(19)
(11)EP 2 878 078 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
19.02.2020 Bulletin 2020/08

(21)Application number: 13774794.5

(22)Date of filing:  23.07.2013
(51)Int. Cl.: 
H03F 1/02  (2006.01)
H03F 1/32  (2006.01)
H03F 3/189  (2006.01)
H03F 3/21  (2006.01)
H03F 3/68  (2006.01)
H03F 3/24  (2006.01)
(86)International application number:
PCT/IB2013/056037
(87)International publication number:
WO 2014/016770 (30.01.2014 Gazette  2014/05)

(54)

DIGITAL UPCONVERSION FOR MULTI-BAND MULTI-ORDER POWER AMPLIFIERS

DIGITALE AUFWÄRTSWANDLUNG FÜR MEHRBANDIGE LEISTUNGSVERSTÄRKER MEHRFACHER ORDNUNG

CONVERSION NUMÉRIQUE ÉLÉVATRICE POUR AMPLIFICATEURS DE PUISSANCE MULTI-ORDRE MULTIBANDE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 26.07.2012 US 201213558455

(43)Date of publication of application:
03.06.2015 Bulletin 2015/23

(73)Proprietor: Telefonaktiebolaget LM Ericsson (publ)
164 83 Stockholm (SE)

(72)Inventors:
  • MORRIS, Bradley, John
    Ottawa, Ontario K2C 2M7 (CA)
  • PANESAR, Harpreet
    Ottawa, Ontario K2W 1J4 (CA)

(74)Representative: Röthinger, Rainer 
Wuesthoff & Wuesthoff Patentanwälte PartG mbB Schweigerstrasse 2
81541 München
81541 München (DE)


(56)References cited: : 
WO-A2-2008/009013
US-A1- 2008 238 544
GB-A- 2 476 393
US-A1- 2009 243 719
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Related Applications



    [0001] This application claims the benefit of U.S. patent application serial number 13/558,455, filed July 26, 2012.

    Field of the Disclosure



    [0002] The present disclosure is related to digital upconversion for multi-band multi-order power amplifiers.

    Background



    [0003] A Multi-Order Power Amplifier (MOPA) is a power amplifier having multiple inputs where an input signal to be amplified by the MOPA is split across the multiple inputs such that the resulting split input signals drive multiple amplification blocks. The split input signals are typically created by analog circuitry or an intelligent digital splitting algorithm. The multiple amplification blocks operate together to produce, at an output of the MOPA, an amplified version of the input signal. Some examples of a MOPA include a 2-way Doherty amplifier, a 3-way Doherty amplifier, a Linear Amplification with Nonlinear Components (LINC) amplifier, an Envelope Elimination and Restoration (EER) amplifier, and a Chireix amplifier.

    [0004] MOPA operation requires that the split input signals be statically offset in phase, gain, and delay with respect to one another. There are several analog approaches to achieving this control. One approach is Radio Frequency (RF) analog splitting of the input signal as part of an input matching network of the MOPA (e.g., analog Doherty). Another approach is baseband signal splitting followed by analog upconversion, where individual compensation of each upconverter is required to match the gain, phase, and delay in the upconversion path and additional correction circuits and/or algorithms are required to correct for the amplitude and phase imbalance created by analog quadrature modulators.

    [0005] Splitting the input signal in the analog domain is perhaps the simplest method, but the resulting split is frequency dependent and very limited in capability. Although phase, gain, and delay match across amplification paths can be achieved by physical symmetry of the splitting structure, compensating for any component variations becomes very difficult. This type of split limits the efficiency that can be achieved by a MOPA that has multiple simultaneous inputs and requires independent signal control over a range of frequencies.

    [0006] Baseband signal splitting has advantages over RF analog splitting but requires that the upconversion chains be matched across the multiple instances for the multiple split input signals so that the split made at baseband remains intact after upconversion. Since upconversion is typically in the analog domain, this is a relatively difficult task for second order MOPAs but is extremely difficult for higher order MOPAs. Further, compensating gain, phase, and delay is frequency dependent and, even worse, is physical realization dependent (e.g., every unit built needs to be calibrated differently or an average calibration is used for all units which limits achievable performance).

    [0007] One issue with existing approaches to offsetting the gain, phase, and delay of the split input signals provided to a MOPA is accuracy and complexity. As the order (i.e., the number of inputs) of the MOPA increases, the complexity of existing solutions becomes nearly insurmountable. Another issue with existing approaches is that they are frequency dependent. As such, they are not suitable for multi-band input signals.

    [0008] Document US 2008/238544 A1 may be construed to disclose a method of optimizing performance of a multiple path amplifier. The method includes: splitting an input signal to derive a respective sub-signal for each branch of the multiple path amplifier; independently pre-distorting each sub-signal using a known performance characteristic of its associated branch of the multiple path amplifier; and supplying each pre-distorted sub-signal to its associated branch of the multiple amplifier.

    [0009] Document WO 2008/009013 A2 may be construed to disclose a multi-carrier transmitter capable of transmitting on one or multiple frequency channels simultaneously. The multi-carrier transmitter includes at least one processor and a single radio frequency transmit chain. The processor(s) generate(s) output chips for each of multiple frequency channels, digitally filter(s) and upsample(s) the output chips for each frequency channel to obtain. filtered samples, and digitally upconvert(s) the filtered samples for each frequency channel to a different frequency to obtain upconverted samples. The processor(s) then combine(s) the upconverted samples for the multiple frequency channels to obtain composite samples, perform pre-distortion on the composite samples for I/Q mismatch compensation, and up-sample the pre-distorted samples to obtain output samples. The output samples may be converted to an analog signal with a wideband DAC. The RF transmit chain processes the analog signal to generate an RF output signal.

    [0010] Document GB 2,476,393 A may be construed to disclose a technique, in which, in an active antenna array comprising different transmission paths, power amplifiers are powered by variable power supply units each controlled according to a common envelope signal which is detected, generated and tracked by an envelope detection system. A feedback signal is then selected by a switch and used to update the Digital Signal Processor which controls predistorters.

    [0011] Document US 2009/243719 A1 may be construed to disclose an amplification device for a satellite in order to amplify a plurality of n transmission channels to an output corresponding to a beam, the device comprising: frequency band combining means comprising n inputs in order to receive the n transmission channels and q outputs in order to supply respectively the channels grouped together within q frequency bands, a power amplification unit including p active amplifiers in parallel for the distributed amplification of the n channels, gain and phase adjustment means corresponding to the p power amplifiers on the q frequency bands.

    Summary



    [0012] ] According to the present disclosure, there is provided an apparatus, a system and a method according to the independent claims. Developments are set forth in the dependent claims.

    [0013] The present disclosure relates to digital up-conversion for a multi-band Multi-Order Power Amplifier (MOPA) that enables precise and accurate control of gain, phase, and delay of multi-band split signals input to the multi-band MOPA. In general, a multi-band MOPA is configured to amplify a multi-band signal that is split across a number, N, of inputs of the multi-band MOPA as a number, N, of multi-band split signals, where N is an order of the multi-band MOPA and is greater than or equal to 2. A digital upconversion system for the multi-band MOPA is configured to independently control a gain, phase, and delay for each of a number, M, of frequency bands of the multi-band signal for each of at least N-1, and preferably all, of the multi-band split signals. Preferably, the gain, phase, and delay for each of the frequency bands for each of the multi-band split signals are independently controlled such that one or more performance parameters of the multi-band MOPA (e.g., linearity, efficiency, and/or output power) are optimized.

    [0014] In one example, for each of the M frequency bands of the multi-band signal, the digital upconversion system includes a digital signal splitter that splits a digital baseband input signal for the frequency band into N baseband split signals for the frequency band. Each of the N baseband split signals for the frequency band corresponds to a different order of the N orders of the multi-band MOPA. Further, for each of the N baseband split signals for each of the M frequency bands, the digital upconversion system includes a digital upconverter that digitally upconverts the baseband split signal to a desired upconversion frequency to thereby provide a corresponding upconverted split signal. The digital upconverter includes one or more calibration actuators that are configured to control a gain, phase, and delay of the upconverted split signal. After digital upconversion, there is a different upconverted split signal for each of the orders of the multi-band MOPA for each of the frequency bands.

    [0015] Further, in one example, the digital upconversion system includes, for each of the N orders of the multi-band MOPA, a digital combiner and a digital-to-analog converter. The digital combiner is configured to digitally combine the upconverted split signals for the M frequency bands for the order of the multi-band MOPA to provide a combined upconverted digital signal for the order of the multi-band MOPA. The digital-to-analog converter then converts the combined upconverted digital signal into a combined upconverted analog signal for the order of the multi-band MOPA. The combined upconverted analog signal is then processed by analog circuitry to provide a corresponding multi-band split signal to a corresponding input of the multi-band MOPA. The one or more calibration actuators of the digital upconverters for the different orders of the multi-band MOPA for each of the frequency bands of the multi-band signal are independently configured to independently control a gain, phase, and delay of each of the upconverted split signals. In this manner, the digital upconversion system independently controls the gain, phase, and delay for each frequency band for each of the multi-band split signals input into the multi-band MOPA. In one embodiment, the gain, phase, and delay of each of the upconverted split signals is independently controlled to optimize one or more performance parameters of the multi-band MOPA (e.g., linearity, efficiency, and/or output power).

    [0016] Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.

    Brief Description of the Drawing Figures



    [0017] The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.

    Figure 1 illustrates a multi-band Multi-Order Power Amplifier (MOPA) that amplifies a multi-band signal that is split across multiple inputs of the multi-band MOPA as multiple multi-band split signals, wherein a gain, phase, and delay for each frequency band of the multi-band signal for each of the multi-band split signals is independently controlled in order to optimize one or more performance parameters of the multi-band MOPA according to one embodiment of the present disclosure;

    Figure 2 illustrates a system including a multi-band MOPA and a digital upconversion system that independently controls a gain, phase, and delay for each frequency band of the multi-band signal for each multi-band split signal input to the multi-band MOPA such that one or more performance parameters of the multi-band MOPA are optimized according to one embodiment of the present disclosure; and

    Figure 3 illustrates one of the digital up-converters of Figure 2 in more detail according to one embodiment of the present disclosure.


    Detailed Description



    [0018] The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.

    [0019] The present disclosure relates to digital up-conversion for a multi-band Multi-Order Power Amplifier (MOPA) that enables precise and accurate control of gain, phase, and delay of multi-band split signals input to the multi-band MOPA. In this regard, Figure 1 illustrates a multi-band MOPA 10 having independent gain, phase, and delay calibration for each frequency band to be amplified by the multi-band MOPA 10 for each input of the multi-band MOPA 10 according to one embodiment of the present disclosure. In general, the multi-band MOPA 10 operates to amplify a multi-band signal (SMB) that is split across a number (N) of inputs 12-1 through 12-N of the multi-band MOPA 10 as multi-band split signals (SMB-1 through SMB-N). The number N is the number of inputs 12-1 through 12-N of the multi-band MOPA 10 and is also referred to as an "order" of the multi-band MOPA 10. The number N is greater than or equal to 2. The multi-band signal (SMB) has a number (M) of frequency bands, where M is greater than or equal to 2. The multi-band MOPA 10 may be, for example, a multi-band Doherty power amplifier (e.g., a 2-way or 3-way Doherty amplifier), a Linear Amplification with Nonlinear Components (LINC) amplifier, an Envelope Elimination and Restoration (EER) amplifier, and a Chireix amplifier.

    [0020] As used herein, a "multi-band signal" is a signal that contains frequency components occupying multiple frequency bands (i.e., a first continuous frequency band, a second continuous frequency band, etc.) with no frequency components between adjacent frequency bands. Within each frequency band, the multi-band signal includes what is referred to herein as a "narrowband signal" at a corresponding carrier frequency of the multi-band signal. As used herein, a "narrowband signal" is not necessarily "narrowband" in the traditional sense, but has a bandwidth that is less than (i.e., narrower than) a total bandwidth of the multi-band signal. Notably, the narrowband signals in the frequency bands of the multi-band signal are preferably single band signals. However, in one alternative embodiment, one or more of the narrowband signals in one or more of the frequency bands of the multi-band signal may itself be a multi-band signal.

    [0021] As illustrated, the multi-band split signals (SMB-1 through SMB-N) provided to the inputs 12-1 through 12-N of the multi-band MOPA 10 are generated from a number (N) of split signals for each of the M frequency bands of the multi-band signal (SMB), which are referred to as split signals S1-1 through S1-N, ..., SM-1 through SM-N, respectively. More specifically, as illustrated, the split signals S1-1 through S1-N are for a first carrier frequency (f1) for the multi-band signal (SMB) (i.e., for a first frequency band of the multi-band signal (SMB)). Likewise, the split signals SM-1 through SM-N are for an M-th carrier frequency (fM) for the multi-band signal (SMB) (i.e., for an M-th frequency band of the multi-band signal (SMB)). A combiner 14-1 combines the split signals S1-1 through SM-1 (i.e., the split signals for the first order, or input, of the multi-band MOPA 10 for all M frequency bands) to provide the multi-band split signal (SMB-1) for the input 12-1 of the multi-band MOPA 10. Likewise, a combiner 14-N combines the split signals S1-N through SM-N (i.e., the split signals for the N-th order, or input, of the multi-band MOPA 10 for all M frequency bands) to provide the multi-band split signal (SMB-N) for the input 12-N of the multi-band MOPA 10. While not illustrated, the combiners 14-1 through 14-N are preferably digital combiners, and digital-to-analog converters and analog circuitry subsequent to the digital combiners further process the output of the digital combiners to provide the multi-band split signals (SMB-1 through SMB-N). However, in Figure 1, these elements are omitted for clarity and ease of discussion.

    [0022] The multi-band split signals (SMB-1 through SMB-N) are amplified by the multi-band MOPA 10 to provide a multi-band output signal (SOUT). As discussed below in detail, a gain, phase, and delay of each of the split signals (S1-1 through S1-N, ..., SM-1 through SM-N) are independently controlled, or configured. As such, the gain (G1-1), phase (φ1-1), and delay (τ1-1) of the split signal (S1-1) are controlled independently from the gains, phases, and delays of all of the other split signals for all M of the frequency bands, the gain (G1-2), phase (φ1-2), and delay (τ1-2) of the split signal (S1-2) are controlled independently from the gain, phase, and delay of all of the other split signals for all M of the frequency bands, etc. In this manner, a gain, phase, and delay for each of the M frequency bands for each of the multi-band split signals (SMB-1 through SMB-N) are independently controlled. Preferably, the gain, phase, and delay of each of the split signals (S1-1 through S1-N, ..., SM-1 through SM-N), and thus the gain, phase, and delay for each of the M frequency bands for each of the multi-band split signals (SMB-1 through SMB-N), are independently controlled such that one or more performance parameters (e.g., efficiency, linearity, and/or output power) of the multi-band MOPA 10 are optimized. In one embodiment, the one or more performance parameters include efficiency and one or both of linearity and output power. In one particular embodiment, the gain, phase, and delay of each of the split signals (S1-1 through S1-N, ..., SM-1 through SM-N) are independently controlled to maximize efficiency while maintaining sufficient linearity to satisfy one or more predefined requirements for the multi-band MOPA 10 (e.g., predefined emissions requirements).

    [0023] Before proceeding, it should be noted that values for the gain, phase, and delay of each of the split signals (S1-1 through S1-N, ..., SM-1 through SM-N) may be selected, or calibrated, using any suitable technique. In one particular embodiment, values for the gain, phase, and delay of each of the split signals (S1-1 through S1-N, ..., SM-1 through SM-N) are selected in a factory calibration process. For instance, one or more performance parameters of the multi-band MOPA 10 may be measured while adjusting the values for the gain, phase, and delay of each of the split signals (S1-1 through S1-N, ..., SM-1 through SM-N) using any suitable algorithm until the values that provide the desired optimization of the one or more performance parameters are determined. These values may then be stored and utilized during operation of the multi-band MOPA 10. In another embodiment, the values for the gain, phase, and delay of each of the split signals (S1-1 through S1-N, ..., SM-1 through SM-N) may be selected dynamically based on measurements of the multi-band output signal (SOUT) during operation of the multi-band MOPA 10. In this manner, the values for the gain, phase, and delay of each of the split signals (S1-1 through S1-N, ..., SM-1 through SM-N) can be updated over time as needed to optimize the one or more performance parameters of the multi-band MOPA 10.

    [0024] Figure 2 illustrates a system 16 that includes a multi-band MOPA 18 and a digital upconversion system 20 for the multi-band MOPA 18 according to one embodiment of the present disclosure. In general, the multi-band MOPA 18 operates to amplify a multi-band signal (SMB) that is split across a number (N) of inputs 22-1 through 22-N of the multi-band MOPA 18 as multi-band split signals (SMB-1 through SMB-N). The number N is the number of inputs 22-1 through 22-N of the multi-band MOPA 18 and is also referred to as an "order" of the multi-band MOPA 18. The number N is greater than or equal to 2. The multi-band signal (SMB) has a number (M) of frequency bands, where M is greater than or equal to 2. The multi-band MOPA 18 may be, for example, a multi-band Doherty power amplifier, (e.g., a 2-way or 3-way Doherty amplifier), a LINC amplifier, an EER amplifier, and a Chireix amplifier.

    [0025] The digital upconversion system 20 digitally upconverts digital baseband signals (SBB,1 through SBB,M) for the M frequency bands of the multi-band signal (SMB) and generates N multi-band analog signals (SANALOG-1 through SANALOG-N) that, after further processing by analog circuitries 24-1 through 24-N, provide the multi-band split signals (SMB-1 through SMB-N) to the respective inputs 22-1 through 22-N of the multi-band MOPA 18. More specifically, the digital upconversion system 20 includes digital signal splitters 26-1 through 26-M, digital upconverters 28(1-1) through 28(M-N) each including one or more calibration actuators, digital combiners 30-1 through 30-N, and digital-to-analog (D/A) converters 32-1 through 32-N connected as shown. The digital signal splitter 26-1 operates to split the digital baseband signal (SBB,1) into N baseband split signals (SBB,1-1 through SBB,1-N) each corresponding to a different order, or input, of the multi-band MOPA 18. The manner in which the digital signal splitter 26-1 splits the digital baseband signal (SBB,1) can vary depending on the particular implementation. Further, any suitable digital splitting technique may be used. As one example, the digital signal splitter 26-1 equally splits the digital baseband signal (SBB,1) into the baseband split signals (SBB,1-1 through SBB,1-N). As another example, if the multi-band MOPA 18 is a 2nd order Doherty amplifier, the digital signal splitter 26-1 may provide the entire digital baseband signal (SBB,1) to the baseband split signal (SBB,1-1) when a voltage of the digitally represented signal is less than a predefined threshold and equally split the digital baseband signal (SBB,1) across the baseband split signals (SBB,1-1 and SBB,1-2) when the voltage of the digitally represented signal is greater than or equal to the predefined threshold. As yet another example, if the multi-band MOPA 18 is a 2nd order Doherty amplifier, the digital signal splitter 26-1 may provide peaks of the digital baseband signal (SBB,1) to the baseband split signal (SBB,1-2) and the remaining non-peak portion of the digital baseband signal (SBB,1) to the baseband split signal (SBB,1-1). The examples above are only examples and are not intended to limit the scope of the present disclosure.

    [0026] The digital upconverters 28(1-1) through 28(1-N) digitally upconvert the baseband split signals (SBB,1-1 through SBB,1-N), respectively, to a desired upconversion frequency for the first frequency band, thereby providing upconverted split signals (SUP,1-1 through SUP,1-N). In one embodiment, the desired upconversion frequency is a carrier frequency for the first frequency band of the multi-band signal (SMB). However, the desired upconversion frequency is not limited thereto. The digital upconverters 28(1-1) through 28(1-N) each include one or more calibration actuators that control a gain, phase, and delay of the corresponding upconverted split signal. Thus, the digital upconverter 28(1-1) includes one or more calibration actuators that control a gain (G1-1), phase (φ1-1), and delay (τ1-1) of the upconverted split signal (SUP,1-1). Likewise, the digital upconverter 28(1-N) includes one or more calibration actuators that control a gain (G1-N), phase (φ1-N), and delay (τ1-N) of the upconverted split signal (SUP,1-N).

    [0027] In the same manner, the digital signal splitter 26-M operates to split the digital baseband signal (SBB,M) into N baseband split signals (SBB,M-1 through SBB,M-N) each corresponding to a different order, or input, of the multi-band MOPA 18. As discussed above with respect to the digital signal splitter 26-1, the manner in which the digital signal splitter 26-M splits the digital baseband signal (SBB,M) can vary depending on the particular implementation. Further, any suitable splitting technique may be used. The digital upconverters 28(M-1) through 28(M-N) digitally upconvert the baseband split signals (SBB,M-1 through SBB,M-N), respectively, to a desired upconversion frequency for the M-th frequency band, thereby providing upconverted split signals (SUP,M-1 through SUP,M-N). The digital upconverters 28(M-1) through 28(M-N) each include one or more calibration actuators that control a gain, phase, and delay of the corresponding upconverted split signal. Thus, the digital upconverter 28(M-1) includes one or more calibration actuators that control a gain (GM-1), phase (φM-1), and delay (τM-1) of the upconverted split signal (SUP,M-1). Likewise, the digital upconverter 28(M-N) includes one or more calibration actuators that control a gain (GM-N), phase (φM-N), and delay (τM-N) of the upconverted split signal (SUP,M-N).

    [0028] Next, the digital combiners 30-1 through 30-N combine the upconverted split signals for the corresponding orders, or inputs, of the multi-band MOPA 18 to provide corresponding combined digital signals (SCOMB-1 through SCOMB-N). Each of the combined digital signals (SCOMB-1 through SCOMB-N) is a multi-band digital signal that includes the upconverted split signals for the respective order of the multi-band MOPA 18. More specifically, the digital combiner 30-1 combines the upconverted split signals (SUP,1-1 through SUp,M-1) for the first order, or first input 22-1, of the multi-band MOPA 18 to provide the combined digital signal (SCOMB-1) for the first order of the multi-band MOPA 18. Likewise, the digital combiner 30-N combines the upconverted split signals (SUP,1-N through SUP,M-N) for the N-th order, or N-th input 22-N, of the multi-band MOPA 18 to provide the combined digital signal (SCOMB-N) for the N-th order of the multi-band MOPA 18. The D/A converters 32-1 through 32-N then digital-to-analog convert the combined digital signals (SCOMB-1 through SCOMB-N), respectively, to provide the multi-band analog signals (SANALOG-1 through SANALOG-N), which are also referred to herein as combined analog signals.

    [0029] Lastly, the multi-band analog signals (SANALOG-1 through SANALOG-N) are processed by the analog circuitries 24-1 through 24-N, respectively, to provide the multi-band split signals (SMB-1 through SMB-N) to the respective inputs 22-1 through 22-N of the multi-band MOPA 18. The analog circuitries 24-1 through 24-N may include any desired analog circuitry such as, for example, one or more analog filters that operate to remove undesired frequency components from the multi-band analog signals (SANALOG-1 through SANALOG-N) and, potentially, one or more pre-amplifiers.

    [0030] Importantly, the calibration actuators in the digital upconverters 28(1-1) through 28(M-N) independently control the gains (G1-1 through GM-N), phases (φ1-1 through φM-N), and delays (τ1-1 through τM-N) of the upconverted split signals (SUP,1-1 through SUP,M-N). In doing so, the calibration actuators in the digital upconverters 28(1-1) through 28(M-N) independently control the gains, phases, and delays for each of the M frequency bands for each of the multi-band split signals (SMB-1 through SMB-N). Notably, independent control of the gains (G1-1 through GM-N), phases (φ1-1 through φM-N), and delays (τ1-1 through τM-N) of the upconverted split signals (SUP,1-1 through SUP,M-N) is beneficial in that, while the effects on gain, phase, and delay of the digital circuitry in the digital upconversion system 20 are deterministic, the effects on gain, phase, and delay of the analog circuitries 24-1 through 24-N are non-deterministic (e.g., variations over temperature, variations in manufacturing, aging, etc.).

    [0031] Preferably, using the calibration actuators in the digital upconverters 28(1-1) through 28(M-N), the gains (G1-1 through GM-N), phases (φ1-1 through φM-N), and delays (τ1-1 through τM-N) of the upconverted split signals (SUP,1-1 through SUP,M-N), and thus the gains, phases, and delays for each of the M frequency bands for each of the multi-band split signals (SMB-1 through SMB-N), are independently controlled, or configured, to optimize one or more performance parameters (e.g., efficiency, linearity, and/or output power) of the multi-band MOPA 18. Note that, in another embodiment, the gains, phases, and delays for each of the M frequency bands for each of only N-1 of the upconverted split signals (SUP,1-1 through SUP,M-N) may be calibrated since it may be preferable to control the offsets between the gains, phases, and delays, rather than their absolute values. In one embodiment, the one or more performance parameters include efficiency and one or both of linearity and output power. In one particular embodiment, using the calibration actuators in the digital upconverters 28(1-1) through 28(M-N), the gains (G1-1 through GM-N), phases (φ1-1 through φM-N), and delays (τ1-1 through τM-N) of the upconverted split signals (SUP,1-1 through SUP,M-N), and thus the gains, phases, and delays for each of the M frequency bands for each of the multi-band split signals (SMB-1 through SMB-N), are independently controlled, or configured, to maximize an efficiency of the multi-band MOPA 18 while maintaining sufficient linearity to satisfy one or more predefined requirements for the multi-band MOPA 18 (e.g., predefined emissions requirements).

    [0032] The values for the gains (G1-1 through GM-N), phases (φ1-1 through φM-N), and delays (τ1-1 through τM-N) of the upconverted split signals (SUP,1-1 through SUP,M-N) may be selected, or calibrated, using any suitable technique. In one particular embodiment, values for the gains (G1-1 through GM-N), phases (φ1-1 through φM-N), and delays (τ1-1 through τM-N) of the upconverted split signals (SUP,1-1 through SUP,M-N) are selected in a factory calibration process. For instance, one or more performance parameters of the multi-band MOPA 18 may be measured while adjusting the values for the gains (G1-1 through GM-N), phases (φ1-1 through φM-N), and delays (τ1-1 through τM-N) of the upconverted split signals (SUP,1-1 through SUP,M-N) using any suitable algorithm until the values that provide the desired optimization of the one or more performance parameters are determined. These values may then be stored by the digital upconversion system 20 or otherwise programmed into the digital upconversion system 20 and utilized during operation of the multi-band MOPA 18. In another embodiment, the values for the gains (G1-1 through GM-N), phases (φ1-1 through φM-N), and delays (τ1-1 through τM-N) of the upconverted split signals (SUP,1-1 through SUP,M-N) may be selected dynamically based on measurements of the multi-band output signal (SOUT) during operation of the multi-band MOPA 18. In this manner, the values for the gains (G1-1 through GM-N), phases (φ1-1 through φM-N), and delays (τ1-1 through τM-N) of the upconverted split signals (SUP,1-1 through SUP,M-N) can be updated over time as needed to optimize the one or more performance parameters of the multi-band MOPA 18.

    [0033] Figure 3 is a more detailed illustration of one of the digital upconverters 28(1-1) through 28(M-N) of Figure 2, which is generally designated as 28(X-Y), according to one embodiment of the present disclosure. As illustrated, the digital upconverter 28(X-Y) includes a number of calibration actuators 34, a digital upconverter chain 36, and, in some embodiments, a Rate Change Filter (RCF) 38. The RCF 38 may be desired if a sampling rate of the baseband split signal (SBB,X-Y) is not equal to fS/NUS, where fS is an effective sampling rate of the D/A converter 32-Y and NUS is an up-sampling rate of an upsampler 40 of the digital upconverter chain 36. In effect, the RCF 38 is a bridge between the sampling rate of the baseband split signal (SBB,X-Y) and the effective sampling rate of the D/A converter 32-Y.

    [0034] As illustrated, in this embodiment, the baseband split signal (SBB,X-Y) is a complex signal. In some embodiments, the sampling rate of the baseband split signal (SBB,X-Y) is changed by the RCF 38. Then, the baseband split signal (SBB,X-Y) is provided to the calibration actuators 34. In general, the calibration actuators 34 control the gain (GX-Y), phase (φX-Y), and delay (τX-Y) of the upconverted split signal (SUP,X-Y) via corresponding calibration values (GX-Y,CAL, φX-Y,CAL, and τX-Y,CAL). More specifically, the calibration actuators 34 include an equalizer 42, complex multipliers 44 and 46, a coarse delay circuit 48, and a fine delay circuit 50. Note that the ordering of the equalizer 42, the complex multipliers 44 and 46, the coarse delay 48, and the fine delay 50 may be changed. The equalizer 42 operates to effectively equalize the response of the corresponding analog circuitry 24-Y. The complex multipliers 44 and 46 multiply the equalized baseband split signal by the phase and gain calibration values (φX-Y,CAL and GX-Y,CAL), respectively. The phase and gain calibration values (φX-Y,CAL and GX-Y,CAL) are such that the upconverted split signal (SUP,X-Y) has the desired phase (φX-Y) and gain (GX-Y). Notably, in one alternative embodiment, the complex multipliers 44 and 46 are combined into a single complex multiplier that calibrates both gain and phase. Before proceeding, it should be noted that while, in this embodiment, the calibration actuators 34 are implemented at baseband, the present disclosure is not limited thereto. One or more, and possibly all, of the calibration actuators 34 may implemented during or after digital upconversion.

    [0035] The phase and gain calibrated baseband split signal is then passed through the coarse and fine delay circuits 48 and 50 to provide a calibrated baseband split signal (SBB_CAL,X-Y). A coarse delay applied by the coarse delay circuit 48 is controlled by a coarse delay calibration value (τX-Y,COARSE). As one example, the coarse delay circuit 48 may be implemented as a series of flip-flops, and the coarse delay calibration value (τX-Y,COARSE) selects the output of one of the flip-flops as the output of the coarse delay circuit 48, which thereby controls the delay provided by the coarse delay circuit 48. A fine delay applied by the fine delay circuit 50 is controlled by a fine delay calibration value (τX-Y,FINE). As one example, the fine delay circuit 50 may be implemented as a filter, where the fine delay calibration value (τX-Y,FINE) is one or more filter coefficients. Together, the coarse and fine calibration values (τX-Y,COARSE and τX-Y,FINE) form a delay calibration value (τX-Y,CAL).

    [0036] The calibrated baseband split signal (SBB_CAL,X-Y) is then digitally upconverted by the digital upconverter chain 36 to provide the upconverted split signal (SUP,X-Y) at the desired upconversion frequency. In one embodiment, the desired upconversion frequency is the carrier frequency for the corresponding frequency band of the multi-band signal (SMB). However, in other embodiments, the desired upconversion frequency is a predetermined frequency that is selected such that, after processing of the upconverted split signal (SUP,X-Y) by the D/A converter 32-Y and the analog circuitry 24-Y, the resulting signal is at the desired carrier frequency for the corresponding frequency band of the multi-band signal (SMB).

    [0037] In this example, the digital upconverter chain 36 includes a complex tuner 52 that tunes the calibrated baseband split signal (SBB_CAL,X-Y), which is a complex signal, to a desired frequency. The complex tuner 52 tunes the calibrated baseband split signal (SBB_CAL,X-Y) to a desired baseband tuning frequency to thereby produce a complex tuned digital split signal. In one embodiment, the baseband tuning frequency is programmable or otherwise selectable within a range of -fS/2NUS and fS/2NUS, where fS is the effective sampling rate of the D/A converter 32-Y and NUS is the up-sampling rate of the upsampler 40.

    [0038] The upsampler 40 up-samples the complex tuned digital split signal at the up-sampling rate NUS, where NUS ≥ 2, to produce an upsampled digital split signal having a sampling rate of fS. In the frequency domain, the upsampled digital split signal includes NUS images of the complex tuned digital split signal equally spaced apart in the frequency range of 0 to fS, where fS is the effective sampling rate of the D/A converter 32-Y. An image selection filter 54 filters the upsampled digital split signal to select a desired one of the images of the complex tuned digital split signal and thereby provide a filtered split signal. More specifically, the image selection filter 54 is preferably programmable via one or more parameters (e.g., filter coefficients) such that a passband of the image selection filter 54 is centered at a desired filter tuning frequency. The filter tuning frequency is selected such that the desired image of the complex tuned digital split signal falls within the passband of the image selection filter 54.

    [0039] A digital quadrature modulator 56 performs quadrature modulation on the filtered split signal to provide the upconverted split signal (SUP,X-Y) output by the digital upconverter chain 36. In the frequency domain, quadrature modulation results in frequency translating, or frequency-shifting, the image of the complex tuned digital split signal in the filtered split signal by fQMOD, where fQMOD is a modulation frequency of the digital quadrature modulator 56, and converting the complex signal into a real signal. The modulation frequency (fQMOD) can be any desired frequency including zero. After digital quadrature modulation, the frequency-translated image of the complex tuned digital split signal is centered at the desired upconversion frequency for the digital upconverter chain 36.

    [0040] Notably, the digital quadrature modulator 56 may be configurable to operate on a definition of quadrature modulation as a+jb or a-jb. This may be desirable because, for example, different cellular communication standards (e.g., Code Division Multiple Access (CDMA) 2000 and 3rd Generation Partnership Project (3GPP)) may define quadrature modulation differently. Therefore, in order to accommodate different communication standards, the digital quadrature modulator 56 may be configurable in this manner. Alternatively, this configuration may be handled by a complex conjugate function prior to the complex tuner 52 that can be activated or deactivated as needed. Further, in one embodiment, the digital quadrature modulator 56 may be combined with the image selection filter 54.

    [0041] For more information regarding the digital upconverter chain 36 and some example implementations of the complex tuner 52, the upsampler 40, the image selection filter 54, and the digital quadrature modulator 56, the interested reader is directed to commonly owned and assigned U.S. Patent Application Publication No. 2010/0098191 A1, entitled METHODS AND SYSTEMS FOR PROGRAMMABLE DIGITAL UP-CONVERSION, filed on October 20, 2008 and published on April 22, 2010. For example, while the upsampler 40 and the image selection filter 54 may be implemented as separate components, they are not limited thereto. The upsampler 40 and the image selection filter 54 may alternatively be implemented together as a polyphase filter that performs both up-sampling and image selection filtering. As another example, the digital upconverter chain 36 may include multiple upsamplers 40 and image selection filters 54 arranged in a number of upsampling and filtering stages. Also, while not essential to the understanding of the present disclosure, for further information regarding digital upconversion, the interested reader is directed to commonly owned and assigned U.S. Patent Application serial number 13/490,801, entitled PROGRAMMABLE DIGITAL UP-CONVERSION FOR CONCURRENT MULTI-BAND SIGNALS, filed on June 7, 2012.

    [0042] The digital upconversion system 20 including the independent control of gain, phase, and delay of the upconverted split signals (SUP,1-1 through SUP,M-N) enables precise control of the gain, phase, and delay for each of the M frequency bands for each of the multi-band split signals (SMB-1 through SMB-N). One benefit of this precise control is that the gain, phase, and delay for each of the M frequency bands for each of the multi-band split signals (SMB-1 through SMB-N) can be configured such that the multi-band MOPA 18 operates at a desired operating point. This desired operating point may be selected to optimize one or more performance parameters (e.g., efficiency, linearity, and/or output power).

    [0043] The following acronyms are used throughout this disclosure.
    • 3GPP 3rd Generation Partnership Project
    • CDMA Code Division Multiple Access
    • D/A Digital-to-Analog
    • DAC Digital-to-Analog Converter
    • EER Envelope Elimination and Restoration
    • LINC Linear Amplification with Nonlinear Components
    • MOPA Multi-Order Power Amplifier
    • RCF Rate Change Filter
    • RF Radio Frequency


    [0044] Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the claims that follow.


    Claims

    1. A digital upconversion system (20) for an N-th order multi-band multi-order power amplifier, MOPA, (18) configured to amplify a multi-band signal (SMB-1,..,SMB-N) comprising N inputs (22-1,...,22-N) comprising a different input (22-1,...,22-N) per each of the order N, where N is greater than or equal to 2, and wherein the multi-band signal comprises M narrowband signals (SBB,1,...,SBB,M) in M frequency bands of the multi-band signal wherein, M is greater than or equal to 2, comprising:

    - per each frequency band of the M frequency bands of the multi-band signal:
    a digital signal splitter (26-1,...,26-M) configured to split a digital baseband signal (SBB,1,...,SBB,M) for the frequency band into N baseband split signals (SBB,1-1,...,SBB,1-N,...,SBB,M-1,...SBB,M-N) for the frequency band, each of the N baseband split signals for the frequency band being for a different order of the order N of the multi-band MOPA (18); and

    -- per each baseband split signal (SBB,1-1,...,SBB,1-N) for the frequency band of the N baseband split signals for the frequency band:
    a digital upconverter (28) configured to digitally upconvert the baseband split signal for the respective frequency band to a desired upconversion frequency to thereby provide an upconverted split signal (SUP,1-1,...,SUP,1-N) for the frequency band, the digital upconverter (28) comprising one or more calibration actuators (34, 28(1-1),...,28(1-N)) configured to independently control a gain (G1-1,...,G1-N), a phase (Φ1-1,...,Φ1-N), and a delay (T1-1,...,T1-N) of the upconverted split signal for the frequency band; and

    circuitry (30, 32) configured to process the upconverted split signals for the M frequency bands of the multi-band signal for each of the order N of the multi-band MOPA (18) to provide a plurality of multi-band split signals (SMB-1,...,SMB-N) for the plurality of inputs (22) of the multi-band MOPA (18),
    wherein the circuitry (30, 32) further comprises, for each order of the order N of the multi-band MOPA (18):

    - a digital combiner (30-1...,30-N) configured to digitally combine the upconverted split signals for the M frequency bands of the multi-band signal for the order of the multi-band MOPA (18) to provide a combined upconverted digital signal (SCOMB-1,...,SCOMB-N) for the respective order of the multi-band MOPA (18).


     
    2. The digital upconversion system (20) of claim 1 wherein the circuitry (30, 32) further comprises, for each order of the order N of the multi-band MOPA (18):
    a digital-to-analog converter (32-1,...,32-N) configured to digital-to-analog convert the combined upconverted digital signal for the order of the multi-band MOPA (18) to provide a combined upconverted analog signal (SANALOG-1,...,SANALOG-N) for the order of the multi-band MOPA (18).
     
    3. The digital upconversion system (20) of claim 1 wherein the one or more calibration actuators (34; 44, 46, 48, 50) of each of the digital upconverters (28) for the N baseband split signals for each of the M frequency bands of the multi-band signal are configured to independently control the gain, the phase, and the delay for each of the M frequency bands of the multi-band signal for each of the plurality of multi-band split signals such that one or more performance parameters of the multi-band MOPA (18) are optimized, wherein the one or more performance parameters comprise efficiency and at least one of a group consisting of linearity and output power.
     
    4. The digital upconversion system (20) of claim 1 wherein the one or more calibration actuators (34; 44, 46, 48, 50) of each of the digital upconverters (28) for the N baseband split signals for each of the M frequency bands of the multi-band signal are configured to independently control the gain, the phase, and the delay for each of the M frequency bands of the multi-band signal for each of the plurality of multi-band split signals such that an efficiency of the multi-band MOPA (18) is maximized while maintaining sufficient linearity to satisfy one or more predefined requirements for the multi-band MOPA (18).
     
    5. A system (16), comprising:

    the digital upconversion system (20) according to any one of the preceding claims; and

    the multi-band MOPA (18) being configured to amplify the multi-band signal (SMB-1,...,SMB-N) split across the plurality of inputs (22) of the multi-band MOPA (18) as the plurality of multi-band split signals.


     
    6. The system (16) of claim 5 further comprising, for each order of the order N of the multi-band MOPA (18):

    analog circuitry (24-1,...,24-N) configured to process a combined upconverted analog signal (SANALOG-1,...,SANALOG-N) for the order of the multi-band MOPA (18) to provide one of the plurality of multi-band split signals for one of the plurality of inputs (22) of the multi-band MOPA (18) that corresponds to the order of the multi-band MOPA (18).


     
    7. A method for digital upconversion for an N-th order multi-band multi-order power amplifier, MOPA, (18) configured to amplify a multi-band signal (SMB-1,...,SMB-N) comprising N inputs (22-1,...,22-N) comprising a different input (22-1,...,22-N) per each of the order N, where N is greater than or equal to 2, and wherein the multi-band signal comprises M narrowband signals (SBB,1,...,SBB,M) in M frequency bands of the multi-band signal wherein, M is greater than or equal to 2, comprising the steps of:

    - per each frequency band of M frequency bands of the multi-band signal:
    splitting a digital baseband signal (SBB,1,...,SBB,M) for the respective frequency band into N baseband split signals (SBB,1-1,...,SBB,1-N,...,SBB,M-1,...,SBB,M-N) for the frequency band, each of the N baseband split signals for the frequency band being for a different order of the order N of the multi-band MOPA; and

    -- per each baseband split signal (SBB,1-1,...,SBB,1-N) for the frequency band of the N baseband split signals for the frequency band:

    digitally up-converting the baseband split signal for the respective frequency band to a desired upconversion frequency to thereby provide an upconverted split signal (SUP,1-1,...,SUP,1-N) for the frequency band, and

    independently controlling a gain (G1-1,...,G1-N), a phase (Φ1-1,...,Φ1-N), and a delay (τ1-1,...,τ1-N) of the upconverted split signal for the frequency band; and

    processing the upconverted split signals for the M frequency bands of the multi-band signal for each of the order N of the multi-band MOPA (18) to provide a plurality of multi-band split signals (SMB-1,...,SMB-N) for a plurality of inputs (22) of the multi-band MOPA (18),
    wherein the processing of the upconverted split signals comprises digitally combining the upconverted split signals for the M frequency bands of the multi-band signal for the order of the multi-band MOPA (18) to provide a combined upconverted digital signal (SCOMB-1,...,SCOMB-N) for the order of the multi-band MOPA (18).


     
    8. The method of claim 7 wherein independently controlling the gain, phase, and delay for each of the M frequency bands of the multi-band signal comprises:
    independently controlling the gain, phase, and delay for each of the M frequency bands of the multi-band signal such that one or more performance parameters of the multi-band MOPA (18) are optimized, wherein the one or more performance parameters comprise efficiency and at least one of a group consisting of linearity and output power.
     
    9. The method of claim 7 wherein controlling the gain, phase, and delay for each of the M frequency bands of the multi-band signal comprises:
    independently controlling the gain, phase, and delay for each of the M frequency bands of the multi-band signal such that an efficiency of the multi-band MOPA (18) is maximized while maintaining sufficient linearity to satisfy one or more predefined requirements for the multi-band MOPA (18).
     
    10. The method of claim 7 further comprising, for each order of the N orders of the multi-band MOPA (18):
    digital-to-analog converting the combined upconverted digital signal for the order of the MOPA (18) to provide a combined upconverted analog signal (SANALOG-1,...,SANALOG-N) for the order of the multi-band MOPA (18).
     
    11. The method of claim 10 wherein controlling the gain, phase, and delay of the upconverted split signal of each of the M frequency bands of the multi-band signal for each of the N orders of the multi-band MOPA (18) is such that one or more performance parameters of the multi-band MOPA (18) are optimized, wherein the one or more performance parameters comprise efficiency and at least one of a group consisting of linearity and output power.
     
    12. The method of claim 10 wherein controlling the gain, phase, and delay of the upconverted split signal of each of the M frequency bands of the multi-band signal for each of the N orders of the multi-band MOPA (18) is such that an efficiency of the multi-band MOPA (18) is maximized while maintaining sufficient linearity to satisfy one or more predefined requirements for the multi-band MOPA (18).
     
    13. The method of any one of claims 7 to 12, further comprising:

    independently controlling a gain, phase, and delay for each of M frequency bands of the multi-band signal for each of at least N-1 of the plurality of multi-band split signals; and

    amplifying, via the multi-band MOPA (18), the multi-band signal split across the plurality of inputs (22) of the multi-band MOPA (18) as a plurality of multi-band split signals.


     
    14. The method of claim 13 further comprising, for each order of the N orders of the multi-band MOPA (18):
    processing, via analog circuitry (24-1,...,24-N), the combined upconverted analog signal for the order of the multi-band MOPA (18) to provide one of the plurality of multi-band split signals for one of the plurality of inputs (22) of the multi-band MOPA (18) that corresponds to the respective order of the multi-band MOPA (18).
     


    Ansprüche

    1. Digitales Aufwärtswandlungssystem (20) für einen mehrbandigen Leistungsverstärker mehrfacher Ordnung, MOPA, (18) der N-ten Ordnung, der konfiguriert ist, um ein Mehrbandsignal (SMB-1,...,SMB-N) zu verstärken, umfassend N-Eingänge (22-1,...,22-N), umfassend einen anderen Eingang (22-1,...,22-N) für jede der Ordnungen N, wobei N größer oder gleich 2 ist, und wobei das Mehrbandsignal M schmalbandige Signale (SBB,1,...,SBB,M) in M-Frequenzbändern des Mehrbandsignals umfasst, wobei M größer oder gleich 2 ist, umfassend:

    - pro Frequenzband der M-Frequenzbänder des Mehrbandsignals: einen digitalen Signalaufteiler (26-1,...,26-M), der konfiguriert ist, um ein digitales Basisbandsignal (SBB,1,...,SBB,M) für das Frequenzband in N-Basisband-Teilungssignale (SBB,1-1,...,SBB,1-N,...,SBB,M-1,...,SBB,M-N) für das Frequenzband aufzuteilen, wobei jedes der N-Basisband-Teilungssignale für das Frequenzband eine unterschiedliche Ordnung der Ordnung N des mehrbandigen MOPA (18) ist; und

    - pro Basisband-Teilungssignal (SBB,1-1,...,SBB,1-N) für das Frequenzband der N-Basisband-Teilungssignale für das Frequenzband:

    einen digitalen Aufwärtswandler (28), der konfiguriert ist, um das Basisband-Teilungssignal für das jeweilige Frequenzband digital auf eine gewünschte Aufwärtswandlungsfrequenz aufwärtszuwandeln, um dadurch ein aufwärtsgewandeltes Teilungssignal (SUP,1-1,... , SUP,1-N) für das Frequenzband bereitzustellen, wobei der digitale Aufwärtswandler (28) einen oder mehrere Kalibrierungsaktoren (34, 28(1-1),...,28(1-N)) umfasst, die konfiguriert sind, um eine Verstärkung (G1-1,...,G1-N), eine Phase (Φ1-1,...,Φ1-N) und eine Verzögerung (T1-1,...,T1-N) des aufwärtsgewandelten Teilungssignals für das Frequenzband unabhängig zu steuern; und

    eine Schaltung (30, 32), die konfiguriert ist, um die aufwärtsgewandelten Teilungssignale für die M-Frequenzbänder des Mehrbandsignals für jede der Ordnungen N des mehrbandigen MOPA (18) zu verarbeiten, um eine Vielzahl von Mehrband-Teilungssignalen (SMB-1,...,SMB-N) für die Vielzahl von Eingängen (22) des mehrbandigen MOPA (18) bereitzustellen, wobei die Schaltung (30, 32) ferner für jede der Ordnung N des mehrbandigen MOPA (18) umfasst:

    - einen digitalen Kombinierer (30-1..., 30-N), der konfiguriert ist, um die aufwärtsgewandelten Teilungssignale für die M-Frequenzbänder des Mehrbandsignals für die Ordnung des mehrbandigen MOPA (18) digital zu kombinieren, um ein kombiniertes aufwärtsgewandeltes digitales Signal (SCOMB-1,...,SCOMB-N) für die jeweilige Ordnung des mehrbandigen MOPA (18) bereitzustellen.


     
    2. Digitales Aufwärtswandlungssystem (20) nach Anspruch 1, wobei die Schaltung (30, 32) ferner für jede Ordnung der Ordnung N des mehrbandigen MOPA (18) umfasst:
    einen Digital-zu-Analog-Wandler (32-1,...,32-N), der konfiguriert ist, um das kombinierte aufwärtsgewandelte digitale Signal für die Ordnung des mehrbandigen MOPA (18) digital-zu-analog zu wandeln, um ein kombiniertes aufwärtsgewandeltes analoges Signal (SANALOG-1,...,SANALOG-N) für die Ordnung des mehrbandigen MOPA (18) bereitzustellen.
     
    3. Digitales Aufwärtswandlungssystem (20) nach Anspruch 1, wobei der eine oder die mehreren Kalibrierungsaktoren (34; 44, 46, 48, 50) von jedem der digitalen Aufwärtswandler (28) für die N-Basisband-Teilungssignale für jedes der M-Frequenzbänder des Mehrbandsignals konfiguriert sind, um die Verstärkung, die Phase und die Verzögerung für jedes der M-Frequenzbänder des Mehrbandsignals für jedes der Vielzahl von Mehrband-Teilungssignalen unabhängig zu steuern, sodass ein oder mehrere Leistungsparameter des mehrbandigen MOPA (18) optimiert sind, wobei die einen oder die mehreren Leistungsparameter den Wirkungsgrad und mindestens eines aus einer Gruppe bestehend aus Linearität und Ausgangsleistung umfassen.
     
    4. Digitales Aufwärtswandlungssystem (20) nach Anspruch 1, wobei der eine oder die mehreren Kalibrierungsaktoren (34; 44, 46, 48, 50) von jedem der digitalen Aufwärtswandler (28) für die N-Basisband-Teilungssignale für jedes der M-Frequenzbänder des Mehrbandsignals konfiguriert sind, um die Verstärkung, die Phase und die Verzögerung für jedes der M-Frequenzbänder des Mehrbandsignals für jedes der Vielzahl von Mehrband-Teilungssignalen unabhängig zu steuern, sodass ein Wirkungsgrad des mehrbandigen MOPA (18) maximiert wird, während eine ausreichende Linearität beibehalten wird, um eine oder mehrere vorgegebene Anforderungen an das mehrbandige MOPA (18) zu erfüllen.
     
    5. System (16), umfassend:

    das digitale Aufwärtswandlungssystem (20) nach einem der vorhergehenden Ansprüche; und

    das mehrbandige MOPA (18), das konfiguriert ist, um das Mehrbandsignal (SMB-1,...,SMB-N) zu verstärken, das über die Vielzahl von Eingängen (22) des mehrbandigen MOPA (18) als die Vielzahl von Mehrband-Teilungssignalen aufgeteilt ist.


     
    6. System (16) nach Anspruch 5, ferner umfassend für jede Ordnung der Ordnung N des mehrbandigen MOPA (18):
    eine analoge Schaltung (24-1,...,24-N), die konfiguriert ist, um ein kombiniertes aufwärtsgewandeltes Analogsignal (SANALOG-1,..., SANALOG-N) für die Ordnung des mehrbandigen MOPA (18) zu verarbeiten, um eines der Vielzahl von Mehrband-Teilungssignalen für einen der Vielzahl von Eingängen (22) des mehrbandigen MOPA (18) bereitzustellen, was der Ordnung des mehrbandigen MOPA (18) entspricht.
     
    7. Verfahren zur digitalen Aufwärtswandlung für einen mehrbandigen Leistungsverstärker mehrfacher Ordnung, MOPA, (18) der N-ten Ordnung, der konfiguriert ist, um ein Mehrbandsignal (SMB-1,...,SMB-N) zu verstärken, umfassend N-Eingänge (22-1,...,22-N), umfassend einen anderen Eingang (22-1,...,22-N) für jede der Ordnungen N, wobei N größer oder gleich 2 ist, und wobei das Mehrbandsignal M schmalbandige Signale (SBB,1,...,SBB,M) in M-Frequenzbändern des Mehrbandsignals umfasst, wobei M größer oder gleich 2 ist, umfassend die folgenden Schritte:

    - pro Frequenzband von M-Frequenzbändern des Mehrbandsignals: Aufteilen eines digitalen Basisbandsignals (SBB,1,...,SBB,M) für das jeweilige Frequenzband in N-Basisband-Teilungssignale (SBB,1-1,...,SBB,1-N,...,SBB,M-1,...,SBB,M-N) für das Frequenzband, wobei jedes der N-Basisband-Teilungssignale für das Frequenzband für eine andere Ordnung der Ordnung N des mehrbandigen MOPA steht; und

    - pro Basisband-Teilungssignal (SBB,1-1,...,SBB,1-N) für das Frequenzband des N-Basisband-Teilungssignals für das Frequenzband:

    digitales Aufwärtswandeln des Basisband-Teilungssignals für das jeweilige Frequenzband in eine gewünschte Aufwärtswandlungsfrequenz, um dadurch ein aufwärtsgewandeltes Teilungssignal (SUP,1-1, ...,SUP,1-N) für das Frequenzband bereitzustellen, und

    unabhängiges Steuern einer Verstärkung (G1-1,...,G1-n), einer Phase (Φ1-1,...,Φ1-N) und einer Verzögerung (T1-1,...,T1-N) des aufwärtsgewandelten Teilungssignals für das Frequenzband; und

    Verarbeiten des aufwärtsgewandelten Teilungssignals für die M-Frequenzbänder des Mehrbandsignals für jede der Ordnungen N des mehrbandigen MOPA (18), um eine Vielzahl von Mehrband-Teilungssignalen (SMB-1,...,SMB-N) für eine Vielzahl von Eingängen (22) des mehrbandigen MOPA (18) bereitzustellen,

    wobei das Verarbeiten der aufwärtsgewandelten Teilungssignale das digitale Kombinieren der aufwärtsgewandelten Teilungssignale für die M-Frequenzbänder des Mehrbandsignals für die Ordnung des mehrbandigen MOPA (18) umfasst, um ein kombiniertes aufwärtsgewandeltes digitales Signal (SCOMB-1,...,SCOMB-N) für die Ordnung des mehrbandigen MOPA (18) bereitzustellen.


     
    8. Verfahren nach Anspruch 7, wobei das unabhängige Steuern der Verstärkung, Phase und Verzögerung für jedes der M-Frequenzbänder des Mehrbandsignals umfasst:
    unabhängiges Steuern der Verstärkung, Phase und Verzögerung für jedes der M-Frequenzbänder des Mehrbandsignals, sodass ein oder mehrere Leistungsparameter des mehrbandigen MOPA (18) optimiert werden, wobei der eine oder die mehreren Leistungsparameter den Wirkungsgrad und mindestens eines aus einer Gruppe bestehend aus Linearität und Ausgangsleistung umfassen.
     
    9. Verfahren nach Anspruch 7, wobei das Steuern der Verstärkung, Phase und Verzögerung für jedes der M-Frequenzbänder des Mehrbandsignals umfasst:
    unabhängiges Steuern der Verstärkung, Phase und Verzögerung für jedes der M-Frequenzbänder des Mehrbandsignals, sodass ein Wirkungsgrad des mehrbandigen MOPA (18) maximiert wird, während eine ausreichende Linearität beibehalten wird, um eine oder mehrere vorgegebene Anforderungen für das mehrbandige MOPA (18) zu erfüllen.
     
    10. Verfahren nach Anspruch 7, ferner umfassend für jede Ordnung der N-Ordnungen des mehrbandigen MOPA (18):
    Digital-zu-Analog-Wandeln des kombinierten aufwärtsgewandelten digitalen Signals für die Ordnung des MOPA (18), um ein kombiniertes aufwärtsgewandeltes analoges Signal (SANALOG-1,...,SANALOG-N) für die Ordnung des mehrbandigen MOPA (18) bereitzustellen.
     
    11. Verfahren nach Anspruch 10, wobei das Steuern der Verstärkung, Phase und Verzögerung des aufwärtsgewandelten Teilungssignals jedes der M-Frequenzbänder des Mehrbandsignals für jede der N-Ordnungen des mehrbandigen MOPA (18) derart ist, dass ein oder mehrere Leistungsparameter des mehrbandigen MOPA (18) optimiert werden, wobei der eine oder die mehreren Leistungsparameter den Wirkungsgrad und mindestens eines aus einer Gruppe bestehend aus Linearität und Ausgangsleistung umfassen.
     
    12. Verfahren nach Anspruch 10, wobei das Steuern der Verstärkung, Phase und Verzögerung des aufwärtsgewandelten Teilungssignals jedes der M-Frequenzbänder des Mehrbandsignals für jede der N-Ordnungen des mehrbandigen MOPA (18) derart ist, dass ein Wirkungsgrad des mehrbandigen MOPA (18) maximiert wird, während eine ausreichende Linearität beibehalten wird, um eine oder mehrere vorgegebene Anforderungen für das mehrbandige MOPA (18) zu erfüllen.
     
    13. Verfahren nach einem der Ansprüche 7 bis 12, ferner umfassend:

    unabhängiges Steuern einer Verstärkung, Phase und Verzögerung für jedes der M-Frequenzbänder des Mehrbandsignals für jedes von mindestens N-1 aus der Vielzahl von Mehrband-Teilungssignalen; und

    Verstärken des Mehrbandsignals, das über die Vielzahl von Eingängen (22) des mehrbandigen MOPA (18) verteilt ist, über das mehrbandige MOPA (18) als eine Vielzahl von Mehrband-Teilungssignalen.


     
    14. Verfahren nach Anspruch 13, ferner umfassend für jede Ordnung der N-Ordnungen des mehrbandigen MOPA (18):
    Verarbeiten, über eine analoge Schaltung (24-1,...,24-N), des kombinierten aufwärtsgewandelten Analogsignals für die Ordnung des mehrbandigen MOPA (18), um eines der Vielzahl von Mehrband-Teilungssignalen für einen der Vielzahl von Eingängen (22) des mehrbandigen MOPA (18) bereitzustellen, was der jeweiligen Ordnung des mehrbandigen MOPA (18) entspricht.
     


    Revendications

    1. Système de conversion ascendante numérique (20) pour un amplificateur de puissance multi-ordre, MOPA, multi-bande de N-ème ordre (18) configuré pour amplifier un signal multi-bande (SMB-1,...,SMB-N) comprenant N entrées (22-1,...,22-N) comprenant une entrée différente (22-1,...,22-N) pour chacun parmi l'ordre N, où N est supérieur ou égal à 2, et dans lequel le signal multi-bande comprend M signaux de bande étroite (SBB,1,...,SBB,M) dans M bandes de fréquence du signal multi-bande dans lequel, M est supérieur ou égal à 2, comprenant :

    - pour chaque bande de fréquence des M bandes de fréquence du signal multi-bande :
    un diviseur de signal numérique (26-1,...,26-M) configuré pour diviser un signal numérique de bande de base (SBB,1,...,SBB,M) pour la bande de fréquence en N signaux divisés de bande de base (SBB,1-1,...,SBB,1-N,...,SBB,M-1,...,SBB,M-N) pour la bande de fréquence, chacun des N signaux divisés de bande de base pour la bande de fréquence étant pour un ordre différent de l'ordre N du MOPA multi-bande (18) ; et

    - pour chaque signal divisé de bande de base (SBB,1-1,...,SBB,1-N) pour la bande de fréquence des N signaux divisés de bande de base pour la bande de fréquence :

    un convertisseur ascendant numérique (28) configuré pour convertir numériquement de manière ascendante le signal divisé de bande de base pour la bande de fréquence respective à une fréquence de conversion ascendante souhaitée pour fournir de ce fait un signal divisé converti de manière ascendante (SUP,1-1,...,SUP,1-N) pour la bande de fréquence, le convertisseur ascendant numérique (28) comprenant un ou plusieurs actionneurs d'étalonnage (34, 28(1-1),...,28(1-N)) configurés pour commander indépendamment un gain (G1-1,...,G1-N), une phase (Φ1-1,...,Φ1-N) et un retard (T1-1,...,T1-N) du signal divisé converti de manière ascendante pour la bande de fréquence ; et

    un circuit (30, 32) configuré pour traiter les signaux divisés convertis de manière ascendante pour les M bandes de fréquence du signal multi-bande pour chacun parmi l'ordre N du MOPA multi-bande (18) pour fournir une pluralité de signaux divisés multi-bandes (SMB-1,...,SMB-N) pour la pluralité d'entrées (22) du MOPA multi-bande (18),

    dans lequel le circuit (30, 32) comprend en outre, pour chaque ordre parmi l'ordre N du MOPA multi-bande (18) :

    - un combineur numérique (30-1...,30-N) configuré pour combiner numériquement les signaux divisés convertis de manière ascendante pour les M bandes de fréquence du signal multi-bande pour l'ordre du MOPA multi-bande (18) pour fournir un signal numérique converti de manière ascendante combiné (SCOMB-1,..,SCOMB-N) pour l'ordre respectif du MOPA multi-bande (18).


     
    2. Système de conversion ascendante numérique (20) selon la revendication 1 dans lequel le circuit (30, 32) comprend en outre, pour chaque ordre parmi l'ordre N du MOPA multi-bande (18) :
    un convertisseur numérique-vers-analogique (32-1,...,32-N) configuré pour convertir de numérique vers analogique le signal numérique converti de manière ascendante combiné pour l'ordre du MOPA multi-bande (18) pour fournir un signal analogique converti de manière ascendante combiné (SANALOG-1,...,SANALOG-N) pour l'ordre du MOPA multi-bande (18).
     
    3. Système de conversion ascendante numérique (20) selon la revendication 1 dans lequel le ou les actionneurs d'étalonnage (34 ; 44, 46, 48, 50) de chacun des convertisseurs ascendants numériques (28) pour les N signaux divisés de bande de base pour chacune des M bandes de fréquence du signal multi-bande sont configurés pour commander indépendamment le gain, la phase et le retard pour chacune des M bandes de fréquence du signal multi-bande pour chacun parmi la pluralité de signaux divisés multi-bandes de sorte qu'un ou plusieurs paramètres de performance du MOPA multi-bande (18) sont optimisés, dans lequel le ou les paramètres de performance comprennent un rendement et au moins l'un parmi un groupe constitué de linéarité et de puissance de sortie.
     
    4. Système de conversion ascendante numérique (20) selon la revendication 1 dans lequel le ou les actionneurs d'étalonnage (34 ; 44, 46, 48, 50) de chacun des convertisseurs ascendants numériques (28) pour les N signaux divisés de bande de base pour chacune des M bandes de fréquence du signal multi-bande sont configurés pour commander indépendamment le gain, la phase et le retard pour chacune des M bandes de fréquence du signal multi-bande pour chacun parmi la pluralité de signaux divisés multi-bandes de sorte qu'un rendement du MOPA multi-bande (18) est maximisé tout en maintenant une linéarité suffisante pour répondre à une ou plusieurs exigences prédéfinies pour le MOPA multi-bande (18).
     
    5. Système (16), comprenant :

    le système de conversion ascendante numérique (20) selon l'une quelconque des revendications précédentes ; et

    le MOPA multi-bande (18) étant configuré pour amplifier le signal multi-bande (SMB-1,...,SMB-N) divisé à travers la pluralité d'entrées (22) du MOPA multi-bande (18) en guise de pluralité de signaux divisés multi-bandes.


     
    6. Système (16) selon la revendication 5 comprenant en outre, pour chaque ordre parmi l'ordre N du MOPA multi-bande (18) :
    un circuit analogique (24-1,...,24-N) configuré pour traiter un signal analogique converti de manière ascendante combiné (SANALOG-1,...,SANALOG-N) pour l'ordre du MOPA multi-bande (18) pour fournir l'un parmi la pluralité de signaux divisés multi-bandes pour l'une parmi la pluralité d'entrées (22) du MOPA multi-bande (18) qui correspond à l'ordre du MOPA multi-bande (18).
     
    7. Procédé de conversion ascendante numérique pour un amplificateur de puissance multi-ordre, MOPA, multi-bande de N-ème ordre (18) configuré pour amplifier un signal multi-bande (SMB-1,...,SMB-N) comprenant N entrées (22-1,...,22-N) comprenant une entrée différente (22-1,...,22-N) pour chacun parmi l'ordre N, où N est supérieur ou égal à 2, et dans lequel le signal multi-bande comprend M signaux de bande étroite (SBB,1,...,SBB,M) dans M bandes de fréquence du signal multi-bande dans lequel, M est supérieur ou égal à 2, comprenant les étapes consistant à :

    - pour chaque bande de fréquence parmi M bandes de fréquence du signal multi-bande :
    diviser un signal numérique de bande de base (SBB,1,...,SBB,M) pour la bande de fréquence respective en N signaux divisés de bande de base (SBB,1-1, ...,SBB,1-N,...,SBB,M-1,...,SBB,M-N) pour la bande de fréquence, chacun des N signaux divisés de bande de base pour la bande de fréquence étant pour un ordre différent de l'ordre N du MOPA multi-bande ; et

    - pour chaque signal divisé de bande de base (SBB,1-1,...,SBB,1-N) pour la bande de fréquence des N signaux divisés de bande de base pour la bande de fréquence :

    convertir numériquement de manière ascendante le signal divisé de bande de base pour la bande de fréquence respective à une fréquence de conversion ascendante souhaitée pour fournir de ce fait un signal divisé converti de manière ascendante (SUP,1-1,...,SUP,1-N) pour la bande de fréquence, et

    commander indépendamment un gain (G1-1,...,G1-n), une phase (Φ1-1,...,Φ1-N) et un retard (T1-1,...,T1-N) du signal divisé converti de manière ascendante pour la bande de fréquence ; et

    traiter les signaux divisés convertis de manière ascendante pour les M bandes de fréquence du signal multi-bande pour chacun parmi l'ordre N du MOPA multi-bande (18) pour fournir une pluralité de signaux divisés multi-bandes (SMB-1,...,SMB-N) pour une pluralité d'entrées (22) du MOPA multi-bande (18),

    dans lequel le traitement des signaux divisés convertis de manière ascendante comprend le fait de combiner numériquement les signaux divisés convertis de manière ascendante pour les M bandes de fréquence du signal multi-bande pour l'ordre du MOPA multi-bande (18) pour fournir un signal numérique converti de manière ascendante combiné (SCOMB-1,...,SCOMB-N) pour l'ordre du MOPA multi-bande (18).


     
    8. Procédé selon la revendication 7 dans lequel le fait de commander indépendamment le gain, la phase et le retard pour chacune des M bandes de fréquence du signal multi-bande comprend :
    le fait de commander indépendamment le gain, la phase et le retard pour chacune des M bandes de fréquence du signal multi-bande de sorte qu'un ou plusieurs paramètres de performance du MOPA multi-bande (18) sont optimisés, dans lequel le ou les paramètres de performance comprennent le rendement et au moins l'un parmi un groupe constitué de linéarité et de puissance de sortie.
     
    9. Procédé selon la revendication 7 dans lequel le fait de commander le gain, la phase et le retard pour chacune des M bandes de fréquence du signal multi-bande comprend :
    le fait de commander indépendamment le gain, la phase et le retard pour chacune des M bandes de fréquence du signal multi-bande de sorte qu'un rendement du MOPA multi-bande (18) est maximisé tout en maintenant une linéarité suffisante pour répondre à une ou plusieurs exigences prédéfinies pour le MOPA multi-bande (18).
     
    10. Procédé selon la revendication 7 comprenant en outre, pour chaque ordre des N ordres du MOPA multi-bande (18) :
    le fait de convertir de numérique vers analogique le signal numérique converti de manière ascendante combiné pour l'ordre du MOPA (18) pour fournir un signal analogique converti de manière ascendante combiné (SANALOG-1,...,SANALOG-N) pour l'ordre du MOPA multi-bande (18).
     
    11. Procédé selon la revendication 10 dans lequel le fait de commander le gain, la phase et le retard du signal divisé converti de manière ascendante de chacune des M bandes de fréquence du signal multi-bande pour chacun des N ordres du MOPA multi-bande (18) est tel qu'un ou plusieurs paramètres de performance du MOPA multi-bande (18) sont optimisés, dans lequel le ou les paramètres de performance comprennent le rendement et au moins l'un parmi un groupe constitué de linéarité et de puissance de sortie.
     
    12. Procédé selon la revendication 10 dans lequel le fait de commander le gain, la phase et le retard du signal divisé converti de manière ascendante de chacune des M bandes de fréquence du signal multi-bande pour chacun des N ordres du MOPA multi-bande (18) est tel qu'un rendement du MOPA multi-bande (18) est maximisé tout en maintenant une linéarité suffisante pour répondre à une ou plusieurs exigences prédéfinies pour le MOPA multi-bande (18).
     
    13. Procédé selon l'une quelconque des revendications 7 à 12, comprenant en outre :

    le fait de commander indépendamment un gain, une phase et un délai pour chacune parmi M bandes de fréquence du signal multi-bande pour chacun parmi au moins N-1 de la pluralité de signaux divisés multi-bandes ; et

    l'amplification, via le MOPA multi-bande (18), du signal multi-bande divisé à travers la pluralité d'entrées (22) du MOPA multi-bande (18) en tant que pluralité de signaux divisés multi-bandes.


     
    14. Procédé selon la revendication 13 comprenant en outre, pour chaque ordre parmi les N ordres du MOPA multi-bande (18) :
    le traitement, via un circuit analogique (24-1,...,24-N), du signal analogique converti de manière ascendante combiné pour l'ordre du MOPA multi-bande (18) pour fournir l'un parmi la pluralité de signaux divisés multi-bandes pour l'une parmi la pluralité d'entrées (22) du MOPA multi-bande (18) qui correspond à l'ordre respectif du MOPA multi-bande (18).
     




    Drawing












    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description