Magnetic Resonance Imaging (MRI) can generate cross-sectional images in any plane (including oblique planes). Medical MRI most frequently relies on the relaxation properties of excited hydrogen nuclei (protons) in water and fat. When the object to be imaged is placed in a powerful, uniform magnetic field the spins of the atomic nuclei with non-integer spin numbers within the tissue all align either parallel to the magnetic field or anti-parallel. The output result of an MRI scan is an MRI contrast image or a series of MRI contrast images.

[0003] In order to understand MRI contrast, it is important to have some understanding of the time constants involved in relaxation processes that establish equilibrium following RF excitation. As the excited protons relax and realign, they emit energy at rates which are recorded to provide information about their environment. The realignment of proton spins with the magnetic field is termed longitudinal relaxation and the rate (typically about 1 s-1) required for a certain percentage of the tissue nuclei to realign is termed "R1 relaxation rate" or R1. T2-weighted imaging relies upon local dephasing of spins following the application of the transverse energy pulse; the transverse relaxation rate (typically > 10 s-1 for tissue) is termed "R2 relaxation rate" or R2. These relaxation rates are also expressed as relaxation times T1 (=1/R1) and T2 (=1/R2). The total signal depends on the number of protons, or proton density PD. The total signal is decreased due to random motion of the protons, a process which can be enhanced by the application of a large bipolar gradient; moving protons acquire a phase difference which leads to a further signal loss. The signal loss indicates the diffusion of water molecules and can be measured as the apparent diffusion coefficient ADC. The measurement of the direction in which diffusion occurs is named fractional anisotropy FA. On the scanner console all available parameters, such as echo time TE, repetition time TR, flip angle α and the application of preparation pulses and gradients (and many more), are set to certain values. Each specific set of parameters generates a particular signal intensity in the resulting images depending on the characteristics of the measured tissue.

[0004] Generally MR images are qualitative in nature: the absolute image signal intensity has no meaning, it is the signal intensity differences, the contrast, which is interpreted. This leads to subjective reading of images, inherent inaccuracy and user dependence. MR quantification, on the other hand, aims at measurement of physical properties on an absolute scale. This provides a firm basis for objective measures and automated tissue recognition. Examples are measurement of brain volume for dementia follow-up, tumour volume for oncology and lesion load for Multiple Sclerosis.

[0005] STEHNING C ET AL: "Volumetric Simultaneous T1, T2, T2* and Proton Density Mapping in One Minute Using Interleaved Inversion Recovery SSFP and Multi Gradient Echo Imaging" PROCEEDINGS OF THE INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE, vol 16, 19 April 2008, page 241, relates to a method of interleaving inversion recovery SSFP and Multi Gradient Echo Imaging.

[0006] There is a constant demand for improvements in MR imaging. It would therefore be desirable to provide improved and faster methods for obtaining measurements of physical properties such as R1, R2, PD and ADC.

SUMMARY



[0007] It is an object of the present invention to provide a method and device to address at least parts of the problems outlined above.

[0008] This object and potentially others are obtained by the methods and devices as set out in the appended claims.

[0009] In accordance with embodiments described herein a method to estimate the R1 and R2 relaxation times, the proton density PD using a single magnetic resonance acquisition is provided. In accordance with some embodiments the apparent diffusion coefficient ADC can also be estimated using the single magnetic resonance acquisition is provided. In accordance with some embodiments, depending how the set-up is R1-R2-PD or R1-R2-PD-ADC can be simultaneously estimated.

[0010] In MRI there are three main physical properties that have an effect on signal intensity in the MR images: The longitudinal R1 relaxation rate (the inverse of the T1 relaxation time), the transverse R2 relaxation rate (the inverse of the T2 relaxation time) and the proton density PD. These three properties can be measured on with quantitative MRI. In contrast to conventional MR imaging, which results in qualitative images with a relative image intensity scale, a quantitative MRI scan results in the measurement of physical properties such as R1, R2 and PD on an absolute scale. These values are independent of scanner settings and hence directly reflect the underlying tissue. Thus, each tissue type has its own characteristic combination of R1, R2 and PD. For example the mean values for white matter in the brain are approximately (R1, R2, PD) = (1.7s-1, 14 s-1, 64%), for grey matter (1.0s-1, 12 s-1, 85%) and for cerebrospinal fluid (0.24s-1, 1.5 s-1, 100%) (see e.g. Wamtjes et al. Rapid Magnetic Resonance Quantification on the Brain: Optimization for Clinical UsageMagn Reson Med 2008;60:320-329). Typical values for the ADC are 0.9, 0.8 and 4.0 10-3 mm/s, respectively. Including noise of the measurement and partial volume effects, an area in the multi-parametric R1-R2-PD-ADC space can be specified to contain brain tissue and CSF. These values differ from for example muscle or fat.

[0011] In accordance with some embodiments the MR properties correspond to at least one of R1 and R2 relaxation rate or proton density, or relaxation time, where T1 = 1/R1 and T2 = 1/R2.

[0012] In accordance with embodiments described herein a magnetic resonance imaging method of simultaneously estimating multiple physical parameters using a single gradient echo acquisition type is provided in independent claim 1, with preferred embodiments defined in its dependent claims.

[0013] The invention also extends to a computerized imaging system arranged to perform the methods as described according to independent claim 12, and also to a digital storage medium according to independent claim 14.

[0014] Among the advantages of the methods described herein is that the physical properties of a patient can be measured on an absolute scale with a single sequence in a very short time.

BRIEF DESCRIPTION OF THE DRAWINGS



[0015] The present invention will now be described in more detail by way of non-limiting examples and with reference to the accompanying drawings, in which:
  • Fig. 1 is a schematic outline of an MR system,
  • Fig. 2 is a schematic outline of the MR sequence with a R1 sensitizing phase, a R2 sensitizing phase and a single acquisition where 5 imaging volumes are acquired in parallel.
  • Fig. 3 is a schematic outline of two different R2 sensitizing phases (a and b) and a diffusion sensitizing phase (c).
  • Figs. 4a and 4b are flowcharts illustrating some steps performed when estimating physical properties such as R1, R2, PD and ADC.

DETAILED DESCRIPTION



[0016] In the following description, for purposes of explanation and not limitation, specific details are set forth such as particular architectures, interfaces, techniques, etc. However, it will be apparent to those skilled in the art that the described technology may be practiced in other embodiments that depart from these specific details. That is, those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the described technology. In some instances, detailed descriptions of well-known devices, circuits, and methods are omitted so as not to obscure the description of the present invention with unnecessary detail. All statements herein reciting principles, aspects, and embodiments, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.

[0017] Thus, for example, it will be appreciated by those skilled in the art that block diagrams herein represent conceptual views of illustrative circuitry embodying the principles of the technology. Similarly, it will be appreciated various processes described may be substantially represented in a computer-readable medium and can be executed by a computer or processor.

[0018] The functions of the various elements including functional may be provided through the use of dedicated hardware as well as hardware capable of executing software. When a computer processor is used, the functions may be provided by a single dedicated processor, by a single shared processor, or by a plurality of individual processors, some of which may be shared or distributed. Moreover, a controller as described herein may include, without limitation, digital signal processor (DSP) hardware, ASIC hardware, read only memory (ROM), random access memory (RAM), and/or other storage media.

[0019] In Fig. 1 a general view of a setup of a MRI system 100 is depicted. The system 100 comprises a MR scanner 101. The MR scanner is operative to generate MRI data by means of scanning a living object. The MR scanner is further connected to a computer 103 for processing data generated by the scanner 101. The computer comprises a central processor unit coupled to a memory and a number of input and output ports for receiving and outputting data and information. The computer 103 receives input commands from one or several input devices generally represented by an input device 105. The input device may be one or many of a computer mouse, a keyboard, a track ball or any other input device. The computer 103 is further connected to a screen 107 for visualizing the processed scanner data as a contrast image. In particular the computer 103 can comprise controller unit(s)/imaging circuitry arranged to perform methods as described herein.

[0020] In MRI there are three main physical properties that have an effect on signal intensity in the MR images: The longitudinal R1 relaxation rate (the inverse of the T1 relaxation time), the transverse R2 relaxation rate (the inverse of the T2 relaxation time) and the proton density PD. A fourth physical property, diffusion, can be obtained by application of a large bipolar gradient. Any moving spin will acquire a phase difference due to the gradient, which leads to loss of signal. Hence a high diffusion is associated with a high signal loss. These four properties can be measured on an absolute scale with quantitative MRI. Each tissue has its own characteristic combination of R1, R2 and PD. For example the mean values for white matter in the brain are approximately (R1, R2, PD) = (1.7s-1, 14 s-1, 64%), for grey matter (1.0s-1, 12 s-1, 85%) and for cerebrospinal fluid (0.24 s-1, 1.5 s-1, 100%) (see e.g. Warntjes et al. Rapid Magnetic Resonance Quantification on the Brain: Optimization for Clinical UsageMagn Reson Med 2008;60:320-329). Typical values for the ADC are 0.9, 0.8 and 4.0 10-3 mm/s, respectively. Including noise of the measurement and partial volume effects, an area in the multi-parametric R1-R2-PD-ADC space can be specified to contain brain tissue and CSF. These values differ from for example muscle or fat.

[0021] Signal intensity of the MR quantification sequence is probed using a segmented gradient echo sequence, where multiple images are acquired in parallel. The acquisition can be any gradient echo type, such as a spoiled gradient acquisition (also called turbo field echo, TFE), a balanced steady state free precession acquisition (bSSFP, also called balanced turbo field echo, bTFE), an echo planar imaging acquisition (EPI) or a combination of a TFE and an EPI acquisition. For a segmented acquisition only a part of the acquisition is performed per repetition time TR. A full acquisition is obtained by repeating the TR until the acquisition is complete. Images can then be acquired in parallel by consecutive measurement of small segments of the separate images.

[0022] In accordance with some embodiments multiple imaging volumes are acquired in parallel while interleaved with specific sensitizing phases and time delays in order to simultaneously measure multiple physical parameters.

[0023] In accordance with one embodiment, for the measurement of R1, a Ri-sensitizing phase is required, followed by 2 or more acquisitions. A Ri-sensitizing phase can for example consist of a 90 degrees RF saturation pulse to set the longitudinal Mz magnetization to zero. In an alternative implementation the R1-sensitizing phase can consist of a 180 degrees RF inversion pulse to invert the longitudinal Mz magnetization. For a measurement of R2 a R2-sensitizing phase is required, straddled by two acquisitions. A R2-sensitizing phase can for example consist of a 90 degrees RF pulse, one or more 180 degrees RF refocusing pulses and a -90 degrees RF pulse to sensitize the longitudinal Mz magnetization with R2 relaxation. For the ADC a diffusion-sensitizing phase is required, straddled by two acquisitions. A diffusion sensitizing phases is similar to a R2 sensitizing phase, where the 180 degrees refocusing pulses are straddled by gradients. In particular, the refocusing pulses can be straddled by large gradients, such that the area under the gradients (zeroth order) causes a (significant) phase evolution of the spins.

[0024] An exemplary method for performing a combined measurement of R1, R2 and PD is exemplified in Fig. 2. Five acquisitions are performed in parallel by dividing them into segments where each segment runs through the exemplified kernel of Fig. 4a. The kernel is repeated for each segment until the acquisitions are completed. A kernel in accordance with the exemplary embodiment of Fig. 2 consists of a first acquisition Acq1, after which a R2-sensitizing phase PR2 is applied, followed by a second acquisition Acq2 and a Ri-sensitizing phase PR1. Finally the third acquisition with delay time is performed. The latter acquisition can be repeated, in the example three times (Acq3a, Acq3b and Acq3c).

[0025] Assuming that the acquisitions have no effect on the magnetization the R1 and PD can be found using the signal intensities after the Ri-sensistizing phase PR1, in the example the 4 acquisitions Acq3a, Acq3b, Acq3c and Acq1, where the magnetization Mi of each acquisition i increases with the delay time ti after PR1 as:



[0026] The proton density PD is proportional to Mo. Since there are two variables at least 2 acquisitions i at 2 different delay times ti must be acquired post-PR1 (i.e. at least Acq3a and Acq1).

[0027] The MR scanner may have an inhomogeneous B1 field, which can be measured using the ratio between the signal intensity post and prior to the Ri-sensitizing phase PR1, in the example Acq3 and Acq2:



[0028] R2 can be found using the ratio between the signal intensity prior to and after the R2-sensitizing phase PR2, in the example Acq1 and Acq2:



[0029] In Figs. 3a and 3b two examples of R2-sensitizing phases are displayed, with a 90 degrees RF pulse, one or more 180 degrees refocusing pulses and a -90 degrees RF pulse. The time ΔTE corresponds to the time difference between the two 90 degrees RF pulses. The minimum number of acquisitions for a combined R1, R2 and PD measurement is 3 (Acq1, Acq2 and Acq3a).

[0030] For a combined measurement of R1, R2, PD and ADC a longer kernel is required, as exemplified in Figs 4a plus 4b. Here, the example of Fig. 2 must be repeated twice, where at one instance the R2-sensitizing phase PR2 is used, as sketched in Fig. 3b, and at one instance the PR2 is replaced with a diffusion sensitizing phase Pdiff, as sketched in Fig. 3c. The decay rate ADC due to diffusion can be calculated as:



[0031] The minimum number of acquisitions for a combined R1, R2, PD and ADC measurement is 6 (Acq1, Acq2, Acq3a, Acq4, Acq5 and Acq6a). If all three directions in space must be probed for diffusion, the example in Fig. 2 must be repeated 4 times. In that case one PR2 is applied and three Pdiff, with the diffusion gradients are applied in the three different directions x, y and z and hence the minimum number of acquisition is 12

[0032] If the acquisition does have an effect on magnetization, the magnetization evolution during a TR can be calculated numerically where each magnetization Mn+1 can be derived from a prior magnetization Mn at a time step Δt. In the absence of RF pulses this is:



[0033] In the presence of RF acquisition pulses with flip angle α this is:

where R1* is the effective observed R1 and the M0* is the effective observed M0:



[0034] All of the steps described in conjunction with Figs. 2 and 3 can be implemented in a computer by, for example but not limited to, executing suitable software program loaded into the computer on a digital storage media and causing the computer to execute the above steps. The method can also be implemented using suitable hardware comprising suitable image circuitry and controllers in combination with different models and memories, for example in the form of look-up tables.

[0035] In Fig. 4a a flowchart illustrating some exemplary steps performed when generating measures for R1, R2 and PD. First in a step 401 a first acquisition is performed. Next, in a step 403, an R2 sensitizing phase is performed. Then in a step 405 a second acquisition is performed. Next, in a step 407, an R1 sensitizing phase is performed. Then in a step 409 there is a waiting time. Then in a step 411 a third acquisition is performed. Then in a step 413 there is a waiting time. Finally in a step 415 the measures R1, R2, and PD as generated based on the three acquisitions.

[0036] In the exemplary embodiment in Fig. 4a, the order is important but the items are looped so it does not matter which item starts. From the indata for R1, R2 and PD, R2 is calculated from the first Acquisition and the second Acquisition. R1 and PD are calculated from the first acquisition and the third acquisition. In an optional step indicated in Fig. 4a, the third acquisition is repeated one or more times for a more robust calculation of R1 and PD.

[0037] Below a pseudo code example is given for a sequence that can be used for the simultaneous generation of R1, R2 and PD measures for a number of segments:



[0038] In an alternative embodiment the steps of Fig. 4a are supplemented by some additional steps to generate a combined R1, R2, PD and ADC measurement. Such additional steps are illustrated in Fig. 4b. First the steps of Fig. 4a are performed up to and including step 413. After step 413 the following steps shown in Fig. 4b can be performed. In a step 417 a fourth acquisition is performed. Next, in a step 419, diffusion sensitizing phase is performed. Then in a step 421 a fifth acquisition is performed. Next, in a step 423, an R1 sensitizing phase is performed. Then in a step 425 there is a waiting time. Then in a step 427 a sixth acquisition is performed. Then in a step 429 there is a waiting time. Finally in a step 431 the measures R1, R2, PD and ADC are generated based on the six acquisitions. In accordance with some embodiments, R2 is calculated from the first and second acquisition, R1 and PD are calculated using the first, third, fourth and sixth acquisition. In an alternative embodiment the acquisitions three and/or six are repeated for a more robust calculation of R1 and PD as is indicated in Figs. 4a and 4b. ADC can be calculated using the first, second, fourth and fifth acquisition.

[0039] Below a pseudo code example is given for a sequence that can be used for the simultaneous generation of R1, R2, PD, and ADC measures for a number of segments:



[0040] Using the methods and devices as described herein can improve MRI scanning. In particular, physical properties of a patient can be measured on an absolute scale with a single sequence in a very short time.


Claims

1. A magnetic resonance imaging method of simultaneously estimating multiple physical parameters using a single gradient echo acquisition type, wherein the multiple physical parameters are a longitudinal relaxation rate R1, a transverse relaxation rate R2, and a proton density PD, characterized by comprising:

obtaining (401, 405, 411) at least three parallel, segmented gradient-echo acquisitions, wherein the acquisitions are performed in parallel by dividing each acquisition into segments, and repeating for each segment until the acquisitions are completed;

interleaving (403, 407, 409) the segmented gradient-echo acquisitions with a R1-sensitizing phase, a R2 sensitizing phase and a delay time, and

generating (415) measures for the longitudinal relaxation rate R1, the transverse relaxation rate R2, and the proton density PD from the at least three acquisitions.


 
2. The method of claim 1, wherein the at least three acquisitions are performed twice, resulting in at least six acquisitions; the acquisitions are interleaved with at least two R1-sensitizing phases, a R2 sensitizing phase, a diffusion sensitizing phase, and delay time(s); and measures for R1 and R2 relaxation rate, PD and apparent diffusion coefficient, ADC, are generated from the at least six acquisitions.
 
3. The method of claim 1 or 2, wherein the acquisitions are a spoiled gradient acquisition, a balanced steady state free precession acquisition, bSSFP, or an echo planar imaging acquisition, EPI.
 
4. The method of any of claims 1 - 3, wherein the acquisitions are performed on a two-dimensional, 2D, slice or on a three-dimensional, 3D, volume.
 
5. The method of any of claims 1 - 4, wherein the R1 sensitizing phase comprises a 90 degrees RF saturation pulse or a 180 degrees RF inversion pulse.
 
6. The method of any of claims 1 - 5, wherein the R2 sensitizing phase comprises a 90 degrees RF pulse, a 180 degrees refocusing pulse, and a -90 degrees RF pulse or a 90 degrees RF pulse, multiple 180 degrees refocusing pulses, and a -90 degrees RF pulse.
 
7. The method of any of claims 2 - 6, wherein the diffusion sensitizing phase comprises a 90 degrees RF pulse, a 180 degrees refocusing pulse, and a -90 degrees RF pulse; and the 180 degrees refocusing pulse is straddled by gradients.
 
8. The method of any of claims 1 - 7, wherein the R1 relaxation rate is estimated using the image signal intensity of all acquisitions after the R1 sensitizing phase.
 
9. The method of any of claims 1 - 8, wherein the R2 relaxation rate is estimated using the image signal intensity of the acquisitions prior to and after the R2 sensitizing phase.
 
10. The method of any of claims 1 - 9, wherein a B1 field of a scanner for obtaining the acquisitions is estimated using the image signal intensity of the acquisitions prior to and after the R1 sensitizing phase.
 
11. The method of any of claims 2 - 10, wherein the ADC is estimated using the image signal intensity of the acquisitions prior to and after the R2 sensitizing phase and prior to and after the diffusion sensitizing phase.
 
12. A magnetic resonance imaging device (100) for simultaneously estimating multiple physical parameters using a single gradient echo acquisition type, wherein the multiple physical parameters are a longitudinal relaxation rate R1, a transverse relaxation rate R2, and a proton density PD, characterized in that the device being configured for:

obtaining at least three parallel, segmented gradient-echo acquisitions, wherein the acquisitions are performed in parallel by dividing each acquisition into segments, and repeating for each segment until the acquisitions are completed; and

interleaving the segmented gradient-echo acquisitions with a Ri-sensitizing phase, a R2 sensitizing phase, and a delay time,

generating measures for the longitudinal relaxation rate R1, the transverse relaxation rate R2, and the proton density PD from the at least three acquisitions.


 
13. The device of claim 12, wherein the device is configured for performing the at least three acquisitions twice, resulting in at least six acquisitions, and for interleaving the acquisitions with at least two Ri-sensitizing phases, a R2 sensitizing phase, a diffusion sensitizing phase, and delay time(s); generating measures for R1 and R2 relaxation rate, PD, and apparent diffusion coefficient, ADC, from the at least six acquisitions.
 
14. A non-transitory digital storage medium having stored thereon computer program instructions, which, when executed by a computer connected to a magnetic resonance imaging device, cause the computer to perform the method according to claim 1.
 


Ansprüche

1. Magnetresonanzbildgebungsverfahren zum gleichzeitigen Bewerten mehrerer physikalischer Parameter unter Verwendung eines Einzelgradientenechoaufnahmetyps, wobei die mehreren physikalischen Parameter eine longitudinale Relaxationsrate R1, eine transversale Relaxationsrate R2 und eine Protonendichte PD sind, dadurch gekennzeichnet, dass es Folgendes umfasst:

Erhalten (401, 405, 411) von mindestens drei parallelen, segmentierten Gradientenechoaufnahmen, wobei die Aufnahmen parallel durchgeführt werden, indem jede Aufnahme in Segmente unterteilt wird und für jedes Segment wiederholt wird, bis die Aufnahmen abgeschlossen sind;

Verschachteln (403, 407, 409) der segmentierten Gradientenechoaufnahmen mit einer R1-Sensibilisierungsphase, einer R2-Sensibilisierungsphase und einer Verzögerungszeit, und

Erzeugen (415) von Messungen für die longitudinale Relaxationsrate R1, die transversale Relaxationsrate R2 und die Protonendichte PD aus den mindestens drei Aufnahmen.


 
2. Verfahren nach Anspruch 1, wobei die mindestens drei Aufnahmen zweimal durchgeführt werden, was zu mindestens sechs Aufnahmen führt; die Aufnahmen mit mindestens zwei R1-Sensibilisierungsphasen, einer R2-Sensibilisierungsphase, einer Diffusionssensibilisierungsphase und einer oder mehreren Verzögerungszeit(en) verschachtelt werden; und aus den mindestens sechs Aufnahmen Messungen für die R1- und R2-Relaxationsrate, die PD und den scheinbaren Diffusionskoeffizienten ADC erzeugt werden.
 
3. Verfahren nach Anspruch 1 oder 2, wobei die Aufnahmen eine Aufnahme mit Spoilergradienten, eine ausgewogene Aufnahme mit freier Präzession im Gleichgewicht, bSSFP, oder eine Aufnahme mit Echo-Planar-Verfahren, EPI, sind.
 
4. Verfahren nach einem der Ansprüche 1-3, wobei die Aufnahmen auf einer zweidimensionalen, 2D, Schicht oder auf einem dreidimensionalen, 3D, Volumen durchgeführt werden.
 
5. Verfahren nach einem der Ansprüche 1-4, bei dem die R1-Sensibilisierungsphase einen 90-Grad-HF-Sättigungsimpuls oder einen 180-Grad-HF-Inversionsimpuls umfasst.
 
6. Verfahren nach einem der Ansprüche 1-5, wobei die R2-Sensibilisierungsphase einen 90-Grad-HF-Impuls, einen 180-Grad-Refokussierungsimpuls und einen -90-Grad-HF-Impuls oder einen 90-Grad-HF-Impuls, mehrere 180-Grad-Refokussierungsimpulse und einen -90-Grad-HF-Impuls umfasst.
 
7. Verfahren nach einem der Ansprüche 2 bis 6, wobei die Diffusionssensibilisierungsphase einen 90-Grad-HF-Impuls, einen 180-Grad-Refokussierungsimpuls und einen -90-Grad-HF-Impuls umfasst; und der 180-Grad-Refokussierungsimpuls von Gradienten überspannt wird.
 
8. Verfahren nach einem der Ansprüche 1-7, wobei die R1-Relaxationsrate unter Verwendung der Bildsignalintensität aller Aufnahmen nach der R1-Sensibilisierungsphase bewertet wird.
 
9. Verfahren nach einem der Ansprüche 1-8, wobei die R2-Relaxationsrate unter Verwendung der Bildsignalintensität aller Aufnahmen vor und nach der R2-Sensibilisierungsphase bewertet wird.
 
10. Verfahren nach einem der Ansprüche 1-9, wobei ein B1-Feld eines Scanners zum Erhalten der Aufnahmen unter Verwendung der Bildsignalintensität der Aufnahmen vor und nach der R1-Sensibilisierungsphase bewertet wird.
 
11. Verfahren nach einem der Ansprüche 2-10, wobei der ADC unter Verwendung der Bildsignalintensität der Aufnahmen vor und nach der R2-Sensibilisierungsphase und vor und nach der Diffusionssensibilisierungsphase bewertet wird.
 
12. Magnetresonanzbildgebungsvorrichtung (100) zum gleichzeitigen Bewerten mehrerer physikalischer Parameter unter Verwendung eines Einzelgradientenechoaufnahmetyps, wobei die mehreren physikalischen Parameter eine longitudinale Relaxationsrate R1, eine transversale Relaxationsrate R2 und eine Protonendichte PD sind, dadurch gekennzeichnet, dass
die Vorrichtung für Folgendes konfiguriert ist:

Erhalten von mindestens drei parallelen, segmentierten Gradientenechoaufnahmen, wobei die Aufnahmen parallel durchgeführt werden, indem jede Aufnahme in Segmente unterteilt wird und für jedes Segment wiederholt wird, bis die Aufnahmen abgeschlossen sind; und

Verschachteln der segmentierten Gradientenechoaufnahmen mit einer R1-Sensibilisierungsphase, einer R2-Sensibilisierungsphase und einer Verzögerungszeit,

wobei aus den mindestens drei Aufnahmen Messungen für die longitudinale Relaxationsrate R1, die transversale Relaxationsrate R2 und die Protonendichte PD erzeugt werden.


 
13. Vorrichtung nach Anspruch 12, wobei die Vorrichtung so konfiguriert ist, dass die mindestens drei Aufnahmen zweimal durchgeführt werden, was zu mindestens sechs Aufnahmen führt, und dass die Aufnahmen mit mindestens zwei R1-Sensibilisierungsphasen, einer R2-Sensibilisierungsphase, einer Diffusionssensibilisierungsphase und einer oder mehreren Verzögerungszeit(en) verschachtelt werden; wobei aus den mindestens sechs Aufnahmen Messungen für die Relaxationsrate R1 und R2, PD, und den scheinbaren Diffusionskoeffizienten, ADC, erzeugt werden.
 
14. Nichtflüchtiges, digitales Speichermedium mit darauf gespeicherten Computerprogrammbefehlen, die, wenn sie von einem mit einer Magnetresonanzbildgebungsvorrichtung verbundenen Computer ausgeführt werden, den Computer veranlassen, das Verfahren nach Anspruch 1 durchzuführen.
 


Revendications

1. Procédé d'imagerie à résonance magnétique pour l'estimation simultanée de multiples paramètres physiques en utilisant un type d'acquisition à écho de gradient simple, les paramètres physiques étant un taux de relaxation longitudinale R1, un taux de relaxation transversale R2, et une densité de protons PD, caractérisé en ce qu'il comprend :

l'obtention (401,405,411) d'au moins trois acquisitions à écho de gradient segmentées, les acquisitions étant réalisées en parallèle en divisant chaque acquisition en segments, et en répétant pour chaque segment jusqu'à ce que les acquisitions soient achevées ;

l'entrelacement (403,407,409) des acquisitions à écho de gradient segmentées avec une phase de sensibilisation à R1, une phase de sensibilisation à R2 et un temps de retardement, et

la génération (415) de mesures pour le taux de relaxation longitudinale R1, le taux de relaxation transversale R2, et la densité de protons PD à partir des au moins trois acquisitions.


 
2. Procédé selon la revendication 1, dans lequel les trois acquisitions sont réalisées deux fois, résultant en au moins six acquisitions ; les acquisitions sont entrelacées avec au moins deux phases de sensibilisation à R1, une phase de sensibilisation à R2, une phase de sensibilisation à la diffusion, et un ou des temps de retardement ; et les mesures pour les taux de relaxation R1 et R2, la PD et le coefficient de diffusion apparent ADC étant générées à partir des au moins six acquisitions.
 
3. Procédé selon la revendication 1 ou 2, dans lequel les acquisitions sont une acquisition à gradient corrompu, une acquisition à précession libre à état constant équilibré bSSFP, ou une acquisition d'imagerie à écho EPI.
 
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel les acquisitions sont réalisées sur une tranche bidimensionnelle 2D ou sur un volume tridimensionnel 3D.
 
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel la phase de sensibilisation à R1 comprend une impulsion de saturation RF de 90 degrés ou une impulsion d'inversion RF de 180 degrés.
 
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel la phase de sensibilisation à R2 comprend une impulsion RF de 90 degrés, une impulsion de refocalisation de 180 degrés, et une impulsion RF de -90 degrés ou une impulsion RF de 90 degrés, de multiples impulsions de refocalisation de 180 degrés et une impulsion RF de -90 degrés.
 
7. Procédé selon l'une quelconque des revendications 2 à 6, dans lequel la phase de sensibilisation à la diffusion comprend une impulsion RF de 90 degrés, une impulsion de refocalisation de 180 degrés, et une impulsion RF de -90 degrés et l'impulsion de refocalisation de 180 degrés est encadrée par des gradients.
 
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel la vitesse de relaxation R1 est estimée en utilisant l'intensité de signal d'image de toutes les acquisitions après la phase de sensibilisation à R1.
 
9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel la vitesse de relaxation R2 est estimée en utilisant l'intensité de signal d'image de toutes les acquisitions avant et après la phase de sensibilisation à R2.
 
10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel un champ B1 d'un scanner pour l'obtention des acquisitions est estimé en utilisant l'intensité de signal d'image des acquisitions avant et après la phase de sensibilisation à R1.
 
11. Procédé selon l'une quelconque des revendications 2 à 10, dans lequel l'ADC est estimé en utilisant l'intensité de signal d'image des acquisitions avant et après la phase de sensibilisation à R2 et avant la phase de sensibilisation à la diffusion.
 
12. Dispositif d'imagerie à résonance magnétique (100) pour l'estimation simultanée de multiples paramètres physiques en utilisant un type d'acquisition à écho de gradient simple, les paramètres physiques étant un taux de relaxation longitudinale R1, un taux de relaxation transversale R2, et une densité de protons PD, caractérisé en ce qu'il comprend :

l'obtention d'au moins trois acquisitions à écho de gradient segmentées, les acquisitions étant réalisées en parallèle en divisant chaque acquisition en segments, et en répétant pour chaque segment jusqu'à ce que les acquisitions soient achevées ;

l'entrelacement des acquisitions à écho de gradient segmentées avec une phase de sensibilisation à R1, une phase de sensibilisation à R2 et un temps de retardement, et

la génération de mesures pour le taux de relaxation longitudinale R1, le taux de relaxation transversale R2, et la densité de protons PD à partir des au moins trois acquisitions.


 
13. Dispositif selon la revendication 12, ce dispositif étant configuré pour réaliser les trois acquisitions deux fois, résultant en au moins six acquisitions, et pour entrelacer les acquisitions avec au moins deux phases de sensibilisation à R1, une phase de sensibilisation à R2, une phase de sensibilisation à la diffusion, et un ou des temps de retardement ; générer des mesures pour les taux de relaxation R1 et R2, la PD et un coefficient de diffusion apparent ADC à partir des au moins six acquisitions.
 
14. Support de stockage numérique non transitoire sur lequel sont stockées des instructions de programme informatique qui, une fois exécutées par un ordinateur connecté à un dispositif d'imagerie à résonance magnétique, amènent l'ordinateur à réaliser le procédé selon la revendication 1.
 




Drawing

















Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description