(19)
(11)EP 2 880 966 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
23.09.2020 Bulletin 2020/39

(21)Application number: 13745306.4

(22)Date of filing:  25.07.2013
(51)International Patent Classification (IPC): 
H05H 1/34(2006.01)
(86)International application number:
PCT/US2013/051989
(87)International publication number:
WO 2014/025541 (13.02.2014 Gazette  2014/07)

(54)

ASYMMETRIC CONSUMABLE FOR A PLASMA ARC TORCH

ASYMMETRISCHES VERBRAUCHSGUT FÜR EINEN PLASMALICHTBOGENBRENNER

CONSOMMABLE ASYMÉTRIQUE POUR UN CHALUMEAU À ARC PLASMA


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 06.08.2012 US 201213567260

(43)Date of publication of application:
10.06.2015 Bulletin 2015/24

(73)Proprietor: Hypertherm, Inc.
Hanover, NH 03755 (US)

(72)Inventor:
  • TWAROG, Peter
    Meriden, NH 03770 (US)

(74)Representative: Barker Brettell LLP 
100 Hagley Road Edgbaston
Birmingham B16 8QQ
Birmingham B16 8QQ (GB)


(56)References cited: : 
EP-A1- 0 634 887
FR-A1- 2 672 459
US-A- 4 970 364
WO-A1-01/05198
US-A- 3 740 522
US-B1- 6 262 386
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates generally to one or more asymmetric consumables usable in a plasma arc torch to cut a surface of a workpiece with at least one internal corner.

    BACKGROUND OF THE INVENTION



    [0002] Thermal processing torches, such as plasma arc torches, are widely used in the heating, cutting, gouging and marking of materials. A plasma arc torch generally includes an electrode, a nozzle having a central exit orifice mounted within a torch body, electrical connections, passages for cooling, and passages for arc control fluids (e.g., plasma gas). Optionally, a swirl ring is employed to control fluid flow patterns in the plasma chamber formed between the electrode and the nozzle. In some torches, a retaining cap can be used to maintain the nozzle and/or swirl ring in the plasma arc torch. In operation, the torch produces a plasma arc, which is a constricted jet of an ionized gas with high temperature and sufficient momentum to assist with removal of molten metal.

    [0003] A problem with existing plasma arc torches, including handheld plasma arc torches, is that they have difficulties flush cutting a workpiece having one or more internal corners due to the axial configuration of the torches. As shown in FIG. 1, a conventional plasma arc torch 100, which includes a rotational symmetric torch tip 102, cannot make a flush cut in the workpiece along the desired path 104. Specifically, the plasma arc torch 100 has difficulty cutting off the protruding flange 106 as close as possible against the horizontal surface 107 of the base 108 without cutting below the horizontal surface 107. Instead, the best cut achievable by the plasma arc torch 100 is indicated by the path 110. As a result, secondary operations, such as grinding, are required to remove the excess workpiece section 112 to achieve the desired flush cut 104. In addition, the closer the plasma arc torch 100 directs a plasma arc flow to the corner of the workpiece, the more likely the arc can inadvertently damage the base 108, such as extending the cut below the horizontal surface 107 of the base 108 along the path 114. Yet another limitation of the plasma arc torch 100 is its inability to ensure that a cut in a workpiece corner is consistently reproducible. For example, the plasma arc torch 100 does not have any positioning mechanism to ensure that the same cut can be made at the same relative location in the corners of different workpieces.

    [0004] EP 0 634 887 A1 discloses a welding plasma arc torch wherein the plasma arc is emitted perpendicularly to the longitudinal axis of the torch.

    [0005] US 3,740,552 discloses a plasma arc torch wherein the plasma is emitted at an angle, preferably between 45° and 90°, relative to the torch axis for coating interiors of pipes.

    [0006] WO 01/05198 A1 and US 4,970,364 disclose torches for plasma spraying wherein the plasma arc is emitted in a direction non parallel to the torch axis.

    SUMMARY OF THE INVENTION



    [0007] Thus, systems and methods are needed to perform flush cutting operations close to an internal corner of a workpiece while minimizing secondary finishing and avoid inflicting damage to any remaining portions of the workpiece. In addition, systems and methods are needed to ensure that cuts are repeatable and reproducible. These systems and methods can be used in many industrial applications, such as to perform flush cutting in a cargo trailer or ship hull having many internal compartments.

    [0008] In one aspect, the present invention provides a consumable set according to claim 1. The provided consumable set is usable in a plasma arc torch to direct a plasma arc to a processing surface of a workpiece. The consumable set includes a nozzle having: 1) a nozzle body defining a longitudinal axis extending therethrough, and 2) a nozzle exit orifice, disposed in the nozzle body, for constricting the plasma arc. The nozzle exit orifice defines an exit orifice axis oriented at a non-zero angle relative to the longitudinal axis. The nozzle also includes an alignment surface parallel to the exit orifice axis. The alignment surface is dimensioned to align the exit orifice such that the plasma arc impinges orthogonally on the processing surface.

    [0009] In the nozzle of the present invention, the alignment surface is configured to lay at least substantially flush against a guiding surface that is angled relative to the processing surface of the workpiece. The guiding surface can be a portion of a template attachable to the workpiece or the plasma arc torch. In the nozzle of the present invention, the alignment surface is parallel to the exit orifice axis. The alignment surface, in other examples not being part of the invention, can also be within about 10 degrees from being parallel to the exit orifice axis.

    [0010] In the present invention, the nozzle further includes a second alignment surface angled relative to the alignment surface. The second alignment surface, in cooperation with the alignment surface, aligns the plasma arc to impinge orthogonally on the processing surface. The nozzle can also include a curved surface for interconnecting the alignment surface and the second alignment surface. The second alignment surface is configured to contact the processing surface. At least one of the alignment surface or the second alignment surface can be located on an external surface of a nozzle.

    [0011] In some embodiments, the nozzle includes a third alignment surface angled relative to the alignment surface and the second alignment surface. The third alignment surface, in cooperation with the alignment surface and the second alignment surface, aligns the plasma arc to impinge orthogonally on the processing surface. The third alignment surface can be configured to contact a second guiding surface angled relative to the guiding surface and the processing surface of the workpiece.

    [0012] In some embodiments, the consumable set further includes a shield having at least one of the alignment surface, the second alignment surface or the third alignment surface.

    [0013] In some embodiments, the alignment surface includes a rounded portion. The nozzle exit orifice can define an interior opening and an exterior opening along the exit orifice axis. For such a configuration, the distance from a first point on a geometric arc defined by the rounded portion of the alignment surface to the center of the exterior opening of the nozzle exit orifice is at least substantially equal to the distance from a second point on the geometric arc of the rounded portion of the alignment surface to the center of the exterior opening of the nozzle exit orifice. The center of the exterior opening of the nozzle exit orifice can be less than about 0.64 cm (0.25 inches) from the alignment surface. The exterior opening of the nozzle exit orifice can be located on the second alignment surface angled relative to the alignment surface.

    [0014] In some embodiments, the nozzle exit orifice is curved or straight. In some embodiments, the nozzle or the alignment surface is coated with an electrically insulating material. In some embodiments, the plasma arc torch is a handheld plasma arc torch.

    [0015] In another aspect of the disclosure, a nozzle for a plasma arc torch is provided. The nozzle includes a nozzle body having 1) a longitudinal axis extending through the nozzle body, 2) an internal structure generally rotationally symmetric about the longitudinal axis, and 3) an external structure rotationally asymmetric about the longitudinal axis. The nozzle includes an exit orifice that passes between the internal structure and the external structure of the nozzle body for constricting a plasma arc through the exit orifice. The exit orifice is rotationally asymmetric about the longitudinal axis. The nozzle also includes an alignment surface located on the external structure of the nozzle body for guiding the plasma arc to a location of a processing surface of a workpiece.

    [0016] In the nozzle of the present invention, the exit orifice defines an exit orifice axis parallel to the alignment surface. Moreover, the exit orifice axis is oriented at a non-zero angle relative to the longitudinal axis extending through the nozzle body.

    [0017] The nozzle of the present invention further includes a second alignment surface preferably located on the external structure of the nozzle body. The second alignment surface is adapted to contact the processing surface of the workpiece.

    [0018] In the present invention, the alignment surface of the nozzle is adapted to contact a guiding surface that guides the plasma arc to impinge on the processing surface. The processing surface of the workpiece can be relatively angled from the guiding surface. For example, the processing surface and the guiding surface can be perpendicular to each other and the plasma arc can impinge orthogonally on the processing surface. In some embodiments, the alignment surface includes a rounded portion.

    [0019] In another aspect of the disclosure, a torch tip for a handheld plasma arc torch is provided. The torch tip includes a nozzle for generating a plasma arc. The nozzle can include a nozzle body, The torch tip further includes a plasma arc exit orifice located in the nozzle body for constricting the plasma arc. The plasma arc exit orifice defines an exit orifice axis. The torch tip also includes a first portion and a second portion segmented by a plane intersecting the exit orifice axis. The first portion has a smaller volume than the second portion. The torch tip further includes an alignment surface located on an outer surface of the first portion of the torch tip to guide the plasma arc to impinge orthogonally on a processing surface of a workpiece. The present invention provides a consumable set with a nozzle having a distance between a center of the exterior opening of the exit orifice axis and the alignment surface being less or equal than than 1. 27 cm, less than 0.64 cm or less than 0.32 cm (less than 0.5 inches, less than 0.25 inches or less than 0.125 inches).

    [0020] In the present invention, the exit orifice axis of the nozzle body is located at a non-zero angle from a longitudinal axis extending through the nozzle body.

    [0021] In some embodiments, the torch tip includes a second alignment surface located on an outer surface of the second portion of the torch tip. The second alignment surface is configured to contact the processing surface of the workpiece. In some embodiments, the first portion of the torch tip is about 1/3 or less of the volume of the second portion.

    [0022] In another aspect, the present invention provides a method of manufacturing a consumable set as defined in claim 7.

    [0023] In some embodiments, the method further includes fabricating a shield including: 1) the alignment surface and 2) a shield exit orifice coplanar with the nozzle exit orifice for delivering the plasma arc to impinge on the processing surface of the workpiece.

    [0024] In a further aspect, the present invention provides a method of generating and directing a plasma according to claim 9.

    [0025] Preferred embodiments of the present invention are defined in the dependent claims.

    [0026] It should also be understood that various aspects and embodiments of the invention can be combined in various ways as defined in the appended claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0027] The advantages of the invention described above, together with further advantages, may be better understood by referring to the following description taken in conjunction with the accompanying drawings. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention.

    FIG. 1 shows a prior art plasma arc torch for cutting a workpiece.

    FIG. 2 shows an exemplary plasma arc torch for cutting a workpiece according to some embodiments of the present invention.

    FIGS. 3A-3B show various perspectives of an exemplary nozzle configuration.

    FIG. 4 shows another perspective of the exemplary nozzle of FIGS. 3A-B.

    FIG. 5 shows an exemplary alignment surface of the nozzle of FIGS. 3A-B.

    FIGS. 6A-C show various perspectives of another exemplary nozzle configuration.


    DETAILED DESCRIPTION OF THE INVENTION



    [0028] FIG. 2 shows an exemplary plasma arc torch 200 for cutting a workpiece including embodiments of the present invention. The plasma arc torch 200 includes a torch body 202 and a torch tip 204. The torch tip 204 includes multiple consumables, for example, an electrode 205, a nozzle 210, a retaining cap 215 and a swirl ring 220. The torch tip 204 can also include a shield (not shown). The torch body 202, which has a generally cylindrical shape, supports the electrode 205 and the nozzle 210. The nozzle 210 is spaced from the electrode 205 and has a central exit orifice 225 mounted within the torch body 202. The swirl ring 220 is mounted to the torch body 202 and has a set of radially offset or canted gas distribution holes 227 that impart a tangential velocity component to the plasma gas flow, causing the plasma gas flow to swirl. If a shield is present, the shield includes a shield exit orifice and is connected (e.g., threaded) to the retaining cap 215. The retaining cap 215 as shown is an inner retaining cap securely connected (e.g., threaded) to the torch body 202. In some embodiments, an outer retaining cap (not shown) is secured relative to the shield. The torch 200 can additionally include electrical connections, passages for cooling, passages for arc control fluids (e.g., plasma gas), and a power supply. In some embodiments, the consumables include a welding tip, which is a nozzle for passing an ignited welding gas.

    [0029] In operation, a plasma gas flows through a gas inlet tube (not shown) and the gas distribution holes 227 in the swirl ring 220. From there, the plasma gas flows into a plasma chamber 228 and out of the torch 200 through the exit orifice 225 of the nozzle 210 that constricts the plasma gas flow. A pilot arc is first generated between the electrode 205 and the nozzle 210. The pilot arc ionizes the gas passing through the nozzle exit orifice 225. The arc then transfers from the nozzle 210 to a workpiece 230 for thermally processing (e.g., cutting or welding) the workpiece 230. In some embodiments, the nozzle 210 is suitably configured to be positioned as close as possible to an inner corner of the workpiece 230 created by a protruding flange 232 and a horizontal portion 234. The nozzle 210 can guide a plasma gas flow through the exit orifice 225 such that the plasma gas impinges orthogonally on the flange 232 as the plasma gas exits from the orifice 225, thereby cutting the flange 232 from the workpiece 230 along the path 237. It is noted that the illustrated details of the torch 200, including the arrangement of the components, the direction of gas and cooling fluid flows, and the electrical connections, can take a variety of forms. In addition, even though the flange 232 and the horizontal portion 234 of the inner corner are illustrated as being perpendicular to each other, the two portions of the workpiece 230 can be oriented at any angle and the nozzle 210 can be suitably configured to perform flush cutting in the resulting inner corner.

    [0030] FIGS. 3A and 3B show various perspectives of an exemplary configuration of the nozzle 210 designed to facilitate inner-corner flush cutting operations. The nozzle 210 includes a nozzle body 250 defining a longitudinal axis A extending therethrough. An interior surface 252 of the nozzle 210 can be rotationally symmetrical about the longitudinal axis A while the exterior of the nozzle body 250 can be rotationally asymmetric about the longitudinal axis A. The nozzle exit orifice 225, disposed in the nozzle body 210, defines an exit orifice axis B extending longitudinally along the length of the nozzle exit orifice 225 from an interior opening 225b to an exterior opening 225a. The exit orifice axis B can be oriented at a non-zero angle relative to the longitudinal axis A. That is, the nozzle exit orifice 225 can be rotationally asymmetric about the longitudinal axis A. The nozzle exit orifice 225 is configured to introduce a plasma arc flow from the interior opening 225b, which is in fluid communication with the interior surface 252 of the nozzle 210, to a workpiece through the exterior opening 225a. Even though the nozzle exit orifice 225 is shown as being substantially straight, in other embodiments, the nozzle exit orifice 225 can be curved or have a sequence of non-parallel segments.

    [0031] In addition, the nozzle 210 includes an alignment surface 254 disposed on the exterior surface of the nozzle body 250. The alignment surface 254 is parallel to the exit orifice axis B or, in some examples not being part of the invention, within about 10 degrees from being parallel to the exit orifice axis B. During torch operation, the alignment surface 254 is dimensioned to lay substantially flush against a guiding surface 236 on the horizontal portion 234 of the workpiece 230, which is a surface that is not being cut by the plasma arc and is used instead to guide and/or position the torch for enhanced flush cutting of the flange 232. Specifically, the alignment surface 254 of the nozzle 210, upon being laid upon the guiding surface 236 of the horizontal portion 234, aligns the external end 225a of the nozzle exit orifice 225 against the processing surface 238 of the flange 232 such that a plasma arc impinges orthogonally onto the processing surface 238 and into the flange 232 along the cut path 237. As shown in FIG. 2, the processing surface 238 and the guiding surface 236 of the workpiece 230 are angled relative to each other to form the inner corner of the workpiece 230. Even though the guiding surface 236 is illustrated as a portion of the workpiece 234, in other embodiments, the guiding surface 236 is a portion of a separate template (not shown) used to guide the torch 200 into position. For example, the separate template, which includes the guiding surface 236, can be attached to the torch 200 and/or the workpiece 234 for positioning the torch 200 to perform flush cutting.

    [0032] In the present invention, a distance 260 between the center of the exterior opening 225a of the nozzle exit orifice 225 and the alignment surface 254 is less than or equal to about 1. 27 cm, 0.64 cm, or 0.25 cm (0.5 inches, 0.25 inches, or 0.1 inches). This distance controls how close the cut path 237 is to the horizontal portion 234 of the workpiece 230. Hence, the smaller the distance 260, the closer the plasma arc torch cuts to the base of the flange 232 from the horizontal portion 234.

    [0033] In addition to the alignment surface 254, the nozzle 210 includes a second alignment surface 256 angled relative to the alignment surface 254 and may include a curved surface 258 that interconnects the two alignment surfaces. During torch operation, the second alignment surface 256, in cooperation with the alignment surface 254, enhances orthogonal impingement of the plasma arc against the processing surface 238 of the flange 232. For example, the second alignment surface 256 is oriented at an angle from the alignment surface 254 such that the second alignment surface 256 lays substantially flush against the processing surface 238 of the flange 232 while the alignment surface 254 lays substantially flush against the guiding surface 236 of the horizontal portion 234. In addition, the curved surface 258 of the nozzle 210 is configured to inter-fit within the corner created by the processing surface 238 and the guiding surface 236 of the workpiece 230. The two alignment surfaces of the nozzle 210 ensure that the plasma arc torch is positioned tightly and securely into the inner corner of the workpiece 230 while a plasma arc is delivered to the processing surface 238 by the torch 200 via the exterior opening 225a of the nozzle exit orifice 225. As shown in FIG. 2, the exterior opening 225a of the nozzle exit orifice 225 may be located on the second alignment surface 256 of the nozzle 210.

    [0034] In the present invention, the first alignment surface 254 and the second alignment surface 256 are substantially perpendicular to each other such that the nozzle 210 can be securely positioned into an inner corner of about 90 degrees. In other examples not being part of the present invention, nozzles with different angles between the alignment surfaces (e.g., 60 degrees, 30degrees and 15 degrees) can be constructed such that an operator can choose the most appropriate nozzle to perform flush cutting in view of the angle of a given inner corner. In some examples, the angle between the first alignment surface 254 and the second alignment surface 256 of a nozzle 210 is adjustable, such that the operator can adjust one or both of the alignment surfaces to produce a secure fit of the nozzle 210 into any given corner of a workpiece. For example, adjustments can be made such that both of the alignment surfaces of the nozzle 210 can contact respect processing surface 238 and guiding surface 236 of the workpiece 230 during a cutting operation.

    [0035] Another approach for illustrating the asymmetric nature of the nozzle 210 is shown in FIG. 4. A plane can be defined to include the exit orifice axis B, thereby segmenting the nozzle 210 into two portions: 1) a first, smaller portion 280 on one side of plane and 2) a second, larger portion 282 on the other side of the plane. The alignment surface 254 of the nozzle 210 is located on the external surface of the first portion 280 and can contact the guiding surface 236 of the workpiece once the torch 200 is positioned into the inner corner of the workpiece. The second alignment surface 256 is located on the external surface of the second portion 282 and can contact the processing surface 238 of the workpiece during a cutting operation. The first portion 280 can be about 1/3, 1/4, or 1/5 of the volume of the second portion 282.

    [0036] In some embodiments, the contour of the alignment surface 254 of the nozzle 210 has at least a rounded-arc portion 268, as shown from a top view of the nozzle 210 in FIG. 5. The rounded-arc portion 268 can be positioned in an inner corner created by the intersection of a horizontal portion 234 and a flange 232 of a workpiece 230. The distance from a first point 270 on the rounded-arc portion 268 to the center of the exterior opening 225a of the nozzle exit orifice 255 is at least substantially equal to the distance from a second point 272 on the rounded-arc portion 268 to the center of the exterior opening 225a. The exterior opening 225a can be located on a second alignment surface 256 of the nozzle 210. Such equidistance configuration ensures that an operator of the plasma arc torch can predict the location on the workpiece to which a plasma arc would be delivered prior to initiating the plasma arc operation, thereby allowing the cutting operation to be repeatable and predictable. In some embodiments, the second alignment surface 256 is designed to include a similar rounded-arc portion.

    [0037] FIGS. 6A-C show various perspectives of another exemplary nozzle 300 that includes three alignment surfaces. Specifically, the nozzle 300 includes i) an alignment surface 302, ii) a second alignment surface 304 angled relative to the alignment surface 302, iii) a third alignment surface 306 angled relative to the alignment surface 302 and the second alignment surface 304; and iv) one or more curved surfaces 310 connecting the three alignment surfaces. The nozzle 300 is configured to perform flush cutting in relation to an inner corner of a workpiece 308 constructed from three surfaces, with the surface being cut referred to as the processing surface and the remaining two surfaces referred to as the guiding surfaces. In other embodiments, the guiding surfaces are disposed on one or more separate templates that are attachable to the workpiece 308 and/or the nozzle 300. In operation, the three alignment surfaces of the nozzle 300, in cooperation with each other, align the plasma arc to impinge orthogonally on the processing surface of the workpiece 308. For example, the alignment surfaces 302 and 304 can lay substantially flush against the two guiding surfaces of the workpiece 308 while the alignment surface 306, which includes the exterior opening 225a of the nozzle exit orifice 225, lays substantially flush against the processing surface of the workpiece 308. The alignment surfaces of the nozzle 300 ensure that the plasma arc torch is positioned tightly and securely into the inner corner of the workpiece 308 while a plasma arc is delivered to the processing surface of the workpiece 308 via the exterior opening 225a. In some embodiments, at least one of the alignment surface 302, the second alignment surface 304, or the third alignment surface 306 has a contour with a rounded-arc portion, similar to the contour illustrated in FIG. 5.

    [0038] In various embodiments, the asymmetric design described above can be introduced to a plasma arc torch that includes a shield. In some embodiments, the shield can include at least one of the alignment surface 254 or the second alignment surface 256 describe above with respect to the nozzle 210. In alternative embodiments, the shield can include at least one of the alignment surface 302, the second alignment surface 304, or the third alignment surface 306 describe above with respect to the nozzle 300. The asymmetric shield can further include a shield exit orifice coplanar with the nozzle exit orifice for delivering the plasma arc to impinge on a processing surface of a workpiece. The asymmetric shield, upon installation into a plasma arc torch, can provide similar functions as the asymmetric nozzle 210 or 300, such as allowing an operator to securely and tightly position the torch into an inner corner of a workpiece created by two or three workpiece surfaces, while the torch delivers a plasma arc flow to one of the workpiece surfaces. In some embodiments, the contour of at least one of the alignment surfaces of the asymmetric shield has a rounded-arc portion, similar to the contour illustrated in FIG. 5.

    [0039] In various embodiments, the asymmetric nozzles and/or shields of the present invention can be coated with an electrically insulating material, such as a ceramic coating. The plasma arc torches, including the asymmetric nozzles and/or shields, can be constructed as handheld devices or wearable devices attached to a backpack, front-pack, and/or a shoulder strap mounted pack, for example.

    [0040] A person of ordinary skill in the art can also readily determine how to manufacture the asymmetric nozzles and/or shields of the present invention. An exemplary manufacturing method can include fabricating the nozzle body 250 having a longitudinal axis A extending therethrough, forming the nozzle exit orifice 225 in the nozzle body 250 that is oriented at a non-zero angle relative to the longitudinal axis A, and locating at least one alignment surface 254 on a, preferably external, surface of the nozzle body 225. The method can also include fabricating a shield to include one or more of the above-described asymmetric elements. In addition, modifications may occur to those skilled in the art upon reading the specification without departing from the scope of the invention, said scope being defined by the appended claims.


    Claims

    1. A consumable set usable in a plasma arc cutting torch (200) for generating and directing a plasma arc to cut a processing surface (238) of a workpiece (230), the consumable set comprising:

    a nozzle (220, 300) including: 1) a nozzle body (250) defining a longitudinal axis (A) extending therethrough, and 2) a nozzle exit orifice (252), disposed in the nozzle body (250) and having an exterior opening (225a), for constricting the plasma arc, wherein the nozzle exit orifice (252) defines an exit orifice axis (B) oriented at a non-zero angle relative to the longitudinal axis;

    wherein the nozzle (220, 300) comprises an alignment surface (254, 302) parallel to the exit orifice axis (B), the alignment surface (254, 302) being dimensioned for laying substantially" flush against a guiding surface (236) angled relative to the processing surface (238) of the workpiece (230); and

    wherein the nozzle (220, 300) further comprises a second alignment surface (256, 304) angled perpendicularly to the alignment surface (254, 302) and being dimensioned for laying substantially flush against the processing surface (238) of the workpiece (230), wherein the alignment surface (254, 302) and the second alignment surface (256, 304) are arranged so as to cooperate with each other to align the exit orifice such that, in operation the plasma arc impinges orthogonally on the processing surface (238) of the workpiece (230), wherein a distance (260) between the alignment surface (254, 302) and a center of the exterior opening (225a) of the nozzle exit orifice (252) is less than or equal to about 12.7 mm (0.5 inches).


     
    2. The consumable set of claim 1, wherein one or more of the following applies,

    (i) the nozzle (220, 300) further comprises a curved surface (258, 310) for interconnecting the alignment surface (254, 302) and the second alignment surface (256, 304);

    (ii) at least one of the alignment surface (254, 302) or the second alignment surface (256, 304) is located on an external surface of the nozzle (220, 300);

    (iii) the consumable set further comprises a shield; or

    (iv) the nozzle (300) further comprises a third alignment surface (306) angled relative to the alignment surface (302) and the second alignment surface (304), wherein the third alignment surface, in cooperation with the alignment surface and the second alignment surface, aligns the plasma arc to impinge orthogonally on the processing surface (238).


     
    3. The consumable set of claim 1, wherein the nozzle exit orifice (252) further defines an interior opening (225b) along the exit orifice axis.
     
    4. The consumable set of claim 3, wherein one or more of the following applies,

    (i) the alignment surface (254, 302) includes a rounded portion (268), wherein optionally the distance from a first point (270) on a geometric arc defined by the rounded portion of the alignment surface (254, 302) to the center of the exterior opening of the nozzle exit orifice (252) is at least substantially equal to the distance from a second point (272) on the geometric arc of the rounded portion of the alignment surface (254, 302) to the center of the exterior opening of the nozzle exit orifice (252);

    (ii) the center of the exterior opening of the nozzle exit orifice (252) is less than about 6.35 mm (0.25 inches) from the alignment surface; or

    (iii) the exterior opening of the nozzle exit orifice (252) is located on the second alignment surface (256, 304) angled relative to the alignment surface.


     
    5. The consumable set of claim 1, wherein (i) the nozzle exit orifice (252) is curved or straight; and/or (ii) the nozzle (220, 300) or the alignment surface (254, 302) is coated with an electrically insulating material.
     
    6. The consumable set of claim 1, wherein the plasma arc torch is a handheld plasma arc torch (200).
     
    7. A method of manufacturing the consumable set of claim 1, the method comprising:

    fabricating a nozzle body (250) having a longitudinal axis (A) extending therethrough;

    forming a nozzle exit orifice (252) in the nozzle body (250) oriented at a non-zero angle relative to the longitudinal axis (A) of the nozzle body (250), the nozzle exit orifice (252) dimensioned to constrict the plasma arc passing therethrough;

    locating an alignment surface (254, 302) on the nozzle (220, 300), the alignment surface (254, 302) being parallel to the nozzle exit orifice axis (B), the alignment surface being dimensioned for laying substantially flush against a guiding surface (236) angled relative to the processing surface (238) of the workpiece (230);

    locating a second alignment surface (256, 304) on the nozzle (220, 300), the second alignment surface (256, 304) angled perpendicularly to the alignment surface (254, 302) and being dimensioned for laying substantially flush against the processing surface (238) of the workpiece (230); and

    aligning the plasma arc exiting the nozzle exit orifice (252), based on cooperation between the alignment surface (254, 302) and the second alignment surface (256, 304), to impinge orthogonally on the processing surface (238), wherein a distance between the alignment surface (254, 302) and a center of an exterior opening of the nozzle exit orifice (252) is less than or equal to about 12.7 mm (0.5 inches).


     
    8. The method of claim 7, further comprising fabricating a shield with a shield exit orifice coplanar with the nozzle exit orifice (252) for delivering the plasma arc to impinge on the processing surface (238).
     
    9. A method of generating and directing a plasma arc of a plasma arc cutting torch (200) to cut a processing surface (238) of a workpiece (230), the plasma arc torch including a consumable set according to claim 1, wherein the alignment surface (254, 302) lies at least substantially flush against a guiding surface (236) of the workpiece (230), the guiding surface (236) comprising a portion of a template attachable to the workpiece (230) or the plasma arc torch.
     


    Ansprüche

    1. Verbrauchsgütersatz, der in einem Plasmaschneidbrenner (200) verwendbar ist, um einen Plasmalichtbogen zum Schneiden einer Bearbeitungsfläche (238) eines Werkstücks (230) zu erzeugen und auszurichten, wobei der Verbrauchsgütersatz umfasst:

    eine Düse (220, 300), die aufweist: 1) einen Düsenkörper (250), der eine Längsachse (A) definiert, die sich durch ihn erstreckt, und 2) eine Düsenausgangsöffnung (252), die in dem Düsenkörper (250) angebracht ist und die eine äußere Öffnung (225a) zum Einengen des Plasmalichtbogens aufweist, wobei die Düsenausgangsöffnung (252) eine Ausgangsöffnungsachse (B) definiert, die in einem Nichtnullwinkel relativ zur Längsachse definiert ist;

    wobei die Düse (220, 300) eine Ausrichtungsfläche (254, 302) parallel zur Ausgangsöffnungsachse (B) umfasst, wobei die Ausrichtungsfläche (254, 302) dimensioniert ist, um im Wesentlichen bündig an einer Führungsfläche (236) zu liegen, die relativ zur Bearbeitungsfläche (238) des Werkstücks (230) einen Winkel bildet; und

    wobei die Düse (220, 300) außerdem eine zweite Ausrichtungsfläche (256, 304) umfasst, die einen Winkel senkrecht zur Ausrichtungsfläche (254, 302) bildet und die dimensioniert ist, um im Wesentlichen bündig an der Bearbeitungsfläche (238) des Werkstücks (230) zu liegen, wobei die Ausrichtungsfläche (254, 302) und die zweite Ausrichtungsfläche (256, 304) so angeordnet sind, dass sie miteinander kooperieren, um die Ausgangsöffnung so auszurichten, dass der Plasmalichtbogen im Betrieb orthogonal auf die Bearbeitungsfläche (238) des Werkstücks (230) auftrifft, wobei ein Abstand (260) zwischen der Ausrichtungsfläche (254, 302) und einem Mittelpunkt der äußeren Öffnung (225a) der Düsenausgangsöffnung (252) geringer als, oder gleich ungefähr 12,7 mm (0,5 Zoll) ist.


     
    2. Verbrauchsgütersatz nach Anspruch 1, wobei eines oder mehrere der folgenden Merkmale zur Anwendung kommt,

    (i) die Düse (220, 300) umfasst außerdem eine gekrümmte Oberfläche (258, 310) zum Verbinden der Ausrichtungsfläche (254, 302) mit der zweiten Ausrichtungsfläche (256, 304);

    (ii) mindestens eine der Ausrichtungsfläche (254, 302) oder der zweiten Ausrichtungsfläche (256, 304) befindet sich auf einer Außenfläche der Düse (220, 300);

    (iii) der Verbrauchsgütersatz umfasst außerdem eine Abschirmung; oder

    (iv) die Düse (300) umfasst außerdem eine dritte Ausrichtungsfläche (306) die relativ zur Ausrichtungsfläche (302) und zur zweiten Ausrichtungsfläche (304) einen Winkel bildet, wobei die dritte Ausrichtungsfläche den Plasmalichtbogen in Kooperation mit der Ausrichtungsfläche und der zweiten Ausrichtungsfläche so ausrichtet, dass er orthogonal auf die Bearbeitungsfläche (238) auftrifft.


     
    3. Verbrauchsgütersatz nach Anspruch 1, wobei die Düsenausgangsöffnung (252) außerdem eine innere Öffnung (225b) entlang der Ausgangsöffnungsachse definiert.
     
    4. Verbrauchsgütersatz nach Anspruch 3, wobei eines oder mehrere der folgenden Merkmale zur Anwendung kommt,

    (i) die Ausrichtungsfläche (254, 302) weist einen abgerundeten Abschnitt (268) auf, wobei optional der Abstand von einem ersten Punkt (270) auf einem geometrischen Bogen, der von dem abgerundeten Abschnitt der Ausrichtungsfläche (254, 302) definiert wird, zu dem Mittelpunkt der äußeren Öffnung der Düsenausgangsöffnung (252) mindestens im Wesentlichen gleich dem Abstand von einem zweiten Punkt (272) auf dem geometrischen Bogen des abgerundeten Abschnitts der Ausrichtungsfläche (254, 302) zu dem Mittelpunkt der äußeren Öffnung der Düsenausgangsöffnung (252) ist;

    (ii) der Mittelpunkt der äußeren Öffnung der Düsenausgangsöffnung (252) befindet sich weniger als ungefähr 6,35 mm (0,25 Zoll) von der Ausrichtungsfläche; oder

    (iii) die äußere Öffnung der Düsenausgangsöffnung (252) befindet sich auf der zweiten Ausrichtungsfläche (256, 304), die relativ zur Ausrichtungsfläche einen Winkel bildet.


     
    5. Verbrauchsgütersatz nach Anspruch 1, wobei (i) die Düsenausgangsöffnung (252) gekrümmt oder gerade ist; und/oder (ii) die Düse (220, 300) oder die Ausrichtungsfläche (254, 302) mit einem elektrisch isolierenden Material beschichtet ist.
     
    6. Verbrauchsgütersatz nach Anspruch 1, wobei der Plasmabrenner ein tragbarer Plasmabrenner (200) ist.
     
    7. Verfahrens zum Herstellen eines Verbrauchsgütersatzes nach Anspruch 1, wobei das Verfahren umfasst:

    Herstellen eines Düsenkörpers (250), der eine Längsachse (A) definiert, die sich durch ihn erstreckt; und

    Bilden einer Düsenausgangsöffnung (252) in dem Düsenkörper (250), die in einem Nichtnullwinkel relativ zur Längsachse (A) des Düsenkörpers (250) ausgerichtet ist, wobei die Düsenausgangsöffnung (252) dimensioniert ist, um den sie durchquerenden Plasmalichtbogen einzuengen;

    Anbringen einer Ausrichtungsfläche (254, 302) an der Düse (220, 300), wobei die Ausrichtungsfläche (254, 302) parallel zur Ausgangsöffnungsachse (B) ist, wobei die Ausrichtungsfläche dimensioniert ist, um im Wesentlichen bündig an einer Führungsfläche (236) zu liegen, die relativ zur Bearbeitungsfläche (238) des Werkstücks (230) einen Winkel bildet;

    Anbringen einer zweiten Ausrichtungsfläche (256, 304) an der Düse (220, 300), wobei die zweite Ausrichtungsfläche (256, 304) einen Winkel senkrecht zur Ausrichtungsfläche (254, 302) bildet und die dimensioniert ist, um im Wesentlichen bündig an der Bearbeitungsfläche (238) des Werkstücks (230) zu liegen, und

    Ausrichten des Plasmalichtbogens, der die Düsenausgangsöffnung (252) verlässt, um aufgrund einer Kooperation zwischen der Ausrichtungsfläche (254, 302) und der zweiten Ausrichtungsfläche (256, 304) orthogonal auf die Bearbeitungsfläche (238) aufzutreffen, wobei ein Abstand zwischen der Ausrichtungsfläche (254, 302) und einem Mittelpunkt der äußeren Öffnung der Düsenausgangsöffnung (252) geringer als, oder gleich ungefähr 12,7 mm (0,5 Zoll) ist.


     
    8. Verfahren nach Anspruch 7, das außerdem ein Herstellen einer Abschirmung mit einer Abschirmungsausgangsöffnung umfasst, die komplanar mit der Düsenausgangsöffnung (252) ist, um den Plasmalichtbogen so bereitzustellen, dass er auf die Bearbeitungsfläche (238) auftrifft.
     
    9. Verfahren zum Erzeugen und Ausrichten eines Plasmalichtbogens eines Plasmaschneidbrenners (200) zum Schneiden einer Bearbeitungsfläche (238) eines Werkstücks (230), wobei der Plasmabrenner einen Verbrauchsgütersatz nach Anspruch 1 enthält,
    wobei die Ausrichtungsfläche (254, 302) im Wesentlichen bündig an einer Führungsfläche (236) des Werkstücks (230) liegt, wobei die Führungsfläche (236) einen Abschnitt einer Schablone umfasst, die an dem Werkstück (230) oder dem Plasmabrenner befestigbar ist.
     


    Revendications

    1. Ensemble de consommables pouvant être utilisé dans une torche de coupage à jet de plasma (200) pour générer et diriger un jet de plasma pour couper une surface de traitement (238) d'une pièce à travailler (230), cet ensemble de consommables comprenant :

    une buse (220, 300) comprenant : 1) un corps de buse (250) définissant un axe longitudinal (A) s'étendant à travers lui, et 2) un orifice de sortie de buse (252), disposé dans le corps de la buse (250) et ayant une ouverture extérieure (225a), pour resserrer le jet de plasma, cet orifice de sortie de la buse (252) définissant un axe d'orifice de sortie (B) orienté à un angle non nul par rapport à l'axe longitudinal ;

    la buse (220, 300) comportant une surface d'alignement (254, 302) parallèle à l'axe de l'orifice de sortie (B), cette surface d'alignement (254, 302) étant dimensionnée de façon à être située essentiellement à niveau contre une surface de guidage (236) inclinée par rapport à la surface de traitement (238) de la pièce à travailler (230) ; et

    la buse (220, 300) comportant en outre une deuxième surface d'alignement (256, 304) disposée perpendiculairement à la surface d'alignement (254, 302) et étant dimensionnée de façon à être située essentiellement à niveau contre la surface de traitement (238) de la pièce à travailler (230),

    la surface d'alignement (254, 302) et la deuxième surface d'alignement (256, 304) étant disposées de façon à coopérer l'une avec l'autre afin d'aligner l'orifice de sortie de manière à ce que, lors de l'opération, le jet de plasma heurte orthogonalement la surface de traitement (238) de la pièce à travailler (230),

    une distance (260) entre la surface d'alignement (254, 302) et un centre de l'ouverture extérieure (225a) de l'orifice de sortie de la buse (252) étant moins que ou égale à environ 12,7 mm (0,5 pouces).


     
    2. Ensemble de consommables selon la revendication 1, dans lequel une ou plusieurs des situations suivantes sont applicables :

    (i) la buse (220, 300) comporte en outre une surface incurvée (258, 310) pour interconnecter la surface d'alignement (254, 302) et la deuxième surface d'alignement (256, 304) ;

    (ii) au moins soit la surface d'alignement (254, 302), soit la deuxième surface d'alignement (256, 304) est située sur une surface extérieure de la buse (220, 300) ;

    (iii) l'ensemble de consommables comporte en outre un blindage ; ou

    (iv) la buse (300) comporte en outre une troisième surface d'alignement (306) inclinée par rapport à la surface d'alignement (302) et à la deuxième surface d'alignement (304), cette troisième surface d'alignement, en coopération avec la surface d'alignement et la deuxième surface d'alignement, alignant le jet de plasma de manière à ce qu'il heurte orthogonalement la surface de traitement (238).


     
    3. Ensemble de consommables selon la revendication 1, dans lequel l'orifice de sortie de la buse (252) définit en outre une ouverture intérieure (225b) le long de l'axe de l'orifice de sortie.
     
    4. Ensemble de consommables selon la revendication 3, dans lequel une ou plusieurs des situations suivantes sont applicables :

    (i) la surface d'alignement (254, 302) comprend une partie arrondie (268), dans laquelle, facultativement, la distance entre un premier point (270) sur un arc géométrique défini par la partie arrondie de la surface d'alignement (254, 302) et le centre de l'ouverture extérieure de l'orifice de sortie de la buse (252) est au moins essentiellement égale à la distance entre un deuxième point (272) sur l'arc géométrique de la partie arrondie de la surface d'alignement (254, 302) et le centre de l'ouverture extérieure de l'orifice de sortie de la buse (252) ;

    (ii) le centre de l'ouverture extérieure de l'orifice de sortie de la buse (252) est situé à moins qu'environ 6,35 mm (0,25 pouces) de la surface d'alignement ; ou

    (iii) l'ouverture extérieure de l'orifice de sortie de la buse (252) est située sur la deuxième surface d'alignement (256, 304) disposée à un angle par rapport à la surface d'alignement.


     
    5. Ensemble de consommables selon la revendication 1, dans lequel (i) l'orifice de sortie de la buse (252) est incurvé ou droit ; et/ou (ii) la buse (220, 300) ou la surface d'alignement (254, 302) est revêtue d'un matériau électriquement isolant.
     
    6. Ensemble de consommables selon la revendication 1, dans lequel la torche à jet de plasma est une torche à jet de plasma tenue à la main (200).
     
    7. Procédé de fabrication de l'ensemble de consommables selon la revendication 1, ce procédé comprenant :

    la fabrication d'un corps de buse (250) ayant un axe longitudinal (A) s'étendant à travers lui ;

    la formation d'un orifice de sortie de buse (252) dans le corps de la buse (250) orienté à un angle non nul par rapport à l'axe longitudinal (A) du corps de la buse (250), cet orifice de sortie de la buse (252) étant dimensionné de façon à resserrer le jet de plasma passant à travers lui ;

    le positionnement d'une surface d'alignement (254, 302) sur la buse (220, 300), cette surface d'alignement (254, 302) étant parallèle à l'axe de l'orifice de sortie de la buse (B), cette surface d'alignement étant dimensionnée de façon à être située essentiellement à niveau contre une surface de guidage (236) inclinée par rapport à la surface de traitement (238) de la pièce à travailler (230) ;

    le positionnement d'une deuxième surface d'alignement (256, 304) sur la buse (220, 300), cette deuxième surface d'alignement (256, 304) étant disposée perpendiculairement à la surface d'alignement (254, 302) et étant dimensionnée de façon à être située essentiellement à niveau contre la surface de traitement (238) de la pièce à travailler (230) ; et

    l'alignement du jet de plasma sortant de l'orifice de sortie de la buse (252), en se basant sur la coopération entre la surface d'alignement (254, 302) et la deuxième surface d'alignement (256, 304), pour qu'il heurte orthogonalement la surface de traitement (238), une distance entre la surface d'alignement (254, 302) et un centre d'une ouverture extérieure de l'orifice de sortie de la buse (252) étant moins que ou égale à environ 12,7 mm (0,5 pouces).


     
    8. Procédé selon la revendication 7, comprenant en outre la fabrication d'un blindage avec un orifice de sortie du blindage coplanaire avec l'orifice de sortie de la buse (252) pour distribuer le jet de plasma de manière à ce qu'il heurte la surface de traitement (238) .
     
    9. Procédé de génération et de direction d'un jet de plasma d'une torche de coupage à jet de plasma (200) pour couper une surface de traitement (238) d'une pièce à travailler (230), cette torche à jet de plasma comprenant un ensemble de consommables selon la revendication 1, la surface d'alignement (254, 302) étant située au moins essentiellement à niveau contre une surface de guidage (236) de la pièce à travailler (230), cette surface de guidage (236) comportant une partie d'un gabarit pouvant être attachée à la pièce à travailler (230) ou à la torche à jet de plasma.
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description