(19)
(11)EP 2 869 950 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.06.2020 Bulletin 2020/25

(21)Application number: 13813068.7

(22)Date of filing:  05.07.2013
(51)International Patent Classification (IPC): 
B21F 35/00(2006.01)
F16F 1/12(2006.01)
F16F 15/123(2006.01)
(86)International application number:
PCT/US2013/049439
(87)International publication number:
WO 2014/008466 (09.01.2014 Gazette  2014/02)

(54)

HIGH FATIGUE ARCUATE SPRING

GEBOGENE FEDER MIT HOHER ERMÜDUNGSBESTÄNDIGKEIT

RESSORT COURBÉ À HAUTE RÉSISTANCE À LA FATIGUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 06.07.2012 US 201261668658 P

(43)Date of publication of application:
13.05.2015 Bulletin 2015/20

(60)Divisional application:
20151796.8

(73)Proprietor: BARNES GROUP INC.
Bristol, CT 06010 (US)

(72)Inventors:
  • CUNHA, Eugenio Ferreira
    13274-610 Sao Paulo (BR)
  • ROVERI, Sergio
    13042-901 Sao Paulo (BR)

(74)Representative: Grosse Schumacher Knauer von Hirschhausen 
Patent- und Rechtsanwälte Frühlingstrasse 43A
45133 Essen
45133 Essen (DE)


(56)References cited: : 
EP-A1- 0 584 474
DE-A1-102009 022 440
JP-A- 2007 268 573
US-A- 5 052 664
US-A- 5 971 857
US-A1- 2002 104 665
CN-A- 102 424 908
JP-A- 2000 129 359
US-A- 4 193 824
US-A- 5 868 996
US-A1- 2002 104 665
US-B1- 6 461 243
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention claims priority on United States Provisional Application Serial No. 61/668,658 filed July 6, 2012, which is incorporated herein.

    [0002] The present invention is directed to an improved arcuate spring and a method for forming the arcuate spring according to the preamble of claim 1 and 4, respectively.

    BACKGROUND OF THE INVENTION



    [0003] Vibration in a vehicle drive train has been a long-standing problem, and a torsional vibration damper assembly is desirable to neutralize any torsional vibrations emanating from the vehicle engine which could result in undesirable impact loads, vibration, noise, etc.

    [0004] Torsional vibration damper assemblies have usually comprised straight resilient means, such as coil springs, which were forcibly bowed through the use of clips, wedges, spring separators or dividers, or the like to obtain the desired arcuate shape. In addition, a plurality of shorter straight springs were sometimes substituted for the longer bowed springs along the path that would have been occupied by the longer bowed springs. Such configurations, however, were complicated, requiring a plurality of precise parts to complete the assembly. Thus, such assemblies were difficult to manufacture, maintain and operate, which translates into a higher product cost.

    [0005] To address this past problem, an arcuate spring was developed as disclosed in US 5,052,664. The '664 patent discloses the use of an arc opening process to form the arcuate spring. The arc opening process is critical step of the standard arcuate spring manufacturing process; however, such arc opening process is very time consuming.

    [0006] DE 10 2009 022 440 A1 describes a spring according to the preamble of claim 1. US 5,971,857 A discloses arcuate springs with end caps.

    [0007] In view of the current state of the art for the formation of arcuate springs, there is a need for an improved process for forming arcuate springs, arcuate springs having improved performance, and a process for lowering the manufacturing cost of the arcuate spring.

    SUMMARY OF THE INVENTION



    [0008] The present invention is directed to an arcuate spring and to a method of forming the arcuate spring according to claim 1 and 4, respectively, said arcuate spring addressing the current needs as set forth above.

    [0009] An improved manufacturing process is suitable for forming a spring wherein all or a portion of the spring has an arcuate shape (e.g., arc shaped, S-shaped, U-shaped, C-shaped, etc.). As can be appreciated, the various shapes of the spring that can be formed by the present invention are non-limiting. All these springs that include at least an arcuate portion will be hereinafter reference to as "arcuate springs". The improved process eliminates the arc opening process and instead uses an induction hardening process to form the arc in the spring. The arcuate spring of the present invention is generally a helically-shaped spring formed of a plurality of coils which are configured and dimensioned to provide an arcuate shape to the spring in its free or natural state. As can be appreciated, the spring can have a shape other than a helical shape. The coils of the arcuate spring are generally free of internal stresses which would tend to urge the coils into linear alignment. The arcuate spring is generally designed to have a strength that is sufficient to resiliently absorb and/or release forces in either arcuate direction along an arcuate path.

    [0010] In one non-limiting embodiment of the invention, the arcuate spring is made of a hardenable or hardened steel. As can be appreciated, the arcuate spring can be formed of other materials. Generally, the material used to form the arcuate portion of the spring is a material that can be inductively heated. The arcuate spring is generally designed to be capable of achieving a Rockwell C hardness of at least about 20 and up to about 80, and typically between about 40 and 60; however, this is not required. The arcuate spring generally has a tensile strength of at least 90,000 psi (6200 bar), typically at least about 100,000 psi (6900 bar), and more typically at least about 190,000 psi (13100 bar); however, this is not required. The size, shape and length of the arcuate spring are non-limiting. The cross-section shape and size of the coils of the spring are non-limiting. The arc radius of the spring is non-limiting.

    [0011] A suitable method for making an arcuate spring is by initially forming a straight spring; prestressing the spring to an arcuate shape; heat treating the spring by induction heating at elevated temperatures for a sufficient time to relieve stresses in the spring and to form an arcuate spring; and then cooling the arcuate spring to lower (e.g., ambient) temperatures. The spring is generally prestressed by use of a fixture. The type of fixture is non-limiting. The spring can be heat treated subsequent to being prestressed by the fixture and/or heated prior to being prestressed by the fixture. Generally, the spring is heated subsequent to being prestressed by the fixture. The heat treating step generally includes heating one or more portions of the spring by an induction heating process. Optionally, additional types of heat treating processes can be used to heat one or more portions of the spring. The heat treating step includes a step of cooling the spring. In one non-limiting arrangement, the cooling step includes quenching the spring into a fluid (e.g., air, gas, liquid, etc.). In one non-limiting example, the quench fluid is a liquid (e.g., water, oil, water and oil mixture, etc.). In another non-limiting example, the quench fluid is a gas (e.g., nitrogen argon, air, etc.). The spring during the cooling process is generally rapidly cooled (e.g., cooled within 0.01-5 minutes, etc.) by the quench fluid to a temperature that is generally from +150F to -50F (65°C to -45°C) of the ambient temperature (e.g., 60-90°F (15°C-30°C)). In one non-limiting example, the spring during the cooling process is rapidly cooled (e.g., cooled within 0.01-2 minutes) by the quench fluid to a temperature that is generally about ±30F (21°C) of the ambient temperature (e.g., 60-90F (15°C-30°C)). Generally the spring is released from the fixture after and/or during the quenching step.

    [0012] As mentioned above, the present invention is an improvement over prior art.

    [0013] Current prior art processes for forming an arcuate spring involve the steps of:
    1. 1. Coiling the wire to form a straight helical spring;
    2. 2. Stress relieving the formed straight helical spring;
    3. 3. Shot peening straight helical spring;
    4. 4. Grinding the ends of the straight helical spring;
    5. 5. Shot peening the straight helical spring a second time;
    6. 6. Pre-heating the straight helical spring;
    7. 7. Bending the helical spring in a fixture;
    8. 8. Heating the bent helical spring in an oven for over 20 minutes while in the fixture;
    9. 9. Quenching the heated helical spring; and,
    10. 10. Removing the quenched helical spring from the fixture.


    [0014] The process describes herein to form a spring of the present invention involves the steps of:

    a. Coiling the wire to form a straight spring;

    b. Heating the spring by induction heating prior to bending the spring in a fixture;

    b. Bending the heated spring in the fixture;

    d. Quenching the heated spring; and,

    e. Removing the quenched spring from the fixture.



    [0015] The forming process is fundamentally different from prior arcuate spring forming processes in that the spring is first heated by induction heating prior to the spring being placed in a fixture. As can be appreciated, the spring could be placed in a fixture prior to and during heating. When the spring is inductively heated, the spring is generally heated while the spring is a straight spring. The induction heating of the spring generally takes less than about 5 minutes, typically less than about 2 minutes, more typically less than about 1 minute, and yet more typically less than about 30 seconds; however, other time periods can be used. The heating time using an induction heating process is significantly less than convention heating time period that occurred in an oven, which prior heating times were in excess of 10 minutes, and typically at least 20 minutes. After the spring is inductively heated when in a straight shape, the heated straight spring is generally formed in the fixture into an arcuate shape in less than about 5 minutes after being inductively heated, typically less than about 2 minutes after being inductively heated, more typically less than about 1 minute after being inductively heated, and yet more typically less than about 30 seconds after being inductively heated; however, other time periods can be used. The spring that was heated and hardened by the process in accordance with the present invention exhibited improved residual stress rates as compared to springs that were heated in a traditional heating oven.

    [0016] One or more additional process steps can be used for form the arcuate spring of the present invention. Such optional additional steps include:
    1. i. Stress relieving the formed spring prior and/or after induction heating.
    2. ii. Shot peening the spring one or more times prior and/or after induction heating.
    3. iii. Pre-heating the spring prior to induction heating.
    4. iv. Grinding the ends of the spring prior and/or after induction heating.
    5. v. Attaching an end cap to one or more ends of spring with or without the grinding of the ends of the spring.


    [0017] A non-limiting object of the present invention is to provide an arcuate spring having a plurality of coils which are configured and dimensioned to provide an arcuate shape to the spring and being substantially free of internal stresses which would tend to urge the coils into linear alignment.

    [0018] Another and/or alternative non-limiting object of the present invention is to provide an arcuate spring having a plurality of coils which are configured and dimensioned to provide an arcuate shape to the spring and having an end cap connected to one or more ends of the spring with or without the grinding of the ends of the spring.

    [0019] Still another and/or alternative non-limiting object of the present invention is to provide an arcuate spring that may or may be formed by the use of induction heat treatment.

    [0020] Yet another and/or alternative non-limiting object of the present invention is to provide an arcuate spring having increased fatigue life and better material properties due to induction heat treatment.

    [0021] These and other objects and advantages will become apparent to those skilled in the art upon the reading and following of this description taken together with the accompanying drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0022] Reference may now be made to the drawings, which illustrates non-limiting embodiments of the present invention;

    FIG. 1 is an iso view of the arcuate spring in accordance with the present invention;

    FIG. 2 is a front view of the arcuate spring of FIG. 1;

    FIG. 3 is a cross-sectional view along lines 3-3 of FIG. 2; and,

    FIG. 4 is a cross-sectional view along lines 4-4 of FIG. 2;

    FIG. 5 is a front elevation view of a spring fixture in accordance with the present invention;

    FIG. 6 is a front elevation view of an end cap in accordance with the present invention;

    FIG. 7 is a top view of the end cap of FIG. 6; and,

    FIGS. 8-15 are side views of several non-limiting arcuate shaped springs in accordance with the present invention.


    DESCRIPTION OF NON-LIMITING EMBODIMENTS



    [0023] Referring now to FIGS. 1-15, which illustrate non-limiting embodiments of the present invention, there is provided an arcuate spring and method for manufacturing the arcuate spring. The arcuate spring can be used in a variety of different application. One non-limiting application is the use of the arcuate spring in a torsional vibration damper assembly as illustrated in US 5,052,664. The operation of the torsional vibration damper assembly with the arcuate helical spring will be smoother than the operation of a torsional vibration damper assembly which utilizes forcibly bowed straight springs. A forcibly bowed straight spring is constantly experiencing internal stresses which tend to straighten the spring. Thus, the forcibly bowed straight spring rubs against and interferes with the sides of torsional vibration damper assembly, thus inhibiting smooth operation. The arcuate spring when used on a torsional vibration damper assembly will also provide improved attenuation or damping of spring vibrations than the conventional vibration damper which utilizes straight springs for the same reasons as specified above. In addition, the compression of the arcuate spring to a "solid" configuration, i.e., where each coil contacts each adjacent coil, operates as a stop in the system independently of the use of other means. Undesirable stressing in the arcuate helical spring will also be avoided due to the spring's arcuate shape, and by use of induction heating of the spring during the forming process of the spring, thereby improving the efficient use of the vibration damper assembly. A straight spring forcibly bowed upon assembly experiences stresses due to the unnatural installation that are opposite in direction to the stresses which arise in the spring through use in the torsional vibration damper assembly. Springs installed in this manner experience stresses in one direction with the unit at rest. As torque is applied to the unit and increased, the springs deflect until at a point where these stresses diminish to zero. Further loading and deflection results in these stresses increasing in the opposite direction. This bi-directional stressing reduces the stress allowable to avoid excessive relaxation or breakage that can be experienced by the spring in service. In contrast, the body of the arcuate spring will experience only normal uni-directional stressing because the arcuate spring is received in the housing in its natural arcuate state. Thus, the arcuate spring will not be overly stressed, thereby increasing the useful capacity and service life of the vibration damper assembly. The durability of the vibration damper assembly can also be increased due to the reduction in the number of springs required for operation. Spring ends have historically been subject to bending fatigue breakage near the tips of the ground end coils. The present invention avoids the past need to grind the ends of the spring when the novel end caps of the present invention are used. In conventional torsional vibration damper assemblies, a plurality of straight springs are employed, thereby increasing the number of ground ends and providing greater opportunities for failure. However, since a single arcuate spring may replace a plurality of shorter straight springs, the number of spring ends is reduced. Also, those remaining spring ends may be reinforced by making use of the saved space that results from the minimization of components in the damper. Thus, the number of potential failure locations is reduced and the life and durability of the assembly can be increased by use of the arcuate spring.

    [0024] Referring now to FIGS. 1-4 and 8-15, the arcuate spring 10 of the present invention can be made by various processes. Figs. 1-4 and 15 illustrate an arc shaped spring and Figs. 8-14 illustrate types of S-shaped springs (Figs. 8-9 & 14), a C-shaped spring (Figs. 10 & 13) a U-shaped spring (Fig. 11) and a wave-shaped spring (Fig. 12). The solid lines through the springs illustrated in Figs. 8-11 are merely is a line along the central axis of the spring to illustrate the shape of the spring and does not represent any type of structure of the spring. As can be appreciated, the spring in accordance with the present invention can have other shapes that include an arcuate shape. In one non-limiting method, a conventionally coiled straight spring is formed by traditional helical spring manufacturing techniques. Such techniques include beginning with annealed or pre-hardened and tempered material of any required cross section. Current materials that can be used include, but are not limited to, 1070, 6150, modified 6150, and 9254 steels, as processed into suitable quality spring wire. Generally, round cross-section, pre-hardened and tempered (Rc 45-55) 6150 steel can be used. As can be appreciated, other materials can be used. As can also be appreciated, the material need not be annealed, pre-hardened and/or tempered. As can further be appreciated, the material can have different Rc values.

    [0025] After the spring is formed in a straight helical shape, the spring is then heat treated by an induction heating process. For example, in the case of pre-hardened and tempered 6150 steel, the heat treatment by induction heating would be less than about 1 minute and the metal would be heated to at least about 700F (370°C). Any standard induction heating process can be used.

    [0026] After the spring is inductively heated, the straight helical spring is bent and forced into an arc by use of a fixture. Any type of fixture can be used. Generally the fixture is formed of metal material and/or a ceramic material; however, other or additional materials can be used. One non-limiting fixture arrangement is illustrated in FIG. 5. The fixture arrangement 20 includes a clamping arrangement having two arcuate profile surfaces 30, 40 that are positioned on opposite sides of the spring 10. As such, when the two arcuate profile surfaces of the clamping arrangement are drawn together while the straight spring is positioned between the two arcuate profile surfaces, the two arcuate profile surfaces upon contact with the sides of the spring will cause the spring to bend into the desired arcuate shape. The materials used to the form the two arcuate profile surfaces is non-limiting. For example, when an S-shaped spring (See Figs. 8-9 &14) is to be formed, the two arcuate profile surfaces can have an S-shape profile. The two arcuate profile surfaces can also have shapes for forming C-shaped spring (See Figs. 10 & 13), U-shaped springs (See Fig. 11), wave-shaped springs (Fig. 12), etc. Generally the radius of curvature of arcuate profile surface 40 that contacts a first side of the spring is greater than the radius of curvature of the arcuate profile surface 30 that contacts the opposite side of the spring. Arcuate profile surface 30 is illustrated as being mounted in a fixed position by mounts 32, 34; however, this is not required. Arcuate profile surface 40 is illustrated as being moveable by arms 42, 44 between a clamped and unclamped position; however, this is not required. As can be appreciated, either or both arcuate profile surfaces can be designed to be movable. As can be appreciated, the fixture can have other forms. For example, the fixture can include the use of a close-fitting curved rod or pin of a different free angle and arc radius than the desired free angle and arc radius of the finished arcuate spring. This close-fitting curved rod or pin is inserted into the spring. As can be appreciated, other fixtures can be used to cause the spring to be bent into a desired arc prior to the heating process (e.g., bowed or curved tube, die, drum or mandrel about which the spring, etc.).

    [0027] After the heated spring is formed into the arcuate shaped by the fixture, the heated spring is quenched (e.g., air and/or liquid quench) to a temperature of about ±150°F (83°C) of ambient temperature, and typically about ±30°F (17°C) of ambient temperature in less than about 3 minutes, typically less than about 2 minutes, and more typically less than about 1 minute; however, other quench times can be used. If the quench fluid is a liquid, the liquid can be water at about ambient temperature; however, other water temperatures can be used. The quenching process generally occurs within about 120 seconds (e.g., ≥60 seconds; ≥30 seconds, etc.) after the spring is formed in the fixture and/or after induction heating process has been completed. The water, when used, can include a soluble oil and/or other type of polymer material; however, this is not required. After the quenching process is completed, the spring is removed from the fixture (e.g., the two arcuate profile surfaces are again separated from one another, rod removed, etc.), at which time the spring retains an arcuate configuration, free or substantially of any internal stresses which would tend to straighten the spring. In one non-limiting process, the step of induction heating is less than about 5 minutes (e.g., 0.1-3 minutes, 0.1-2 minutes, 0.1-1 minute, etc.), the step of bending the heated spring in the fixture is completed in less than about 5 minutes (e.g., 0.01-2 minutes, 0.01-1 minutes, 0.01-0.5 minute, etc.) after the step of induction heating, and the step of quenching the heated spring is completed in less than about 5 minutes (e.g., 0.1-3 minutes, 0.1-2 minutes, 0.1-1 minute, etc.) after the bending said heated spring in said fixture.

    [0028] One or more ends of the spring can be optionally ground prior to and/or after the induction heating process; however, this is not required. The grinding step can be eliminated by the use of the end caps 50 as illustrated in FIGS. 6-7. The end cap includes a base portion 70 and a nose 60. The nose is designed to be at least partially inserted into the interior of the spring coils. The base portion has a generally circular cross-sectional shape; however, the base portion can have other shapes. The cross-section size and shape of the base portion is generally selected such that the base portion cannot be fully inserted into the interior of the spring coils; however, this is not required. The thickness of the base portion is non-limiting. The nose portion 60 is illustrated as having a non-uniform cross-sectional size; however, this is not required. The nose portion is illustrated has having a generally circular cross-sectional shape; however, the nose portion can have other shapes. The nose portion has an upper nose portion 62 and a lower nose portion 64; however, this is not required. The top section of the upper nose portion can optionally include a taper 61. The upper nose portion 62 is illustrated as having a smaller cross-sectional size than lower nose portion 64. Generally lower nose portion 64 has a cross-section size and shape such that the lower nose portion 64 engages the inner surfaces of the interior of the spring coils so as to facilitate in secure the end cap to the spring; however, this is not required. A transition 65 can optionally be formed between the upper nose portion 62 and a lower nose portion 64. The transition, when used, can optionally have a tapered or sloped form. The upper surface of the base portion optionally includes a threading lip 72 and/or a stop 68. The threading lip, when used, can have a narrow front portion as illustrated in FIG. 7 which is designed to engage the inner surfaces of the interior of the spring coils so that the end cap can be threaded into the spring; however, this is not required. The stop, when used, is designed to limit the further threading of the end cap onto the spring. As the end cap is threaded onto the spring, the end 12 of the spring will engage the stop and thereby prevent further threading of the end cap into the spring. The threading lip is illustrated as increasing in thickness from the narrow front portion to the stop 68 as illustrated in FIG. 6. The end cap can be formed of any type of material. The end cap, when used, can be used to extend the life of the spring by protecting the ends of the spring. When the ends of the spring are not properly ground, undesired stresses can be applied to the spring ends during use of the spring, thereby cause premature failure of the spring. The use of the end caps on the spring can reduce or eliminate such undesired stresses on the ends of the spring and therefore extend the usable life of the spring.

    [0029] One or more additional process steps can be used for form the arcuate spring of the present invention. Such optional additional steps include:
    1. i. Stress relieving the formed spring prior and/or after induction heating.
    2. ii. Shot peening the spring one or more times prior and/or after induction heating.
    3. iii. Pre-heating the spring prior to induction heating.


    [0030] It will thus be seen that the objects set forth above, among those made apparent from the preceding description, are efficiently attained, and since certain changes may be made in the constructions set forth without departing from the spirit and scope of the invention as defined in the claims, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense. The invention has been described with reference to preferred and alternate embodiments. Modifications and alterations will become apparent to those skilled in the art upon reading and understanding the detailed discussion of the invention provided herein. This invention is intended to include all such modifications and alterations insofar as they come within the scope of the present invention. It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described and all statements of the scope of the invention, which, as a matter of language, might be said to fall therebetween.


    Claims

    1. An arcuate spring (10) having a longitudinal length, a plurality of spring coils and a central axis that passes through said plurality of spring coils, said spring configured and dimensioned to provide an arcuate shape, at least a portion of said spring includes an arc-shape, a S-shape, a C-shape, a wave-shape or a U-shape, said central axis along said longitudinal length of said spring is a non-straight axis while said spring is in its free state and being substantially free of internal stresses, said spring including first and second ends, said first end including an end cap (50) that is connected to said first end, said second end including an end cap (50) that is connected to said second end, each of said end caps (50) including a base portion (70) and a nose (60), said nose (60) configured to be at least partially inserted into an interior of said spring coils, said base portion (70) having a cross-section size and shape such that said base portion (70) cannot be fully inserted into said interior of said spring coils (10), said nose (60) and said base portion (70) of said end cap (50) having a generally circular cross-sectional shape,
    characterized in that said nose (60) has a non-uniform cross-sectional size along a longitudinal length of said nose (60), said nose (60) having an upper nose portion (62) that has a smaller cross-sectional size than a lower nose portion (64), said lower nose portion (64) positioned closer to said base portion (70) than said upper nose portion (62), said lower nose portion (64) connected to said upper nose portion (62), said upper nose portion (62) having a smaller cross-sectional area than a cross-sectional area of said lower nose portion (64), said upper surface of said base portion (70) includes a threading lip (72) and a stop (68), said threading lip (72) configured to engage said inner surface of said spring coils so that said end cap (50) can be threaded into said spring (10), said stop (68) configured to limit further threading of said end cap (50) onto said spring (10), said threading lip (72) increasing in thickness from the narrow front portion to the stop (68).
     
    2. The arcuate spring as defined in claim 1, wherein an upper region of said upper nose portion (62) includes a taper (61).
     
    3. The arcuate spring as defined in claim 1 or 2, wherein a sloped transition exists between said upper nose portion (62) and said lower nose portion (64).
     
    4. A method for forming an arcuate spring (10) having a longitudinal length, a plurality of spring coils and a central axis that passes through said plurality of spring coils, comprising the steps of:

    a. Coiling a wire to form a non-arcuate spring;

    b. Heating said non-arcuate spring by induction heating prior to bending said non-arcuate spring in a fixture;

    c. Bending said heated spring in said fixture; and,

    d. Quenching said heated spring;
    wherein said spring is configured and dimensioned to provide an arcuate shape, at least a portion of said spring includes an arc-shape, a S-shape, a C-shape, a wave-shape or a U-shape, said central axis along said longitudinal length of said spring is a non-straight axis while said spring is in its free state and being substantially free of internal stresses, said spring including first and second ends, said first end including an end cap (50) that is connected to said first end, said second end including an end cap (50) that is connected to said second end, each of said end caps (50) including a base portion (70) and a nose (60), said nose (60) configured to be at least partially inserted into an interior of said spring coils, said base portion (70) having a cross-section size and shape such that said base portion (70) cannot be fully inserted into said interior of said spring coils (10), said nose (60) and said base portion (70) of said end cap (50) having a generally circular cross-sectional shape,
    characterized in that said nose (60) has a non-uniform cross-sectional size along a longitudinal length of said nose (60), said nose (60) having an upper nose portion (62) that has a smaller cross-sectional size than a lower nose portion (64), said lower nose portion (64) positioned closer to said base portion (70) than said upper nose portion (62), said lower nose portion (64) connected to said upper nose portion (62), said upper nose portion (62) having a smaller cross-sectional area than a cross-sectional area of said lower nose portion (64), said upper surface of said base portion (70) includes a threading lip (72) and a stop (68), said threading lip (72) configured to engage said inner surface of said spring coils so that said end cap (50) can be threaded into said spring (10), said stop (68) configured to limit further threading of said end cap (50) onto said spring (10), said threading lip (72) increasing in thickness from the narrow front portion to the stop (68).


     
    5. The method as defined in claim 4, including the step of removing said quenched spring from said fixture after said quenching step.
     
    6. The method as defined in claim 4, wherein said step of induction heating is less than about 5 minutes, said step of bending said heated spring in said fixture is completed in less than about 5 minutes after said step of induction heating, said step of quenching said heated spring is completed in less than about 5 minutes after said bending said heated spring in said fixture.
     
    7. The method as defined in claim 5, wherein said step of induction heating is less than about 5 minutes, said step of bending said heated spring in said fixture is completed in less than about 5 minutes after said step of induction heating, said step of quenching said heated spring is completed in less than about 5 minutes after said bending said heated spring in said fixture.
     
    8. The method as defined in claim 4, wherein said fixture includes a clamping arrangement having two arcuate profile surfaces, at least one of said arcuate profile surfaces designed to movable between a clamped and undamped position.
     
    9. The method as defined in one of the claims 5-7, wherein said fixture includes a clamping arrangement having two arcuate profile surfaces, at least one of said arcuate profile surfaces designed to movable between a clamped and undamped position.
     
    10. The method as defined in claim 4, including the step of applying an end cap on at least one end of said spring after said step of quenching, said end cap including a base portion and a nose, said nose designed to be at least partially inserted into an interior of said coils of said spring coils, said base portion cross-section size and shape such that said base portion cannot be fully inserted into said interior of said spring coils.
     
    11. The method as defined in one of the claims 5-9, including the step of applying an end cap on at least one end of said spring after said step of quenching, said end cap including a base portion and a nose, said nose designed to be at least partially inserted into an interior of said coils of said spring coils, said base portion cross-section size and shape such that said base portion cannot be fully inserted into said interior of said spring coils.
     
    12. The method as defined in claim 10, wherein said upper surface of said base portion includes a threading lip and a stop, said threading lip designed to engage said inner surface of said spring coils so that said end cap can be threaded into the spring, said stop designed to limit further threading of said end cap onto said spring.
     
    13. The method as defined in claim 11, wherein said upper surface of said base portion includes a threading lip and a stop, said threading lip designed to engage said inner surface of said spring coils so that said end cap can be threaded into the spring, said stop designed to limit further threading of said end cap onto said spring.
     


    Ansprüche

    1. Bogenförmige Feder (10), die eine Länge in einer Längsrichtung, mehrere Federwindungen und eine Mittelachse, die durch die mehreren Federwindungen hindurch verläuft, enthält, wobei die Feder so konfiguriert und bemessen ist, dass sie eine Bogenform bildet, wobei mindestens ein Abschnitt der Feder eine Bogenform, eine S-Form, eine C-Form, eine Wellenform oder eine U-Form enthält, wobei die Mittelachse entlang der Länge in Längsrichtung der Feder eine nicht-gerade Achse ist, während sich die Feder in ihrem freien Zustand befindet und im Wesentlichen frei von inneren Spannungen ist, wobei die Feder ein erstes und ein zweites Ende enthält, wobei das erste Ende eine Endkappe (50) enthält, die mit dem ersten Ende verbunden ist, wobei das zweite Ende eine Endkappe (50) enthält, die mit dem zweiten Ende verbunden ist, wobei jede der Endkappen (50) einen Basisabschnitt (70) und eine Nase (60) enthält, wobei die Nase (60) so konfiguriert ist, dass sie mindestens teilweise in ein Inneres der Federwindungen eingeführt werden kann, wobei der Basisabschnitt (70) eine solche Querschnittsgröße und Form aufweist, dass der Basisabschnitt (70) nicht vollständig in das Innere der Federwindungen (10) eingeführt werden kann, wobei die Nase (60) und der Basisabschnitt (70) der Endkappe (50) eine allgemein kreisförmige Querschnittsform aufweisen,
    dadurch gekennzeichnet, dass die Nase (60) eine ungleichmäßige Querschnittsgröße entlang einer Länge in Längsrichtung der Nase (60) hat, wobei die Nase (60) einen oberen Nasenabschnitt (62) hat, der eine kleinere Querschnittsgröße hat als ein unterer Nasenabschnitt (64), wobei der untere Nasenabschnitt (64) näher an dem Basisabschnitt (70) positioniert ist als der obere Nasenabschnitt (62), wobei der untere Nasenabschnitt (64) mit dem oberen Nasenabschnitt (62) verbunden ist, wobei der obere Nasenabschnitt (62) eine kleinere Querschnittsfläche hat als eine Querschnittsfläche des unteren Nasenabschnitts (64), wobei die Oberseite des Basisabschnitts (70) eine Gewindelippe (72) und einen Endanschlag (68) enthält, wobei die Gewindelippe (72) so konfiguriert ist, dass sie die Innenfläche der Federwindungen in Eingriff nimmt, so dass die Endkappe (50) in die Feder (10) geschraubt werden kann, wobei der Endanschlag (68) so konfiguriert ist, dass er ein weiteres Aufschrauben der Endkappe (50) auf die Feder (10) begrenzt, wobei die Dicke der Gewindelippe (72) von dem schmalen vorderen Abschnitt bis zu dem Endanschlag (68) zunimmt.
     
    2. Bogenförmige Feder nach Anspruch 1, wobei eine obere Region des oberen Nasenabschnitts (62) eine Verjüngung (61) enthält.
     
    3. Bogenförmige Feder nach Anspruch 1 oder 2, wobei ein schräger Übergang zwischen dem oberen Nasenabschnitt (62) und dem unteren Nasenabschnitt (64) vorhanden ist.
     
    4. Verfahren zum Bilden einer bogenförmigen Feder (10), die eine Länge in einer Längsrichtung, mehrere Federwindungen und eine Mittelachse, die durch die mehreren Federwindungen hindurch verläuft, aufweist, und das folgende Schritte umfasst:

    a. Wickeln eines Drahtes, um eine nicht-bogenförmige Feder zu bilden;

    b. Erwärmen der nicht-bogenförmigen Feder durch Induktionserwärmung vor dem Biegen der nicht-bogenförmigen Feder in einer Aufspannvorrichtung;

    c. Biegen der erwärmten Feder in der Aufspannvorrichtung; und

    d. Abschrecken der erwärmten Feder;
    wobei die Feder so konfiguriert und bemessen ist, dass sie eine Bogenform bildet, wobei mindestens ein Abschnitt der Feder eine Bogenform, eine S-Form, eine C-Form, eine Wellenform oder eine U-Form enthält, wobei die Mittelachse entlang der Länge in Längsrichtung der Feder eine nicht-gerade Achse ist,
    während sich die Feder in ihrem freien Zustand befindet und im Wesentlichen frei von inneren Spannungen ist, wobei die Feder ein erstes und ein zweites Ende enthält, wobei das erste Ende eine Endkappe (50) enthält, die mit dem ersten Ende verbunden ist, wobei das zweite Ende eine Endkappe (50) enthält, die mit dem zweiten Ende verbunden ist, wobei jede der Endkappen (50) einen Basisabschnitt (70) und eine Nase (60) enthält, wobei die Nase (60) so konfiguriert ist, dass sie mindestens teilweise in ein Inneres der Federwindungen eingeführt werden kann,
    wobei der Basisabschnitt (70) eine solche Querschnittsgröße und Form aufweist, dass der Basisabschnitt (70) nicht vollständig in das Innere der Federwindungen (10) eingeführt werden kann, wobei die Nase (60) und der Basisabschnitt (70) der Endkappe (50) eine allgemein kreisförmige Querschnittsform aufweisen,
    dadurch gekennzeichnet, dass die Nase (60) eine ungleichmäßige Querschnittsgröße entlang einer Länge in Längsrichtung der Nase (60) hat, wobei die Nase (60) einen oberen Nasenabschnitt (62) hat, der eine kleinere Querschnittsgröße hat als ein unterer Nasenabschnitt (64), wobei der untere Nasenabschnitt (64) näher an dem Basisabschnitt (70) positioniert ist als der obere Nasenabschnitt (62), wobei der untere Nasenabschnitt (64) mit dem oberen Nasenabschnitt (62) verbunden ist, wobei der obere Nasenabschnitt (62) eine kleinere Querschnittsfläche hat als eine Querschnittsfläche des unteren Nasenabschnitts (64), wobei die Oberseite des Basisabschnitts (70) eine Gewindelippe (72) und einen Endanschlag (68) enthält, wobei die Gewindelippe (72) so konfiguriert ist, dass sie die Innenfläche der Federwindungen in Eingriff nimmt, so dass die Endkappe (50) in die Feder (10) geschraubt werden kann, wobei der Endanschlag (68) so konfiguriert ist, dass er ein weiteres Aufschrauben der Endkappe (50) auf die Feder (10) begrenzt, wobei die Dicke der Gewindelippe (72) von dem schmalen vorderen Abschnitt bis zu dem Endanschlag (68) zunimmt.


     
    5. Verfahren nach Anspruch 4, das den Schritt des Entfernens der abgeschreckten Feder aus der Aufspannvorrichtung nach dem Abschreckungsschritt enthält.
     
    6. Verfahren nach Anspruch 4, wobei der Schritt der Induktionserwärmung weniger als etwa 5 Minuten dauert, der Schritt des Biegens der erwärmten Feder in der Aufspannvorrichtung in weniger als etwa 5 Minuten nach dem Schritt der Induktionserwärmung abgeschlossen ist, und der Schritt des Abschreckens der erwärmten Feder in weniger als etwa 5 Minuten nach dem Biegen der erwärmten Feder in der Aufspannvorrichtung abgeschlossen ist.
     
    7. Verfahren nach Anspruch 5, wobei der Schritt der Induktionserwärmung weniger als etwa 5 Minuten dauert, der Schritt des Biegens der erwärmten Feder in der Aufspannvorrichtung in weniger als etwa 5 Minuten nach dem Schritt der Induktionserwärmung abgeschlossen ist, und der Schritt des Abschreckens der erwärmten Feder in weniger als etwa 5 Minuten nach dem Biegen der erwärmten Feder in der Aufspannvorrichtung abgeschlossen ist.
     
    8. Verfahren nach Anspruch 4, wobei die Aufspannvorrichtung eine Klemmanordnung enthält, die zwei bogenförmige Profilflächen aufweist, wobei mindestens eine der bogenförmigen Profilflächen so gestaltet ist, dass sie zwischen einer festgeklemmten und einer ungedämpften Position beweglich ist.
     
    9. Verfahren nach einem der Ansprüche 5-7, wobei die Aufspannvorrichtung eine Klemmanordnung enthält, die zwei bogenförmige Profilflächen aufweist, wobei mindestens eine der bogenförmigen Profilflächen so gestaltet ist, dass sie zwischen einer festgeklemmten und einer ungedämpften Position beweglich ist.
     
    10. Verfahren nach Anspruch 4, das den Schritt des Anbringens einer Endkappe an mindestens einem Ende der Feder nach dem Schritt des Abschreckens enthält, wobei die Endkappe einen Basisabschnitt und eine Nase enthält, wobei die Nase so gestaltet ist, dass sie mindestens teilweise in ein Inneres der Windungen der Federwindungen eingeführt werden kann, wobei Querschnittsgröße und Form des Basisabschnitts so gewählt sind, dass der Basisabschnitt nicht vollständig in das Innere der Federwindungen eingeführt werden kann.
     
    11. Verfahren nach einem der Ansprüche 5-9, das den Schritt des Anbringens einer Endkappe an mindestens einem Ende der Feder nach dem Schritt des Abschreckens enthält, wobei die Endkappe einen Basisabschnitt und eine Nase enthält, wobei die Nase so gestaltet ist, dass sie mindestens teilweise in ein Inneres der Windungen der Federwindungen eingeführt werden kann, wobei Querschnittsgröße und Form des Basisabschnitts so gewählt sind, dass der Basisabschnitt nicht vollständig in das Innere der Federwindungen eingeführt werden kann.
     
    12. Verfahren nach Anspruch 10, wobei die Oberseite des Basisabschnitts eine Gewindelippe und einen Endanschlag enthält, wobei die Gewindelippe so gestaltet ist, dass sie die Innenfläche der Federwindungen in Eingriff nimmt, so dass die Endkappe in die Feder eingeschraubt werden kann, wobei der Endanschlag so gestaltet ist, dass er ein weiteres Aufschrauben der Endkappe auf die Feder begrenzt.
     
    13. Verfahren nach Anspruch 11, wobei die Oberseite des Basisabschnitts eine Gewindelippe und einen Endanschlag enthält, wobei die Gewindelippe so gestaltet ist, dass sie die Innenfläche der Federwindungen in Eingriff nimmt, so dass die Endkappe in die Feder eingeschraubt werden kann, wobei der Endanschlag so gestaltet ist, dass er ein weiteres Aufschrauben der Endkappe auf die Feder begrenzt.
     


    Revendications

    1. Ressort arqué (10) ayant une longueur longitudinale, une pluralité de spires de ressort et un axe central qui passe à travers ladite pluralité de spires de ressort, ledit ressort étant configuré et dimensionné pour fournir une forme arquée, au moins une portion dudit ressort inclut une forme d'arc, une forme de S, une forme de C, une forme d'onde ou une forme de U, ledit axe central le long de ladite longueur longitudinale dudit ressort est un axe non droit pendant que ledit ressort est dans son état libre et est sensiblement dépourvu de contraintes internes, ledit ressort incluant des première et deuxième extrémités, la première extrémité incluant un capuchon d'extrémité (50) qui est relié à ladite première extrémité, ladite deuxième extrémité incluant un capuchon d'extrémité (50) qui est relié à ladite deuxième extrémité, chacun desdits capuchons d'extrémité (50) incluant une portion de base (70) et un nez (60), ledit nez (60) étant configuré pour être au moins partiellement inséré dans un intérieur desdites spires de ressort, ladite portion de base (70) ayant une taille et une forme en coupe transversale telles que ladite portion de base (70) ne peut pas être complètement insérée dans ledit intérieur desdites spires de ressort (10), ledit nez (60) et ladite portion de base (70) dudit capuchon d'extrémité (50) ayant une forme en coupe transversale généralement circulaire,
    caractérisé en ce que ledit nez (60) a une taille en coupe transversale non uniforme le long d'une longueur longitudinale dudit nez (60), ledit nez (60) ayant une portion de nez supérieure (62) de taille en coupe transversale plus petite que celle d'une portion de nez inférieure (64), ladite portion de nez inférieure (64) étant positionnée plus près de ladite portion de base (70) que ladite portion de nez supérieure (62), ladite portion de nez inférieure (64) étant reliée à ladite portion de nez supérieure (62), ladite portion de nez supérieure (62) ayant une aire en coupe transversale plus petite qu'une aire en coupe transversale de ladite portion de nez inférieure (64), ladite surface supérieure de ladite portion de base (70) inclut une lèvre de vissage (72) et une butée (68), ladite lèvre de vissage (72) étant configurée pour se mettre en prise avec ladite surface intérieure desdites spires de ressort de sorte que ledit capuchon d'extrémité (50) puisse être vissé dans ledit ressort (10), ladite butée (68) étant configurée pour limiter la poursuite du vissage dudit capuchon d'extrémité (50) sur ledit ressort (10), ladite lèvre de vissage (72) augmentant en épaisseur depuis la portion avant étroite jusqu'à la butée (68).
     
    2. Ressort arqué selon la revendication 1, dans lequel une région supérieure de ladite portion de nez supérieure (62) inclut un effilement (61).
     
    3. Ressort arqué selon la revendication 1 ou 2, dans lequel il existe une transition inclinée entre ladite portion de nez supérieure (62) et ladite portion de nez inférieure (64).
     
    4. Procédé de formation d'un ressort arqué (10) ayant une longueur longitudinale, une pluralité de spires de ressort et un axe central qui passe à travers ladite pluralité de spires de ressort, comprenant les étapes de :

    a. l'enroulement d'un fil pour former un ressort non arqué ;

    b. le chauffage dudit ressort non arqué par chauffage à induction avant de plier ledit ressort non arqué dans une fixation ;

    c. le pliage dudit ressort chauffé dans ladite fixation ; et

    d. la trempe dudit ressort chauffé ;
    dans lequel ledit ressort est configuré et dimensionné pour fournir une forme arquée, au moins une portion dudit ressort inclut une forme d'arc, une forme de S, une forme de C, une forme d'onde ou une forme de U, ledit axe central le long de ladite longueur longitudinale dudit ressort est un axe non droit pendant que ledit ressort est dans son état libre et est sensiblement dépourvu de contraintes internes, ledit ressort incluant des première et deuxième extrémités, la première extrémité incluant un capuchon d'extrémité (50) qui est relié à ladite première extrémité, ladite deuxième extrémité incluant un capuchon d'extrémité (50) qui est relié à ladite deuxième extrémité, chacun desdits capuchons d'extrémité (50) incluant une portion de base (70) et un nez (60), ledit nez (60) étant configuré pour être au moins partiellement inséré dans un intérieur desdites spires de ressort, ladite portion de base (70) ayant une taille et une forme en coupe transversale telles que ladite portion de base (70) ne peut pas être complètement insérée dans ledit intérieur desdites spires de ressort (10), ledit nez (60) et ladite portion de base (70) dudit capuchon d'extrémité (50) ayant une forme en coupe transversale généralement circulaire,
    caractérisé en ce que ledit nez (60) a une taille en coupe transversale non uniforme le long d'une longueur longitudinale dudit nez (60), ledit nez (60) ayant une portion de nez supérieure (62) de taille en coupe transversale plus petite que celle d'une portion de nez inférieure (64), ladite portion de nez inférieure (64) étant positionnée plus près de ladite portion de base (70) que ladite portion de nez supérieure (62), ladite portion de nez inférieure (64) étant reliée à ladite portion de nez supérieure (62), ladite portion de nez supérieure (62) ayant une aire en coupe transversale plus petite qu'une aire en coupe transversale de ladite portion de nez inférieure (64), ladite surface supérieure de ladite portion de base (70) inclut une lèvre de vissage (72) et une butée (68), ladite lèvre de vissage (72) étant configurée pour se mettre en prise avec ladite surface intérieure desdites spires de ressort de sorte que ledit capuchon d'extrémité (50) puisse être vissé dans ledit ressort (10), ladite butée (68) étant configurée pour limiter la poursuite du vissage dudit capuchon d'extrémité (50) sur ledit ressort (10), ladite lèvre de vissage (72) augmentant en épaisseur depuis la portion avant étroite jusqu'à la butée (68).


     
    5. Procédé selon la revendication 4, incluant l'étape du retrait dudit ressort trempé de ladite fixation après ladite étape de trempe.
     
    6. Procédé selon la revendication 4, dans lequel ladite étape de chauffage à induction est inférieure à environ 5 minutes, ladite étape de pliage dudit ressort chauffé dans ladite fixation est réalisée en moins d'environ 5 minutes après ladite étape de chauffage à induction, ladite étape de trempe dudit ressort chauffé est réalisée en moins d'environ 5 minutes après ledit pliage dudit ressort chauffé dans ladite fixation.
     
    7. Procédé selon la revendication 5, dans lequel ladite étape de chauffage à induction est inférieure à environ 5 minutes, ladite étape de pliage dudit ressort chauffé dans ladite fixation est réalisée en moins d'environ 5 minutes après ladite étape de chauffage à induction, ladite étape de trempe dudit ressort chauffé est réalisée en moins d'environ 5 minutes après ledit pliage dudit ressort chauffé dans ladite fixation.
     
    8. Procédé selon la revendication 4, dans lequel ladite fixation inclut un agencement de serrage ayant deux surfaces de profil arqué, au moins l'une desdites surfaces de profil arqué étant conçue pour se déplacer entre une position serrée et une position desserrée.
     
    9. Procédé selon l'une des revendications 5 à 7, dans lequel ladite fixation inclut un agencement de serrage ayant deux surfaces de profil arqué, au moins l'une desdites surfaces de profil arqué étant conçue pour se déplacer entre une position serrée et une position desserrée.
     
    10. Procédé selon la revendication 4, incluant l'étape de l'application d'un capuchon d'extrémité sur au moins une extrémité dudit ressort après ladite étape de trempe, ledit capuchon d'extrémité incluant une portion de base et un nez, ledit nez étant conçu pour être au moins partiellement inséré dans un intérieur desdites spires desdites spires de ressort, ladite taille et ladite forme en coupe transversale de portion de base étant telles que ladite portion de base ne peut pas être complètement insérée dans ledit intérieur des spires de ressort.
     
    11. Procédé selon l'une des revendications 5 à 9, incluant l'étape de l'application d'un capuchon d'extrémité sur au moins une extrémité dudit ressort après ladite étape de trempe, ledit capuchon d'extrémité incluant une portion de base et un nez, ledit nez étant conçu pour être au moins partiellement inséré dans un intérieur desdites spires desdites spires de ressort, ladite taille et ladite forme en coupe transversale de portion de base étant telles que ladite portion de base ne peut pas être complètement insérée dans ledit intérieur des spires de ressort.
     
    12. Procédé selon la revendication 10, dans lequel ladite surface supérieure de ladite portion de base inclut une lèvre de vissage et une butée, ladite lèvre de vissage étant conçue pour se mettre en prise avec ladite surface intérieure desdites spires de ressort de sorte que ledit capuchon d'extrémité puisse être vissé dans le ressort, ladite butée étant conçue pour limiter la poursuite du vissage dudit capuchon d'extrémité sur ledit ressort.
     
    13. Procédé selon la revendication 11, dans lequel ladite surface supérieure de ladite portion de base inclut une lèvre de vissage et une butée, ladite lèvre de vissage étant conçue pour se mettre en prise avec ladite surface intérieure desdites spires de ressort de sorte que ledit capuchon d'extrémité puisse être vissé dans le ressort, ladite butée étant conçue pour limiter la poursuite du vissage dudit capuchon d'extrémité sur ledit ressort.
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description