(19)
(11)EP 2 876 993 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
31.05.2017 Bulletin 2017/22

(21)Application number: 13823843.1

(22)Date of filing:  25.07.2013
(51)International Patent Classification (IPC): 
A01C 7/10(2006.01)
A01C 7/20(2006.01)
A01M 9/00(2006.01)
A01C 7/04(2006.01)
A01C 21/00(2006.01)
(86)International application number:
PCT/US2013/051971
(87)International publication number:
WO 2014/018717 (30.01.2014 Gazette  2014/05)

(54)

SYSTEM AND METHOD FOR MULTI-ROW AGRICULTURAL IMPLEMENT CONTROL AND MONITORING

SYSTEM UND VERFAHREN ZUR STEUERUNG UND ÜBERWACHUNG EINES MEHRREIHIGEN LANDWIRTSCHAFTLICHEN INSTRUMENTS

SYSTÈME ET PROCÉDÉ DE COMMANDE ET DE SURVEILLANCE DE MACHINE AGRICOLE MULTIRANGS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 25.07.2012 US 201261675714 P

(43)Date of publication of application:
03.06.2015 Bulletin 2015/23

(73)Proprietor: Precision Planting LLC
Tremont, IL 61568 (US)

(72)Inventors:
  • BAURER, Phil
    Tremont, IL 61568 (US)
  • SAUDER, Tim
    Tremont, IL 61568 (US)
  • STOLLER, Jason
    Morton, IL 61550 (US)
  • SAUDER, Derek
    Tremont, IL 61568 (US)
  • HODEL, Jeremy
    Morton, IL 61550 (US)

(74)Representative: Lawrence, John 
Barker Brettell LLP 100 Hagley Road Edgbaston
Birmingham B16 8QQ
Birmingham B16 8QQ (GB)


(56)References cited: : 
EP-A1- 2 213 153
US-A1- 2002 099 472
US-A1- 2006 011 647
US-A1- 2006 283 363
US-A- 6 009 354
US-A1- 2003 159 631
US-A1- 2006 011 647
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] As growers in recent years have increasingly incorporated additional sensors and controllers on agricultural implements such as row crop planters, the control and monitoring systems for such implements have grown increasingly complex. Installation and maintenance of such systems have become increasingly difficult. A seed delivery apparatus with a monitoring system is described in EP 2 213 153 A1. Thus there is a need in the art for effective control and monitoring of such systems. In planting implements incorporating seed conveyors, special control and monitoring challenges arise; thus there is also a particular need for effective seed counting and effective incorporation of the seed conveyor into the implement control and monitoring system. The invention proposes to solve this problem by means of a monitoring system according to claim 1 and a method according to claim 8.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0002] 

    FIG. 1 schematically illustrates an embodiment of an electrical control system for controlling and monitoring an agricultural implement having a plurality of rows.

    FIG. 2 schematically illustrates an embodiment of a multi-row control module.

    FIG. 3 schematically illustrates an embodiment of a drive module.

    FIG. 4 schematically illustrates an embodiment of a conveyor module.

    FIG. 5A is a side elevation view of a planter row unit including a seed tube and incorporating an embodiment of an electronic control system.

    FIG. 5B is a side elevation view of a planter row unit including a seed conveyor and incorporating another embodiment of an electronic control system.

    FIG. 6A schematically illustrates another embodiment of an electrical control system including a modular extension at each row.

    FIG. 6B schematically illustrates the electrical control system of FIG. 6A with a conveyor module installed at each row.

    FIG. 7 illustrates an embodiment of a process for transmitting identification and configuration data to a multi-row control module and to a row control module.

    FIG. 8 illustrates an embodiment of a process for controlling a drive module.

    FIG. 9 illustrates an embodiment of a process for controlling a conveyor module.

    FIG. 10A is a perspective view of an embodiment of a seed meter incorporating an embodiment of a drive module.

    FIG. 10B is a perspective view of the seed meter and drive module of FIG 10A with several covers removed for clarity.

    FIG. 11A is a bottom view of the drive module of FIG. 10A.

    FIG. 11B is a side elevation view of the drive module of FIG. 10A.

    FIG. 12A is a bottom view of the drive module of FIG. 10A with two covers and a housing removed for clarity.

    FIG. 12B is a side elevation view of the drive module of FIG. 10A with two covers and a housing removed for clarity.

    FIG. 13A is a front view of the drive module of FIG. 10A.

    FIG. 13B is a rear view of the drive module of FIG. 10A.

    FIG. 14A is a front view of the drive module of FIG. 10A with two covers and a housing removed for clarity.

    FIG. 14B is a rear view of the drive module of FIG. 10A with two covers and a housing removed for clarity.

    FIG. 15 is a perspective view of the drive module of FIG. 10A with two covers and a housing removed for clarity.

    FIG. 16 schematically illustrates another embodiment of an electrical control system for controlling and monitoring an agricultural implement having a plurality of rows.

    FIG. 17 illustrates an embodiment of a process for counting seeds using two optical sensors associated with a seed conveyor.

    FIG. 18 illustrates exemplary signals generated by optical sensors associated with a seed conveyor.

    FIG. 19 illustrates an embodiment of a single-row network.


    DESCRIPTION



    [0003] Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, FIG. 1 schematically illustrates an agricultural implement, e.g., a planter, comprising a toolbar 14 operatively supporting six row units 500. The toolbar 14 is supported by left and right implement wheels 520a,520b and drawn by a tractor 5. A control system 100 includes a monitor 110 preferably mounted in the tractor 5, an implement network 135, and two row networks 130a, 130b.

    [0004] The monitor 110 preferably includes a graphical user interface ("GUI") 112, a memory 114, a central processing unit ("CPU") 116, and a bus node 118. The bus node 118 preferably comprises a controller area network ("CAN") node including a CAN transceiver, a controller, and a processor. The monitor 110 is preferably in electrical communication with a speed sensor 168 (e.g., a radar speed sensor mounted to the tractor 5) and a global positioning receiver ("GPS") receiver 166 mounted to the tractor 5 (or in some embodiments to the toolbar 14).

    [0005] The implement network 135 preferably includes an implement bus 150 and a central processor 120. The central processor 120 is preferably mounted to the toolbar 14. Each bus described herein is preferably a CAN bus included within a harness which connects each module on the bus to power, ground, and bus signal lines (e.g., CAN-Hi and CAN-Lo).

    [0006] The central processor 120 preferably includes a memory 124, a CPU 126, and a bus node 128 (preferably a CAN node including a CAN transceiver, a controller, and a processor). The implement bus 150 preferably comprises a CAN bus. The monitor 110 is preferably in electrical communication with the implement bus 150. The central processor 120 is preferably in electrical communication with wheel speed sensors 164a,164b (e.g., Hall-effect speed sensors) mounted to the left and right implement wheels 520a, 520b, respectively. The central processor 120 is preferably in electrical communication with a gyroscope 162 mounted to the toolbar 14.

    Row Networks - Overview



    [0007] Each row network 130 preferably includes a multi-row control module 200 mounted to one of the row units 500, a row bus 250, three drive modules 300 individually mounted to three row units 500, and three conveyor modules 400 individually mounted to three row units 500 respectively. Each row unit 500 having at least a drive module 300 in a particular row unit network 130 is described herein as being "within" that row network.

    Row Networks - Multi-Row Control Module



    [0008] Turning to FIG. 2, the multi-row control module 200 preferably includes a bus node 202 (preferably a CAN node including a CAN transceiver, a controller, and a processor). The CAN node, specifically the CAN transceiver, is preferably in electrical communication with the row bus 250 and the implement bus 150. The multi-row control module 200 further includes a memory 214 and a processor 204 in electrical communication with a downforce signal conditioning chip 206, a seed sensor auxiliary input 208, a downforce solenoid pulse-width modulation ("PWM") driver 210, and generic auxiliary inputs 212. The auxiliary inputs 212 are preferably configured for electrical communication with sensors including a pressure sensor and a lift switch. The downforce signal conditioning chip 206 is preferably in electrical communication with a downforce sensor 506 on each row unit 500 within the implement network 135. The downforce solenoid PWM driver 210 is preferably in electrical communication with a downforce solenoid 510 on each row unit within the row network 130. In embodiments including a seed tube (described in more detail herein with respect to FIG. 5A), the seed sensor auxiliary input 208 is preferably in electrical communication with a seed sensor 508 (e.g., an optical sensor) on each row unit 500 within the row network 130.

    Row Networks - Drive Module



    [0009] Turning to FIG. 3, the drive module 300 preferably includes circuit board 301, a motor encoder 576, and a meter drive motor 578. The circuit board 301 preferably includes a bus node 302 (preferably a CAN node including a CAN transceiver, a controller, and a processor). The CAN node, specifically the CAN transceiver, is preferably in electrical communication with the row bus 250. The drive module 300 preferably further includes a memory 306 and a processor 304 in electrical communication with a motor encoder signal conditioning chip 316, a motor PWM driver 318, and a motor current signal conditioning chip 314. The motor PWM driver 318 is preferably in electrical communication with a motor 578 for controlling an output speed of the motor 578. The motor encoder signal conditioning chip 316 is preferably in electrical communication with the motor encoder 576, which is preferably configured to generate a signal indicative of driving speed of the motor 570, e.g., by generating a defined number of encoder pulses per motor shaft rotation. The motor current signal conditioning chip 314 is preferably in electrical communication with the motor PWM driver 318 far sampling the actual current driving the motor 578.

    [0010] Referring to FIGs. 10A and 10B, the drive module 300 comprises an electrical assembly 340 and motor 578 shielded by a cover 304 and a gearbox 320 shielded by a cover 302. The drive module 300 is mounted to a seed meter 530. The seed meter is preferably of the type disclosed in Applicant's co-pending international patent application no. PCT/US2012/030192, the disclosure of which is hereby incorporated herein in its entirety by reference. Specifically, the drive module 300 is preferably mounted to a cover 532 shielding a seed disc 534 housed within the meter 530. The gearbox 320 includes an output gear 312 adapted to drive the seed disc 534 by sequential engagement with gear teeth arranged circumferentially around a perimeter of the seed disc 534.

    [0011] Turning to FIGs. 11A and 11B, the drive module 300 further includes a housing 308 to which the covers 302,304 are mounted. The cover 302 preferably includes rubber grommet 305 for introducing electrical leads into the cover 302.

    [0012] Turning to FIGs. 12A, 12B, 14A, 14B, and 15, the gearbox 320 includes an input shaft 325 and input gear 324 driven by the motor 578. The input gear drives a first step-down gear 326 and a second step-down gear 328. The second step-down gear 328 preferably has a smaller diameter than the first step-down gear 326. The second step-down gear 328 is preferably mounted coaxially to the first step-down gear 326, e.g., by press fitting. The second step-down gear 328 preferably drives an intermediate gear 322. The intermediate gear 322 drives the output gear 312 via a shaft 321.

    [0013] Continuing to refer to FIGs. 12A, 12B, 14A, 14B, and 15, the electrical assembly 340 includes the circuit board 301, the motor encoder 576 (preferably including a magnetic encoder disc), and two leads 344a,344b in electrical communication with the motor 578 for driving the motor.

    [0014] Referring to FIGs. 13A and 13B, the drive module 300 preferably includes mounting tabs 382,384,386,388 for mounting the drive module 300 to the seed meter 530 (e.g., by screws adapted to mate with threaded apertures in the cover 532).

    Row Networks - Conveyor Module



    [0015] Turning to FIG. 4, the conveyor module 400 preferably includes a bus node 402 (preferably a CAN node including a CAN transceiver, a controller, and a processor). The CAN node, specifically the CAN transceiver, is preferably in electrical communication with the row bus 250. The conveyor module 400 preferably further includes a memory 406 and a processor 404 in electrical communication with a motor encoder signal conditioning chip 422, a motor PWM driver 448, and signal conditioning chips 432,434. The motor PWM driver 448 is in electrical communication with a conveyor motor 590 mounted to a conveyor 580. In some embodiments, the motor encoder signal conditioning chip 422 is in electrical communication with a motor encoder 597 disposed to measure an operating speed of the conveyor motor 590. The signal conditioning chips 432,434 are preferably in electrical communication with optical sensors 582,584, respectively.

    Implementation on Planter Row Units



    [0016] Referring to FIG. 5A, a planter row unit 500 is illustrated with components of the control system 100 installed. The row unit 500 illustrated in FIG. 5A is one of the row units to which a multi-row control module 200 is mounted.

    [0017] In the row unit 500, a downforce actuator 510 (preferably a hydraulic cylinder) is mounted to the toolbar 14. The downforce actuator 510 is pivotally connected at a lower end to a parallel linkage 516. The parallel linkage 516 supports the row unit 500 from the toolbar 14, permitting each row unit to move vertically independently of the toolbar and the other spaced row units in order to accommodate changes in terrain or upon the row unit encountering a rock or other obstruction as the planter is drawn through the field. Each row unit 500 further includes a mounting bracket 520 to which is mounted a hopper support beam 522 and a subframe 524. The hopper support beam 522 supports a seed hopper 526 and a fertilizer hopper 528 as well as operably supporting a seed meter 530 and a seed tube 532. The subframe 524 operably supports a furrow opening assembly 534 and a furrow closing assembly 536.

    [0018] In operation of the row unit 500, the furrow opening assembly 534 cuts a furrow 38 into the soil surface 40 as the planter is drawn through the field. The seed hopper 526, which holds the seeds to be planted, communicates a constant supply of seeds 42 to the seed meter 530. The drive module 300 is preferably mounted to the seed meter 530 as described elsewhere herein. As the drive module 300 drives the seed meter 530, individual seeds 42 are metered and discharged into the seed tube 532 at regularly spaced intervals based on the seed population desired and the speed at which the planter is drawn through the field. The seed sensor 508, preferably an optical sensor, is supported by the seed tube 532 and disposed to detect the presence of seeds 42 as they pass. The seed 42 drops from the end of the seed tube 532 into the furrow 38 and the seeds 42 are covered with soil by the closing wheel assembly 536.

    [0019] The furrow opening assembly 534 preferably includes a pair of furrow opening disk blades 544 and a pair of gauge wheels 548 selectively vertically adjustable relative to the disk blades 544 by a depth adjusting mechanism 568. The depth adjusting mechanism 568 preferably pivots about a downforce sensor 506, which preferably comprises a pin instrumented with strain gauges for measuring the force exerted on the gauge wheels 548 by the soil 40. The downforce sensor 506 is preferably of the type disclosed in Applicant's co-pending U.S. Patent Application No. 12/522,253. In other embodiments, the downforce sensor is of the types disclosed in U.S. Patent No. 6,389 999. The disk blades 544 are rotatably supported on a shank 554 depending from the subframe 524. Gauge wheel arms 560 pivotally support the gauge wheels 548 from the subframe 524. The gauge wheels 548 are rotatably mounted to the forwardly extending gauge wheel arms 560.

    [0020] It should be appreciated that the row unit illustrated in FIG. 5A does not include a conveyor 580 such that a conveyor module 400 is not required. Turning to FIG. 5B, a planter row unit 500' including a conveyor 580 is illustrated with components of the control system 100 installed.

    [0021] The row unit 500' is similar to the row unit 500 described above, except that the seed tube 532 has been removed and replaced with a conveyor 580 configured to convey seeds at a controlled rate from the meter 530 to the furrow 42. The conveyor motor 590 is preferably mounted to the conveyor 580 and is configured to selectively drive the conveyor 580. The conveyor 580 is preferably one of the types disclosed in Applicant's U.S. patent application no. 61/539,786 and Applicant's co-pending international patent application no. PCT/US2012/057327. As disclosed in that application, the conveyor 580 preferably includes a belt 587 including flights 588 configured to convey seeds received from the seed meter 530 to a lower end of the conveyor. On the view of FIG. 5B, the seed conveyor 580 is preferably configured to drive the belt 587 in a clockwise direction. On the view of FIG. 5B, the seed conveyor 580 is preferably configured to guide seeds from an upper end of the conveyor down a forward side of the conveyor, such that seeds descend with flights 588 of the belt 587 on forward side of the conveyor 580 and are deposited from the lower end of the conveyor such that no seeds are present on flights 588 ascending the rearward side of the conveyor during normal operation. The optical sensor 582 is preferably mounted to the forward side of the conveyor 580 and disposed to detect seeds and descending conveyor flights 588 as they pass. The optical sensor 584 is preferably mounted to the rearward side of the conveyor 580 and disposed to detect ascending conveyor flights 588 as they return to the meter 530. In other embodiments the optical sensor 582 and/or the optical sensor 584 may be replaced with other object sensors configured to detect the presence of seeds and/or flights, such as an electromagnetic sensor as disclosed in Applicant's co-pending U.S. Patent Application No. 12/984,263 (Pub. No. US2012/0169353).

    Addition of Modular Components



    [0022] Comparing the embodiments of FIGs. 5A and 5B, it should be appreciated that some embodiments of control system 100 require a conveyor module 400 while some do not. Thus row buses 250 are preferably configured to allow the user to install one or more additional CAN modules without replacing or modifying the row buses 250.

    [0023] Referring to FIG. 6A, a modified control system 100' includes modified row buses 250' having a modular extension 600 at each row. Each modular extension 600 preferably includes a first drop 610 and a second drop 620. Each drop 610, 620 preferably includes connections to power, ground and the bus signal lines (e.g., CAN Hi and CAN Lo).

    [0024] Turning to FIG. 6B, a modified control system 100" differs from control system 100' in that a conveyor module 400 has been connected to the first drop 610 of each modular extension 600. It should be appreciated that the second drop 620 is still available to add further modules to the row networks 130.

    Operation - Configuration Phase



    [0025] In order to effectively operate the control system 100 of FIG. 1, each module is preferably configured to determine its identity (e.g., the row unit or row units 500 with which it is associated) and certain configuration data such as the relative location of its associated row unit. Thus in operation of the control system 100, a configuration process 700 (FIG. 7) is preferably carried out to identify the modules and transmit configuration data to each module. At step 705, the monitor 110 preferably sends a first identification signal to the multi-row control module 200a via a point-to-point connection 160. The multi-row control module 200a preferably stores identification data (e.g., indicating its status as the leftmost multi-row control module) in memory. Continuing to refer to step 705, the multi-row control module 200a preferably sends a second identification signal to the multi-row control module 200b via a point-to-point electrical connection 161. The multi-row control module 200b preferably stores identification data (e.g., indicating its status as the rightmost multi-row control module) in memory.

    [0026] At step 710, each row module (e.g., each drive module 300 and each conveyor module 400) preferably determines the row unit 500 with which it is associated based on the voltage on an identification line (not shown) connecting the row module to the row bus 150. For example, three identification lines leading to the drive modules 300-1,300-2,300-3 are preferably connected to ground, a midrange voltage, and a high voltage, respectively.

    [0027] At step 715, the monitor 110 preferably transmits row-network-specific configuration data to each multi-row control module 200 via the implement bus 150. For example, the configuration data preferably includes transverse and travel-direction distances from each row unit 500 to the GPS receiver 166 and to the center of the toolbar 14 ("GPS offsets"); the row-network-specific GPS offsets sent to multi-row control module 200a at step 715 preferably corresponds to the row units 500-1,500-2,500-3 within the row network 130a. At step 720, each multi-row control module 200 preferably transmits row-unit-specific configuration data to each row control module (e.g, the drive modules 300) via the row buses 250. For example, the multi-row control module 200a preferably sends GPS offsets corresponding to row unit 500-1 to the drive module 300-1.

    Operation - Drive Module Control



    [0028] Turning to FIG. 8, the control system 100 preferably controls each drive module 300 according to a process 800. At step 805, the monitor 110 preferably transmits an input prescription (e.g., a number of seeds per acre to be planted) to each multi-row control module 200 via the implement bus 150 of the implement network 135. At step 810, the various kinematic sensors in the control system 100 transmit kinematic signals to the central processor 120. For example, wheel speed sensors 164 and gyro 162 send speed signals and angular velocity signals, respectively, to the central processor 120 via point-to-point electrical connections. In some embodiments the monitor 110 also sends the speed reported by the speed sensor 168 to the central processor 120 via the implement bus 150, which speed is sent to the central processor 120 via the implement bus 150.

    [0029] At step 815, the central processor 120 preferably calculates the speed of the center of the toolbar 14 and the angular velocity of the toolbar 14. The speed Sc of the center of the toolbar may be calculated by averaging the wheel speeds Swa,Swb reported by the wheel speed sensors 164a,164b, respectively or using the tractor speed reported by the speed sensor 168. The angular velocity w of the toolbar 14 may be determined from an angular velocity signal generated by the gyroscope 162 or by using the equation:



    [0030] Where:

    Dwa = The lateral offset between the center of the toolbar and the left implement wheel 520a, and

    Dwb = The lateral offset between the center of the toolbar and the right implement wheel 520b.



    [0031] At step 820, the central processor 120 preferably transmits the planter speed and angular velocity to each multi-row control module 200 via the implement bus 150 of the implement network 135.

    [0032] At step 825, each multi-row control module 200 preferably determines a meter speed command (e.g., a desired number of meter rotations per second) for each drive module within its row network 130. The meter speed command for each row unit 500 is preferably calculated based on a row-specific speed Sr of the row unit. The row-specific speed Sr is preferably calculated using the speed Sc of the center of the toolbar, the angular velocity w and the transverse distance Dr between the seed tube (or conveyor) of the row unit from the center of the planter (preferably included in the configuration data discussed in FIG. 7) using the relation:



    [0033] The meter speed command R may be calculated based on the individual row speed using the following equation:



    [0034] Where:

    Meter Ratio = The number of seed holes in the seed disc 534, and

    Row Spacing = The transverse spacing between row units 500.



    [0035] At step 830, the multi-row control module 200 preferably transmits the meter speed command determined for each drive module 300 to the respective drive module via the row bus 250 of the row network 130. In embodiments in which the row bus 250 comprises a CAN bus, the multi-row control module 200 preferably transmits a frame to the row bus having an identifier field specifying a drive module 300 (e.g., module 300-2) and a data field including the meter speed command for the specified drive module.

    [0036] At step 835, the drive module 300 preferably compares the meter speed command R to a measured meter speed. The drive module 300 preferably calculates the measured meter speed using the time between encoder pulses received from the motor encoder 576. At step 840, the drive module 300 preferably adjusts a voltage used to drive the meter 530 in order to adjust the measured meter speed closer to the meter speed command R.

    [0037] At step 845, each seed sensor sends seed pulses to the associated multi-row control module 200. In embodiments including a seed tube 532, each seed sensor 508 preferably sends seed pulses to the associated multi-row control module 200 via point-to-point electrical connections. In embodiments including a seed tube 532, seed pulses preferably comprise signal pulses having maximum values exceeding a predetermined threshold. In some embodiments including a seed conveyor 580, each seed sensor 582 preferably sends seed pulses to the associated multi-row control module 200 via the implement bus 250 of the row network 130. In embodiments including a seed conveyor 580, the seed pulses comprise signal pulses that differ by a predetermined threshold from signal pulses caused by passing flights of the conveyor. Alternative methods of detecting seeds in a seed conveyor 580 are described later herein.

    [0038] At step 850, the multi-row control module 200 preferably calculates the population, singulation and seed spacing at each row unit 500 within the row network 130 using the row speed Sr and the seed pulses transmitted from each row unit within the row network. At step 855, the multi-row module 200 transmits the population, singulation and spacing values to the central processor 120 via the implement bus 150 of the implement network 130. At step 860, the central processor 120 preferably transmits the population, singulation and spacing values to the monitor 110 via the implement bus 150 of the implement network 135.

    Operation - Conveyor Module Control



    [0039] Turning to FIG. 9, the control system 100 preferably controls each conveyor module 400 according to a process 900. At steps 910 through 920, control system 100 preferably performs the same steps described with respect to steps 810 through 820 of process 800. At step 925, each multi-row control module 200 preferably determines a conveyor speed command for each conveyor module 400 within the row network 130. The conveyor speed command is preferably selected such that a linear speed of flights traveling down the conveyor is approximately equal to the row-specific speed Sr; e.g., the conveyor motor speed command is preferably equal to the row-specific speed Sr multiplied by a predetermined constant. At step 930, the multi-row control module 200 preferably transmits individual conveyor speed commands to each corresponding conveyor module 400 via the row bus 250 of the row network 130.

    [0040] At step 935, the conveyor module 400 preferably compares the conveyor speed command to a measured conveyor speed. In some embodiments, the conveyor speed is measured using the time between flight pulses resulting from conveyor flights passing the optical sensor 584. In other embodiments, the conveyor speed is measured using the time between encoder pulses received from the conveyor motor encoder 597. At step 940, the conveyor module 400 preferably adjusts a voltage used to drive the conveyor motor 590 in order to adjust the measured meter speed closer to the conveyor speed command.

    [0041] At steps 945 through 960, the conveyor module 400 preferably performs the same steps 845 through 860 described herein with respect to process 800, specifically as those steps are described for embodiments including a conveyor 580.

    Seed Sensing Methods



    [0042] In embodiments including a seed conveyor 580, the control system 100 is preferably configured to count seeds, time-stamp seeds, and determine a seeding rate based on the signals generated by the first and second optical sensors 582, 584. It should be appreciated that in normal operation, the first optical sensor 582 detects both seeds and conveyor flights as the seeds from the meter 530 descend the conveyor 580, while the second optical sensor 584 detects only conveyor flights as they return to the top of the conveyor after seeds are deposited. The shape and size of flights in the conveyor 580 are preferably substantially consistent.

    [0043] Referring to FIG. 17, the monitor 110 (or in some embodiments the central processor 120) is preferably configured to carry out a process 1700 for detecting seeds. At step 1710, the monitor 110 preferably receives signals from both the first optical sensor 582 and the second optical sensor 584 over a measuring period. A first optical sensor signal 1810 (in which amplitude increases when either flights or seeds pass) and a second optical sensor signal 1820 (in which amplitude increases when flights pass) are illustrated on an exemplary multi-signal graph 1800 in FIG. 18. At step 1715, the control system 100 preferably changes the conveyor speed during the measuring period such that the length of signal pulses resulting from belts having the same length (as best illustrated by viewing the varying-width pulses in the sensor signal 1820). At step 1720, the monitor 110 preferably applies a time shift Ts (e.g., the time shift Ts illustrated in FIG. 18) to the second optical sensor signal 1820, resulting in a time-shifted sensor signal 1820'. The time shift Ts is related to the conveyor speed and is preferably calculated as follows:



    [0044] Where:

    Tf = Average time between flights detected by the second optical sensor 258

    k = A constant value preferably determined as described below.



    [0045] The value of k is related to the conveyor and optical sensor geometry and in some embodiments is determined as follows:



    [0046] Where:

    Ds = Linear flight distance between the first and second optical sensors

    Df = Distance between flights

    DEC(x) returns the decimal portion of x (e.g., DEC(105.2) = 0.2).



    [0047] In other embodiments, the monitor 110 preferably calculates k empirically in a setup stage while seeds are not being planted by running the conveyor 580 at a constant speed and determining the values of Tf and Ts; with no seeds on the belt, the value of Ts may be determined by measuring the time between a flight pulse at the first optical sensor 582 and the next subsequent flight pulse at the second optical sensor 584. In still other embodiments, the sensors 582, 584 are positioned at a relative distance Ds equal to an integer multiple of Df such that no time shift or a near-zero time shift is required.

    [0048] Continuing to refer to the process 1700 of FIG. 17, at step 1725 the monitor 110 preferably subtracts the time-shifted second optical sensor signal 1820' from the first optical sensor signal 1810, resulting in a flight-corrected signal 1830 (see FIG. 18) which correlates to the signal from the first optical sensor signal with signal pulses resulting from conveyor flights substantially eliminated. At step 1730 the monitor 110 preferably compares pulses 1832 in the flight-corrected signal 1830 to one or more seed pulse validity thresholds (e.g., a minimum amplitude threshold and a minimum period threshold); the monitor preferably identifies each pulse exceeding the seed pulse validity thresholds as valid seed event. At step 1735, the monitor 110 preferably adds the identified seed event to a seed count. At step 1740, the monitor 110 preferably stores the seed count; seeding rate (e.g., the seed count over a predetermined time period); a time associated with the seed event, seed count, or seeding rate; and a GPS associated with the seed event, seed count, or seeding rate to memory for mapping, display and data storage.

    Alternative Embodiments - Single Row Networks



    [0049] In an alternative control system 100'" illustrated in FIG. 16, each of a plurality of row networks 132 includes a single-row control module 202 mounted to one of the row units 500, a row bus 250, a drive module 300 individually mounted to the same row unit 500, and a conveyor module 400 individually mounted to the same row unit 500. The single-row control module 202 preferably includes equivalent components to the multi-row control module 200, except that the downforce signal conditioning chip 206, seed sensor auxiliary input 208, and the downforce solenoid PWM driver 210 are only in electrical communication with one of the corresponding devices mounted to the same row unit 500. Additionally, in the alternative control system 100'" the row bus 250 is in electrical communication with a single drive module 300 and a single conveyor module 400 as well as the single-row control module 202.

    [0050] In still other embodiments, two seed meters 530 are mounted to a single row unit 500 as described in U.S. Provisional Patent Application No. 61/838,141. In such embodiments, a drive module 300 is operably coupled to each seed meter 530. A row network 132' having two drive modules 300 is illustrated in FIG. 19. The row network 132' preferably includes a single-row control module 202, a row bus 250, a first drive module 300a (preferably mounted to the row unit 500), a second drive module 300b (preferably mounted to the row unit 500), a conveyor module 400, an input controller 307 and an identification power source 309. The first drive module 300a and the second drive module 300b, including the hardware and software components, are preferably substantially identical. The single-row control module 202, the first drive module 300a, the second drive module 300b, and the conveyor module 250 are preferably in electrical communication with the row bus 250. The single-row control module 202 is preferably in electrical communication with an implement bus 150 of one of the control system embodiments described herein. The first drive module 300a is preferably in electrical communication with the identification power source 309 and the input controller 307. The first drive module 300a is preferably in electrical communication with the input controller 307 via an electrical line 311. The identification power source 309 preferably supplies a low-voltage signal to the first drive module 300a, and may comprise a point-to-point connection to a power source including a relatively large resistor. The input controller 307 is preferably a swath and/or rate controller configured to shut off and/or modify an application rate of a crop input such as (without limitation) liquid fertilizer, dry fertilizer, liquid insecticide, or dry insecticide.

    [0051] During a setup phase of operation of the row network 132', the first drive module 300a receives a signal from the identification power source 309 and sends a corresponding identification signal to the monitor 110 (and/or the central processor 120) identifying itself as the first drive module 300a. Subsequently, the monitor 110 (and/or the central processor 120) preferably sends commands to the first drive module 300a and stores data received from the first drive module 300a based on the identification signal.

    [0052] During field operation of the row network 132', the monitor 110 determines which seed meter 530 should be seeding by comparing position information received from the GPS receiver 166 to an application map. The monitor 110 then preferably commands the single-row control module 202 to send a desired seeding rate to the drive module associated with the meter 530 that should be seeding, e.g., the first drive module 300a.

    [0053] In embodiments in which the input controller 307 comprises a swath controller configured to turn a dry or liquid crop input on or off, the first drive module 300a preferably sends a command signal to the input controller commanding the input controller to turn off the associated input, e.g., by closing a valve. In embodiments including only a single seed meter 530 and a single drive module 300 associated with each row unit, the drive module 300 transmits a first signal (e.g., a high signal) via the line 311 to the input controller 307 when the drive module is commanding the seed meter to plant, and transmits a second signal (e.g., a low signal) or no signal when the drive module is not commanding the seed meter to plant. The line 311 is preferably configured for electrical communication with any one of a plurality of input controllers, e.g. by incorporating a standard electrical connector. The first and second signal are preferably selected to correspond to swath commands recognized by any one of a plurality of input controllers such that the input controller 307 turns off the crop input when the seed meter 530 is not planting and turns on the crop input when the seed meter 530 is planting.

    [0054] In embodiments in which the input controller 307 comprises a swath controller and in which each row unit includes two seed meters 530 and associated drive modules 300a, 300b, the first drive module 300a preferably receives a signal from the row bus 250 (preferably generated either by the single-row control module 202 or the second drive module 300b) indicating whether the second drive module is commanding its associated seed meter 530 to plant. The first drive module 300a then determines whether either the first drive module 300a or 300b is commanding either of the seed meters 530 to plant. If neither of the drive modules 300a, 300b are commanding either seed meter to plant, the first drive module 300a preferably sends a first signal to the input controller 307 via the line 311. The input controller 307 is preferably configured to turn off the crop input (e.g., by closing a valve) upon receiving the first signal. If either of the drive modules 300a, 300b are commanding either seed meter to plant the first drive module 300a preferably sends a second signal (or in some embodiments no signal) to the input controller 307 such that the input controller does not turn off the crop input.

    [0055] In embodiments in which the input controller 307 comprises a rate controller configured to modify the application rate of a dry or liquid crop input, the monitor 110 (and/or the central processor 120) preferably determines a desired crop input application rate and transmits a corresponding signal to the input controller.

    [0056] Components described herein as being in electrical communication may be in data communication (e.g., enabled to communicate information including analog and/or digital signals) by any suitable device or devices including wireless communication devices (e.g., radio transmitters and receivers).

    [0057] The foregoing description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiment of the apparatus, and the general principles and features of the system and methods described herein will be readily apparent to those of skill in the art. Thus, the present invention is not to be limited to the embodiments of the apparatus, system and methods described above and illustrated in the drawing figures, but is to be accorded the widest scope consistent with the scope of the appended claims.


    Claims

    1. A monitoring system for an agricultural implement having a plurality of row units (500),comprising:

    a seed meter (530), a seed conveyor (580) having a forward side and a rearward side, said seed conveyor (580) being disposed to receive seeds from said seed meter (530), said seed conveyor (580) comprising a belt (587), said belt (587) having a plurality of flights (588) configured to convey said seeds, wherein said seed conveyor (580) is configured to guide said seeds down said forward side of said seed conveyor (580) to a lower end of said seed conveyor (580), wherein said seed conveyor (580) is configured to release said seeds from
    said lower end, and wherein said flights (587) ascend said rearward side without said seeds;

    a first seed sensor (582) mounted to said forward side of said conveyor (580), said first seed sensor (582) disposed to detect the presence of seeds and flights (588) descending said forward side of said seed conveyor (580);

    a motor (590) configured to drive said seed conveyor (580);
    a speed sensor (164) configured to measure a travel speed of the row unit (500) associated with said seed conveyor (580);

    a second seed sensor (584) mounted to said rearward side of said seed conveyor (580), said second seed sensor (584) disposed to detect the presence of flights (588) ascending said rearward side of
    said seed conveyor (580);

    and a monitor including a processor (116), said monitor being in data communication with said motor (590), said speed sensor (164), said first seed sensor (582), and said second seed sensor (584), wherein said monitor determines a desired motor speed to match a seed release speed to said travel speed, and wherein said monitor commands said motor (590) to modify an actual speed of said motor (590) to said desired motor speed.


     
    2. The monitoring system of claim 1, wherein said first seed sensor (582) comprises an optical sensor, and wherein said second seed sensor (584) comprises an optical sensor.
     
    3. The monitoring system of claim 1, wherein said monitor is configured to record a first signal generated by said first seed sensor (582), and wherein said monitor is configured to record a second signal generated by said second seed sensor (584).
     
    4. The monitoring system of claim 3, wherein said monitor is configured to generate a corrected signal based on said first signal and said second signal.
     
    5. The monitoring system of claim 3, wherein said monitor is configured to subtract from the amplitude of a first signal portion of said first signal based on the amplitude of a second signal portion of said second signal, wherein said monitor is configured to apply a time shift to said second signal.
     
    6. The monitoring system of claim 3, wherein said first signal includes a seed pulse portion and a flight pulse portion, and wherein said monitor is configured to distinguish between said seed pulse portion and said flight pulse portion by comparing said first signal to said second signal.
     
    7. The monitoring system of claim 6 , wherein said monitor is configured to identify said seed pulse portion based on the timing of a flight pulse in said second signal.
     
    8. A method for monitoring an agricultural implement, comprising:

    receiving seeds into an upper portion of a seed conveyor (580), said seed conveyor (580) including a belt (587) having a plurality of flights (588);

    conveying seeds between said flights (588) from an upper portion of said seed conveyor (580) to a lower portion of said seed conveyor (580);

    releasing seeds from said lower portion of said seed conveyor (580);

    with a first sensor (582), detecting both said seeds and said flights (588) passing a first location as said seeds and said flights (588) travel from said upper portion of said seed conveyor (580) to said lower portion of said seed conveyor (580), wherein said first sensor (582) is mounted to a first portion of said seed conveyor (580), wherein said flights (588) pass through said first portion in a generally downward direction, and wherein said flights (588) convey seeds in a generally downward direction through said first portion; and

    with a second sensor (584), detecting said flights (588)

    passing a second location as said flights (588) travel from said lower portion of said seed conveyor (580) toward said upper portion of said seed conveyor (580) after said seeds are released from between said flights (588), wherein said second sensor (584) is mounted to a second portion of said seed conveyor (580), wherein said flights (588) pass through said second portion in a generally upward direction, and wherein said flights (588) do not convey seeds through said second portion.


     
    9. The method of claim 8, further including:

    distinguishing seeds from flights (588) at said first location based on a time at which flights (588) are detected at said second location.


     
    10. The method of claim 9, wherein the step of distinguishing seeds from flights (588) is carried out by:

    generating a raw seed signal indicative of passage of seeds and flights (588) past said first location;

    generating a flight signal indicative of passage of flights (588) past said second location; and

    identifying a seed pulse within said raw seed signal based on said flight signal.


     
    11. The method of claim 10, wherein the step of identifying a seed pulse within said raw seed signal based on said flight signal is carried out by:

    applying a time shift to one of said flight signal and said raw seed signal;

    identifying flight (588) passage portions of said raw seed signal by comparing said flight signal to said raw seed signal; and

    identifying seed passage portions of said raw seed signal by comparing portions other than said flight (588) passage portions to a seed event threshold.


     
    12. The method of claim 11, wherein said time shift is related to the time between a pulse in said raw seed signal and an immediately subsequent pulse in said flight signal.
     
    13. The method of claim 9, further including:

    applying a speed modification to an operational speed of said seed conveyor (580).


     
    14. The method of claim 13, further including:

    determining a travel speed of said seed conveyor (580), wherein said speed modification is based on said travel speed.


     
    15. The method of claim 14, wherein said travel speed is a row-unit (500) specific speed.
     


    Ansprüche

    1. Überwachungssystem für ein landwirtschaftliches Gerät mit mehreren Reiheneinheiten (500), umfassend:

    einen Saatgutdosierer (530),

    einen Saatgutförderer (580) mit einer Vorderseite und einer Rückseite, wobei der Saatgutförderer (580) zum Aufnehmen von Saatgut vom Saatgutdosierer (530) angeordnet ist, wobei der Saatgutförderer (580) ein Transportband (587) umfasst, wobei das Transportband (587) mehrere Stollen (588) aufweist, die zum Befördern des Saatguts konfiguriert sind, wobei der Saatgutförderer (580) dazu konfiguriert ist, das Saatgut nach unten entlang der Vorderseite des Saatgutförderers (580) zu einem unteren Ende des Saatgutförderers (580) zu führen, wobei der Saatgutförderer (580) dazu konfiguriert ist, das Saatgut aus dem unteren Ende freizugeben und wobei die Stollen (587) an der Rückseite ohne das Saatgut hinauflaufen;

    einen ersten Saatgutsensor (582), der an der Vorderseite des Förderers (580) befestigt ist, wobei der erste Saatgutsensor (582) zum Detektieren des Vorhandenseins des Saatguts und der Stollen (588), die an der Vorderseite des Saatgutförderers (580) hinablaufen, angeordnet ist;

    einen Motor (590), der zum Antreiben des Saatgutförderers (580) konfiguriert ist; einen Geschwindigkeitssensor (164), der zum Messen einer Fahrgeschwindigkeit der Reiheneinheit (500), die mit dem Saatgutförderer (580) assoziiert ist, konfiguriert ist;

    einen zweiten Saatgutsensor (584), der an der Rückseite des Saatgutförderers (580) befestigt ist, wobei der zweite Saatgutsensor (584) zum Detektieren des Vorhandenseins der Stollen (588), die an der Rückseite des Saatgutförderers (580) hinauflaufen, angeordnet ist; und

    eine Überwachungsvorrichtung, die einen Prozessor (116) beinhaltet, wobei die Überwachungsvorrichtung mit dem Motor (590), dem Geschwindigkeitssensor (164), dem ersten Saatgutsensor (582) und dem zweiten Saatgutsensor (584) in Datenkommunikation steht, wobei die Überwachungsvorrichtung eine gewünschte Motordrehzahl bestimmt, um eine Saatgutfreigabegeschwindigkeit der Fahrgeschwindigkeit anzupassen, und wobei die Überwachungsvorrichtung den Motor (590) anweist, eine tatsächliche Drehzahl des Motors (590) zur gewünschten Motordrehzahl zu modifizieren.


     
    2. Überwachungssystem nach Anspruch 1, wobei der erste Saatgutsensor (582) einen optischen Sensor umfasst und wobei der zweite Saatgutsensor (584) einen optischen Sensor umfasst.
     
    3. Überwachungssystem nach Anspruch 1, wobei die Überwachungsvorrichtung dazu konfiguriert ist, ein erstes Signal, das durch den ersten Saatgutsensor (582) erzeugt wird, aufzuzeichnen, und wobei die Überwachungsvorrichtung dazu konfiguriert ist, ein zweites Signal, das durch den zweiten Saatgutsensor (584) erzeugt wird, aufzuzeichnen.
     
    4. Überwachungssystem nach Anspruch 3, wobei die Überwachungsvorrichtung dazu konfiguriert ist, ein korrigiertes Signal auf der Basis des ersten Signals und des zweiten Signals zu erzeugen.
     
    5. Überwachungssystem nach Anspruch 3, wobei die Überwachungsvorrichtung dazu konfiguriert ist, von der Amplitude eines ersten Signalteils des ersten Signals auf der Basis der Amplitude eines zweiten Signalteils des zweiten Signals abzuziehen, wobei die Überwachungsvorrichtung dazu konfiguriert ist, eine Zeitverschiebung am zweiten Signal anzuwenden.
     
    6. Überwachungssystem nach Anspruch 3, wobei das erste Signal einen Saatgutimpulsteil und einen Stollenimpulsteil beinhaltet und wobei die Überwachungsvorrichtung dazu konfiguriert ist, zwischen dem Saatgutimpulsteil und dem Stollenimpulsteil zu unterscheiden, indem sie das erste Signal mit dem zweiten Signal vergleicht.
     
    7. Überwachungssystem nach Anspruch 6, wobei die Überwachungsvorrichtung dazu konfiguriert ist, den Saatgutimpulsteil basierend auf dem Timing eines Stollenimpulses im zweiten Signal zu identifizieren.
     
    8. Verfahren zum Überwachen eines landwirtschaftlichen Geräts, umfassend:

    Empfangen von Saatgut in einen oberen Teil eines Saatgutförderers (580), wobei der Saatgutförderer (580) ein Transportband (587) mit mehreren Stollen (588) beinhaltet;

    Befördern des Saatguts zwischen den Stollen (588) von einem oberen Teil des Saatgutförderers (580) zu einem unteren Teil des Saatgutförderers (580);

    Freigeben des Saatguts aus dem unteren Teil des Saatgutförderers (580);

    mit einem ersten Sensor (582), Detektieren sowohl des Saatguts als auch der Stollen (588), die an einer ersten Position vorbeilaufen, wenn das Saatgut und die Stollen (588) vom oberen Teil des Saatgutförderers (580) zum unteren Teil des Saatgutförderers (580) laufen, wobei der erste Sensor (582) an einem ersten Teil des Saatgutförderers (580) befestigt ist, wobei die Stollen (588) durch den ersten Teil in eine Richtung im Allgemeinen nach unten laufen und wobei die Stollen (588) das Saatgut durch den ersten Teil in eine Richtung im Allgemeinen nach unten befördern; und,

    mit einem zweiten Sensor (584), Detektieren der Stollen (588), die an einer zweiten Position vorbeilaufen, wenn die Stollen (588) vom unteren Teil des Saatgutförderers (580) zum oberen Teil des Saatgutförderers (580) laufen, nachdem das Saatgut von zwischen den Stollen (588) freigegeben wird, wobei der zweite Sensor (584) an einem zweiten Teil des Saatgutförderers (580) befestigt ist, wobei die Stollen (588) durch den zweiten Teil in eine Richtung im Allgemeinen nach oben laufen und wobei die Stollen (588) kein Saatgut durch den zweiten Teil befördern.


     
    9. Verfahren nach Anspruch 8, ferner umfassend:

    Unterscheiden des Saatguts von den Stollen (588) an der ersten Position basierend auf einer Zeit, zu der die Stollen (588) an der zweiten Position detektiert werden.


     
    10. Verfahren nach Anspruch 9, wobei der Schritt des Unterscheidens des Saatguts von den Stollen (588) folgendermaßen ausgeführt wird:

    Erzeugen eines Saatgut-Rohsignals, das einen Durchgang des Saatguts und der Stollen (588) an der ersten Position angibt;

    Erzeugen eines Stollen-Signals, das einen Durchgang der Stollen (588) an der zweiten Position angibt; und

    Identifizieren eines Saatgutimpulses im Saatgut-Rohsignal basierend auf dem Stollen-Signal.


     
    11. Verfahren nach Anspruch 10, wobei der Schritt des Identifizierens eines Saatgutimpulses im Saatgut-Rohsignal basierend auf dem Stollen-Signal folgendermaßen ausgeführt wird:

    Anwenden einer Zeitverschiebung am Stollen-Signal oder am Saatgut-Rohsignal;

    Identifizieren von Durchgangsteilen der Stollen (588) des Saatgut-Rohsignals, indem das Stollen-Signal mit dem Saatgut-Rohsignal verglichen wird; und

    Identifizieren von Saatgutdurchgangsteilen des Saatgut-Rohsignals, indem Teile außer den Durchgangsteilen der Stollen (588) mit einer Saatgutereignisschwelle verglichen werden.


     
    12. Verfahren nach Anspruch 11, wobei sich die Zeitverschiebung auf die Zeit zwischen einem Impuls im Saatgut-Rohsignal und einem unmittelbar nachfolgenden Impuls im Stollen-Signal bezieht.
     
    13. Verfahren nach Anspruch 9, ferner umfassend:

    Anwenden einer Geschwindigkeitsänderung an einer Betriebsgeschwindigkeit des Saatgutförderers (580).


     
    14. Verfahren nach Anspruch 13, ferner umfassend:

    Bestimmen einer Fahrgeschwindigkeit des Saatgutförderers (580), wobei die Geschwindigkeitsänderung auf der Fahrgeschwindigkeit basiert.


     
    15. Verfahren nach Anspruch 14, wobei die Fahrgeschwindigkeit eine für die Reiheneinheit (500) spezifische Geschwindigkeit ist.
     


    Revendications

    1. Système de surveillance destiné à une machine agricole possédant une pluralité d'unités de rangs (500), comprenant :

    un doseur de graines (530),

    un convoyeur de graines (580) possédant un côté avant et un côté arrière, ledit convoyeur de graines (580) étant disposé de manière à recevoir des graines provenant dudit doseur de graines (530), ledit convoyeur de graines (580) comprenant une courroie (587), ladite courroie (587) possédant une pluralité de vols (588) conçus pour acheminer lesdites graines, dans lequel ledit convoyeur de graines (580) est conçu pour guider lesdites graines vers le bas dudit côté avant dudit convoyeur de graines (580) vers une extrémité inférieure dudit convoyeur de graines (580), dans lequel ledit convoyeur de graines (580) est conçu pour libérer lesdites graines provenant de ladite extrémité inférieure, et dans lequel lesdits vols (587) remontent ledit côté arrière sans lesdites graines ;

    un premier détecteur de graines (582) monté sur ledit côté avant dudit convoyeur (580), ledit premier détecteur de graines (582) est disposé de manière à détecter la présence des graines et des vols (588) descendant ledit côté avant dudit convoyeur de graines (580) ;

    un moteur (590) conçu pour commander ledit convoyeur de graines (580) ;

    un détecteur de vitesse (164) conçu pour mesurer une vitesse de déplacement de l'unité de rangs (500) associée audit convoyeur de graines (580) ;

    un second détecteur de graines (584) monté sur ledit côté arrière dudit convoyeur de graines (580), ledit second détecteur de graines (584) est disposé de manière à détecter la présence de vols (588) remontant ledit côté arrière dudit convoyeur de graines (580) ; et

    un dispositif de surveillance comprenant un processeur (116), ledit dispositif de surveillance étant en communication de données avec ledit moteur (590), ledit détecteur de vitesse (164), ledit premier détecteur de graines (582), et ledit second détecteur de graines (584),

    dans lequel ledit dispositif de surveillance détermine une vitesse de moteur souhaitée pour correspondre à la vitesse de libération des graines par rapport à ladite vitesse de déplacement, et dans lequel ledit dispositif de surveillance commande ledit moteur (590) afin de modifier une vitesse actuelle dudit moteur (590) à ladite vitesse de moteur souhaitée.


     
    2. Système de surveillance selon la revendication 1, dans lequel ledit premier détecteur de graines (582) comprend un détecteur optique, et dans lequel ledit second détecteur de graines (584) comprend un détecteur optique.
     
    3. Système de surveillance selon la revendication 1, dans lequel ledit dispositif de surveillance est conçu pour enregistrer un premier signal généré par ledit premier détecteur de graines (582), et dans lequel ledit dispositif de surveillance est conçu pour enregistrer un second signal généré par ledit second détecteur de graines (584).
     
    4. Système de surveillance selon la revendication 3, dans lequel ledit dispositif de surveillance est conçu pour générer un signal corrigé basé sur ledit premier signal et ledit second signal.
     
    5. Système de surveillance selon la revendication 3, dans lequel ledit dispositif de surveillance est conçu pour soustraire de l'amplitude d'une première partie de signal dudit premier signal sur la base de l'amplitude d'une seconde partie de signal dudit second signal, dans lequel ledit dispositif de surveillance est conçu pour appliquer un décalage temporel audit second signal.
     
    6. Système de surveillance selon la revendication 3, dans lequel ledit premier signal comprend une partie d'impulsion de graines et une partie d'impulsion de vols, et dans lequel ledit dispositif de surveillance est conçu pour faire la distinction entre ladite partie d'impulsion de graines et ladite partie d'impulsion de vols en comparant ledit premier signal audit second signal.
     
    7. Système de surveillance selon la revendication 6, dans lequel ledit dispositif de surveillance est conçu pour identifier ladite partie d'impulsion de graines basée sur la synchronisation d'une impulsion de vols dans ledit second signal.
     
    8. Procédé de surveillance d'une machine agricole, comprenant les étapes consistant à :

    recevoir des graines dans une partie supérieure d'un convoyeur de graines (580), ledit convoyeur de graines (580) comprenant une courroie (587) possédant une pluralité de vols (588) ;

    acheminer les graines entre lesdits vols (588) à partir d'une partie supérieure dudit convoyeur de graines (580) à une partie inférieure dudit convoyeur de graines (580) ;

    libérer les graines provenant de ladite partie inférieure dudit convoyeur de graines (580) ;

    avec un premier détecteur (582), qui détecte à la fois lesdites graines et lesdits vols (588) traversant un premier emplacement à mesure que lesdites graines et lesdits vols (588) se déplacent à partir de ladite partie supérieure dudit convoyeur de graines (580) à ladite partie inférieure dudit convoyeur de graines (580), dans lequel ledit premier détecteur (582) est monté sur une première partie dudit convoyeur de graines (580), dans lequel lesdits vols (588) traversent ladite première partie dans une direction généralement descendante, et dans lequel lesdits vols (588) acheminent les graines dans une direction généralement descendante à travers ladite première partie ; et

    avec un second détecteur (584), qui détecte lesdits vols (588) traversant un second emplacement à mesure que lesdits vols (588) se déplacent à partir de ladite partie inférieure dudit convoyeur de graines (580) à ladite partie supérieure dudit convoyeur de graines (580) après que lesdites graines sont libérées d'entre lesdits vols (588), dans lequel ledit second détecteur (584) est monté sur une seconde partie dudit convoyeur de graines (580), dans lequel lesdits vols (588) traversent ladite seconde partie dans une direction généralement montante, et dans lequel lesdits vols (588) n'acheminent pas les graines à travers ladite seconde partie.


     
    9. Procédé selon la revendication 8, comprenant en outre l'étape consistant à :

    distinguer des graines provenant des vols (588) au niveau dudit premier emplacement sur la base d'un moment auquel des vols (588) sont détectés au niveau dudit second emplacement.


     
    10. Procédé selon la revendication 9, dans lequel l'étape consistant à distinguer des graines provenant des vols (588) est effectuée en :

    générant un signal de graines brutes indiquant le passage des graines et des vols (588) après ledit premier emplacement ;

    générant un signal de vols indiquant le passage des vols (588) après ledit second emplacement ;
    et

    identifiant une impulsion de graines dans ledit signal de graines brutes sur la base dudit signal de vol.


     
    11. Procédé selon la revendication 10, dans lequel l'étape consistant à identifier une impulsion de graines dans ledit signal de graines brutes sur la base dudit signal de vols est effectuée en :

    appliquant un décalage temporel à l'un dudit signal de vols et dudit signal de graines brutes ;

    identifiant un vol (588) des parties de passage dudit signal de graines brutes en comparant ledit signal de vols audit signal de graines brutes ; et

    identifiant les parties de passage de graines dudit signal de graines brutes en comparant des parties autres que ledit vol (588) des parties de passage à un seuil d'événement de graines.


     
    12. Procédé selon la revendication 11, dans lequel ledit décalage temporel est lié au moment entre une impulsion dans ledit signal de graines brutes et une impulsion immédiatement ultérieure dans ledit signal de vols.
     
    13. Procédé selon la revendication 9, comprenant en outre l'étape consistant à :

    appliquer une modification de vitesse à une vitesse opérationnelle dudit convoyeur de graines (580).


     
    14. Procédé selon la revendication 13, comprenant en outre l'étape consistant à :

    déterminer une vitesse de déplacement dudit convoyeur de graines (580), dans lequel ladite modification de vitesse est basée sur ladite vitesse de déplacement.


     
    15. Procédé selon la revendication 14, dans lequel ladite vitesse de déplacement est une unité de rangs (500) à vitesse spécifique.
     




    Drawing




































































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description