(19)
(11)EP 2 881 237 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 13195482.8

(22)Date of filing:  03.12.2013
(51)International Patent Classification (IPC): 
B29C 65/00(2006.01)
B29C 70/34(2006.01)
B29D 99/00(2010.01)
B29C 70/22(2006.01)
F03D 1/06(2006.01)
B29C 70/44(2006.01)
B29L 31/08(2006.01)

(54)

A method of manufacturing a shear web using a pre-formed web foot flange

Verfahren zur Herstellung eines Schernetzes mit einem vorgeformten Bahnfußflansch

Procédé de fabrication d'une bande de cisaillement utilisant une bride de pied de bande préformée


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
10.06.2015 Bulletin 2015/24

(73)Proprietor: LM WP Patent Holding A/S
6000 Kolding (DK)

(72)Inventors:
  • Rasmussen, Kim Ansholm
    6000 Kolding (DK)
  • Lundsgaard-Larsen, Christian
    6000 Kolding (DK)
  • Pedersen, Steven Hauge
    6000 Kolding (DK)
  • Hansen, Tim Møller
    6580 Vamdrup (DK)

(74)Representative: COPA Copenhagen Patents 
Rosenørns Allé 1, 2nd floor
1970 Frederiksberg C
1970 Frederiksberg C (DK)


(56)References cited: : 
EP-A1- 2 213 445
US-A1- 2003 037 867
WO-A1-02/066235
US-A1- 2006 049 552
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the Invention



    [0001] The present invention relates to a method of manufacturing a wind turbine blade component in form of a shear web body, and a shear web body manufactured according to the method.

    Background of the Invention



    [0002] Wind turbine blades are often manufactured according to one of two constructional designs, namely a design where a thin aerodynamic shell is glued or otherwise bonded onto a spar beam, or a design where spar caps, also called main laminates, are integrated into the aerodynamic shell.

    [0003] In the first design, the spar beam constitutes the load bearing structure of the blade. The spar beam as well as the aerodynamic shell or shell parts are manufactured separately. The aerodynamic shell is often manufactured as two shell parts, typically as a pressure side shell part and a suction side shell part. The two shell parts are glued or otherwise connected to the spar beam and are further glued to each other along a leading edge and trailing edge of the shell parts. This design has the advantage that the critical load carrying structure may be manufactured separately and therefore easier to control. Further, this design allows for various different manufacturing methods for producing the beam, such as moulding and filament winding.

    [0004] In the second design, the spar caps or main laminates are integrated into the shell and are moulded together with the aerodynamic shell. The main laminates typically comprise a high number of fibre layers compared to the remainder of the blade and may form a local thickening of the wind turbine shell, at least with respect to the number of fibre layers. Thus, the main laminate may form a fibre insertion in the blade. In this design, the main laminates constitute the load carrying structure. The blade shells are typically designed with a first main laminate integrated in the pressure side shell part and a second main laminate integrated in the suction side shell part. The first main laminate and the second main laminate are typically connected via one or more shear webs, which for instance may be C-shaped or I-shaped. For very long blades, the blade shells may further along at least a part of the longitudinal extent comprise an additional first main laminate in the pressure side shell, and an additional second main laminate in the suction side shell. These additional main laminates may also be connected via one or more shear webs. This design has the advantage that it is easier to control the aerodynamic shape of the blade via the moulding of the blade shell part.

    [0005] The shear webs act to reinforce the blade structure, and prevent excessive bending or buckling. Some blade designs use shear webs formed from beam members having I- or C-shaped cross-sections, the members having a main body with load-bearing flanges extending therefrom at opposed ends of the main body.

    [0006] One method of manufacturing such I- or C-webs is through the provision of a sandwich panel body to which layers of fibre material are applied at the opposed ends in the shape of the desired flanges, the fibre material being infused with a resin and subsequently cured to form rigid flanges.

    [0007] It is well-known to manufacture such shear webs in a suitably shaped mould structure, wherein a C-web can be manufactured using a relatively simple U-shaped mould, where the sandwich panel body extends between opposed walls of the mould structure, with the flanges formed through the layup of fibre material against the said walls.

    [0008] Similarly, an I-web can be manufactured using a mould having a central support bounded by flexible support members on either side to define an adjustable channel between the flexible support members and the opposed mould walls. In this situation, the sandwich panel body is arranged on the central support, while the adjustable channel is arranged to receive fibre layers to form the flanges on a first side of the panel body, with the flanges on the second side of the panel body formed by the layup of fibre material against the opposed mould walls.

    [0009] An example of such manufacturing systems can be seen in International Patent Application Publication No. WO 2013/037466 A1.

    [0010] However, such systems require the provision of dedicated moulding tables for the formation of such shear webs, which can often be continuous structures in excess of 30-40 metres length, taking up considerable space in a blade factory. Also, the application, infusion and subsequent curing of the fibre layers to form the flanges of the shear webs require relatively precise alignment and working, resulting in considerable time and operational costs.

    [0011] Furthermore, in the case of I-web manufacture, the particular flexible profiles used can be unique to the different design of blade and the associated I-web required. This can therefore result in additional manufacturing and setup costs when it is desired to produce I-webs for use in different wind turbine blades.

    [0012] In addition to the above, shear webs having such resin-infused fibre-based flanges can be an area of interest for the prevention of structural faults and cracks, due to the relatively large forces transferred through said flanges.

    [0013] WO 02/066235 discloses a system and method for forming structural assemblies with 3-D woven joint pre-forms.

    [0014] EP 2213445 discloses a system, method and apparatus for fabricating composite structures without applying external heat from an oven or autoclave.

    [0015] It is an object of the invention to provide an alternative system and method for the manufacture of wind turbine blade components in form of shear webs, which provides for increased ease of manufacture combined with a reduced risk of structural failure.

    Summary of the Invention



    [0016] Accordingly, there is provided a method of manufacturing a wind turbine blade component in form of a shear web, the method comprising the steps of:
    1. a) providing a pre-manufactured shear web body having a first side and a second side as well as a first end and a second end;
    2. b) providing a first pre-formed web foot flange comprising a fibre-reinforcement material, such as glass fibres;
    3. c) arranging a first fibre layer from the first pre-formed web foot flange and to a part of the first side of the shear web body;
    4. d) arranging a second fibre layer from the first pre-formed web foot flange and to a part of the second side of the shear web body;
    5. e) supplying a resin to said first fibre layer and second fibre layer simultaneously with or subsequent to steps c) and d); and
    6. f) allowing the resin to cure so as to form the shear web.


    [0017] The scope of the method according to the invention is defined by claim 1.

    [0018] Thus, it is seen that the first preformed web foot flange is attached to the shear web body by layering fibre layers from the web foot flange to the sides of the shear web, supplying the resin either by injection or as prepreg material, and then allowing the resin to cure so as to provide a permanent connection between the web foot flange and the shear web. This provides for the opportunity to manufacture the shear web body and the first web foot flange separately, which in turn allows for a more generic and modular design, where two parts can be shaped to a desired wind turbine shell shape without necessarily having to have large custom made web moulds for each wind turbine blade type. Thus, the shear web body may be simply supported in a work shop, e.g. using a plurality of simple table supports or a simple jig.

    [0019] Overall, it is seen that the web foot flange(s) may be joined to the pre-manufactured shear web body by laminating it onto the sides of the shear web body, e.g. via overlamination. Such lamination replaces the use of structural adhesives that could be used for providing a load-bearing joint between the web foot flanges and the shear web body.

    [0020] The method may advantageously also involve the step of attaching a second pre-formed web foot flange to the second end of the web body according to the same sequence, i.e. c2) arranging a first additional fibre layer from the second pre-formed web foot flange and to the first side of the shear web body; d2) arranging a second additional fibre layer from the first pre-formed web foot flange and to the second side of the shear web body; e2) supplying a resin to said first additional fibre layer and second additional fibre layer simultaneously with or subsequent to steps c2) and d2); and f2) allowing the resin to cure.

    [0021] In the following, various embodiments may be discussed relating to the first web foot flange and will sometimes just be referred to as the web foot flange. However, it is clear that the embodiments also may also apply to the second web foot flange, which is attached to the second end of the shear web body.

    [0022] According to an advantageous embodiment, a tackifier or SAERfix® fabric is supplied to the first fibre layer and the second fibre layer in order to maintain the shape prior to supplying resin to said first and second fibre layers in step e). Thus, it is ensured that the first and the second fibre layers maintain their shape so as to extend along the first side and the second side of the shear web body, respectively. If the first and the second fibre layers form part of the first pre-formed web foot flange, the tackifier ensures or at least partially ensures that the pre-formed web foot flange itself maintains its shape prior to being laminated onto the shear web body.

    [0023] According to another advantageous embodiment, the pre-manufactured shear web body is a sandwich panel or a sandwich-structured composite member, e.g. having skin layers of reinforcement material, such as a fibre-reinforced composite material, applied to a relatively thick light-weight core material, such as balsawood or a foamed polymer. The core material may be a low strength material, but its higher thickness provides the sandwich composite with high bending stiffness with overall low density.

    [0024] According to yet another advantageous embodiment, the method comprises the step of providing a forming tool adjacent at least the first end of the shear web body to form a mould cavity covering the first pre-formed web foot flange, the first fibre layer, the second fibre layer, and a part of the shear web body near the first end of the shear web body. Thus, the forming tool forms a relatively small mould cavity near the first end of the shear web body. Accordingly, only relatively small forming tools are needed instead of bulky equipment needed for manufacturing an integrally formed shear web body and web foot flange.

    [0025] The mould cavity is preferably an elongate or oblong cavity extending along a part or the entire shear web body. The mould cavity may be substantially web foot flange shaped.

    [0026] Advantageously, the forming tool comprises a first vacuum bag and possibly also a second vacuum bag. If only a first vacuum bag is used, it may cover the first web foot flange and be sealed against the first side and the second side of the shear web body. It is also possible to use two vacuum bags, e.g. a first for sealing the first fibre layer, and a second for sealing the second fibre layer. The vacuum bags may further be sealed against the pre-formed web foot flange or against a forming tool plate member supporting a base part of the pre-formed web foot flange.

    [0027] Alternatively, the mould cavity may be formed using a dedicated tool comprising substantially rigid parts, such as made of a metal or inflexible plastic. Preferably, such rigid parts are shaped in accordance with the desired outer shape of the web foot flange or web foot flange connection.

    [0028] Preferably, the method comprises the step of applying a sealant between said forming tool and said first end of said web member. The sealant may comprise a simple strip of material, possibly with adhesive properties, applied between edges of the forming tool and the surface of the web member, e.g. a silicone gel.

    [0029] In a particularly advantageous method, the resin in step e) is injected into the mould cavity. Advantageously, the resin is injected from a first longitudinal end of the mould cavity. The method may comprise injecting said resin at an overpressure, or at a pressure level above atmospheric pressure. Preferably, said step of injecting comprises applying a vacuum to the mould cavity. Thus, the resin is preferably supplied via vacuum infusion. The vacuum may advantageously be applied from an opposed second longitudinal end of the mould cavity.

    [0030] In one embodiment, the pre-manufactured shear web body in step a) is arranged in a substantially vertical position, and wherein the first pre-formed web foot flange is arranged at the first end and below the shear web body. Thus, the resin may be supplied while the web foot flange and the shear web body are arranged in a substantially vertical configuration, and where the first fibre layer and the second fibre layer extend substantially vertically along the first side and the second side of the shear web body, respectively. This may compensate for build-up of air pockets in the laminate and creep of the fibre layers due to gravity.

    [0031] The second pre-formed web foot flange may be arranged at the second end and above the shear web body and be infused in a similar manner. Alternatively, the shear web body may be turned 180 degrees and the second pre-formed web foot flange be attached to the shear web body in a subsequent infusion step, where it is arranged below the shear web body.

    [0032] According to the invention, the first web foot flange comprises a base part having a first side and a second side, a first projection part projecting from the second side of the base part and a second projection part projecting from the second side of the base part so that a recess is formed between the first projecting part and the second projecting part. The first end of the shear web body may thus be arranged in the recess formed between the two projecting parts. The first end of the shear web body may be chamfered or bevelled. The recess may have a complimentary shape. A fibre layer may be arranged in the recess between the pre-formed web foot flange and the shear web body. The complimentary shapes may be shaped so that the angle between the web foot flange and the shear web body is pre-defined. The end of the shear web body and/or the cavity of the web foot flange may for instance be shaped via milling or a similar operation.

    [0033] The fibre layer may be wrapped around the first end of the shear web body. Accordingly, the first fibre layer and the second fibre layer may be formed by a single fibre layer wrapped around the end and between the two bodies.

    [0034] The first and the second projecting parts both comprise a first side part and a second side part. The first side part may be concave, and the second side may also be concave. Thus, the projections provide a smooth transition to the shear web body. The side parts of the projecting parts may also be defined as inner side parts (being the sides which face towards the shear web body, and outer side parts (being the sides which face away from the shear web body.

    [0035] According to the invention, the recess formed has a part circular cross-section with a first radius or curvature. Further, the first end of the shear web body is rounded having a second radius of curvature. The second radius may be substantially equal to or slightly smaller than the first radius. Thereby, the two parts may be connected in a spherical joint like connection, and the first end of the shear web body may be angled arbitrarily and still fit the recess. Thereby, the angle between the shear web body and the web foot flange may more easily be varied in order to fit the aerodynamic shell part of the wind turbine blade.

    [0036] In one embodiment, the recess has a measure of arc of 90-180 degrees, or 120-160 degrees, e.g. around 140 degrees. The measure of arc may be relatively high if only a small variable angle between the web foot flange and the shear web body is needed.

    [0037] The first radius may advantageously be 10-100 mm, or 10-50 mm, e.g. around 20 mm. The shear web body may advantageously have a thickness of approximate 20-200 mm, or 20-100 mm, e.g. around 30 or 40 mm. The first radius and the shear web body thickness may also vary in the longitudinal direction. The shear web body may for instance be thicker near the blade root than near the tip, and the first radius may vary accordingly.

    [0038] The first fibre layer and the second fibre layer may advantageously comprise a multiaxial fibre layer, such as a biaxial, triaxial or quadaxial fibre layer. Thus, the fibre layers comprise multiaxially arranged fibres, whereby loads can be transferred in several directions and thereby take up both longitudinal forces and transverse forces. It is also possible to use fibre layers having randomly oriented reinforcement fibres.

    [0039] The resin may advantageously be polyester, vinylester or epoxy. The polyester may advantageously be chemically compatible with the resin matrix of the pre-manufactured shear web body.

    [0040] The first fibre layer and the second fibre layer are advantageously made from glass fibres. However, the reinforcement fibres could also be carbon fibres, plant fibres, nylon, aramid or another suitable reinforcement fibre.

    [0041] The first fibre layer and the second fibre layer may also be prepreg material, e.g. UV curing prepregs.

    [0042] The pre-formed web foot flange may advantageously form an I-shaped foot with the shear web body, once it has been attached to the shear web body. The web foot flange may advantageously have a substantially flat base part.

    [0043] The first fibre layer and the second fibre layer may advantageously extend along 5-20 cm of the first side and the second side of the shear web body, respectively.

    [0044] In one particularly advantageous embodiment, the first pre-formed web foot flange is a pre-cured composite body. Thus, the pre-cured composite body may be a pre-manufactured body, e.g. formed in a separate mould prior to being attached to the first end of the shear web body. The pre-cured body may still have a degree of flexibility so that the angle between the web foot flange and the shear web may be varied or twisted in the longitudinal direction in order to accommodate the shape of the aerodynamic shell.

    [0045] The pre-cured composite body is attached to the shear web body by applying the first and the second fibre layer overlapping the two bodies, supplying resin and finally letting the resin cure or harden. Accordingly, it is seen that the two parts are attached to each other via an overlamination as opposed to a structural adhesive or glue joint.

    [0046] Further, the pre-cured body may act as a part of the forming tool that forms the mould cavity.

    [0047] In one embodiment, the pre-cured composite structure is a pultruded or extruded body. Thus, the web foot flange may be pre-manufactured with a uniform cross-sectional shape according to known pultrusion or extrusion processes and cut to the desired length. The pre-manufactured web foot flange may then be bent into the desired angle relative to the shear web body so as to accommodate the shape of the aerodynamic shell.

    [0048] The pre-cured web foot flange may be attached to the shear web body by use of a fibre layer between the inner side parts of the projecting parts and fibre layers arranged so as to cover a part of the base part, the outer side parts of the projecting parts, and the sides of the shear web body.

    [0049] In a second particularly advantageous embodiment, the first pre-formed web foot flange is a sewn or weaved fibre body. Accordingly, the sewn or weaved fibre body may be preformed into an approximate desired shape. The first fibre layer and the second fibre layer may be integrally formed with the web foot flange. The fibre body may be manufactured as a continuous body and then cut to the desired length. Accordingly, this embodiment also provides a flexible method of manufacturing a wind turbine blade shear web.

    [0050] If the pre-formed web foot flange is formed by use of the sewn fibre body, it may be necessary to provide a forming tool having a primary base plate member, which defines a primary surface or base of the finished web foot flange, and thereby the side that is later attached to the inner side of the aerodynamic blade shell. The base plate member may have to be angled in accordance with the desired angle between the web foot flange and the shear web body. However, the forming tool is still much smaller than a mould needed to manufacture an integrally formed shear web whereby the manufacture is much more flexible than existing methods of manufacturing shear webs.

    [0051] The sewn fibre body may advantageously comprise dry reinforcement fibres, i.e. reinforcement fibres that have not yet been impregnated by a resin. Accordingly, a mould cavity may be formed by a forming tool surrounding the pre-formed body and sealed against the sides of the shear web body, after which a resin is injected into the cavity and finally cured in order to form the shear web. The sewn fibre body may alternatively comprise a prepreg material, optionally being a UV-curing prepreg material. In this embodiment, the formed mould cavity is substantially flange-shaped.

    [0052] In one embodiment, the shear web body has a length of at least 30 metres. Accordingly, it is seen that the invention is directed towards the manufacture of very large shear webs, e.g. for wind turbine blades having a blade length of at least 40 metres. The shear web body may also be sectionised, e.g. by connecting pre-manufactured panels having a length between 8 and 12 metres. The web bodies may be connected to each other via an over-lamination at the seams. This may be carried out at the same time as the web foot flange is attached to the panels.

    [0053] The web foot flange advantageously has substantially the same length as the shear web body. However, the web foot flange may also be sectionised or modular. The individual web foot flanges may for instance have a length of 1-10 metres.

    [0054] As the profile of the wind turbine blade has a particular curvature, the base part or primary surface of the flange of the shear web may require arrangement at a specific angle relative to the web body. This angle may vary along the length of the component, dependent on the longitudinal profile of the blade. Accordingly, the forming tool may be made of a relatively flexible material to allow for variations in the angling of the tool along the length of the web member, and/or a plurality of forming tools may be used arranged at different angles relative to the web member along the length of the web member.

    [0055] Preferably, said step of angling comprises arranging the web foot flange at an angle of between -20 to +20 degrees to the first end of said web member. Accordingly a primary plate member for forming the mould cavity may be similarly angled at an angle of between -20 to +20 degrees to the first end of said web member. It is also possible to vary said angles between -30 and 30 degrees.

    [0056] The web foot flange may advantageously be formed with a shaped surface for attachment to the blade shell part, such as a rippled, hatched or scored surface profile. The shaped surface may be part of the pre-cured web foot flange, or the primary plate member of the forming tool may be configured to provide the shaped surface. The provision of a shaped or treated flange surface at the end of the component can provide a surface which provides an improved adhesive bond between components.

    [0057] The invention further provides a shear web manufactured according to the aforementioned method. Accordingly, the invention provides a wind turbine component in form of a shear web comprising:
    • a pre-manufactured shear web body having a first end and a second end as well as a first side and a second side, and at least
    • a first pre-formed web foot flange, wherein
    • the first pre-formed web foot flange is attached to the shear web body via
      • a first fibre layer extending from the first pre-formed web foot flange and to a part of the first side of the shear web body, and
      • a second fibre layer extending from the first pre-formed web foot flange and to a part of the second side of the shear web body, wherein
      • the first fibre layer and the second fibre layer are embedded in a cured resin matrix.


    [0058] The scope of the shear web according to the invention is defined by claim 12.

    [0059] Overall, it is seen that the web foot flange(s) may be joined to the pre-manufactured shear web body by laminating it onto the shear web body, e.g. via overlamination. Such, lamination replaces the use of structural adhesives that could be used for providing a load-bearing joint between the web foot flanges and the shear web body.

    [0060] Preferably, the first pre-formed web foot flange is attached to the pre-manufactured shear web by one or more overlaminations comprising the first fibre layer and the second layer, whereby the use of a structural adhesive may be avoided.

    [0061] The invention further provides a wind turbine blade comprising a shear web according to any of the aforementioned embodiments, the shear web being connected between a pressure side and a suction side of the wind turbine blade.

    [0062] The wind turbine blade may comprise a first spar cap attached to or integrally formed with a pressure side shell part and a second spar cap attached to or integrally formed with a suction side shell part. The shear web may be connected between the two spar caps, e.g. with the first web foot flange attached to the first spar cap and the second web foot flange attached to the second spar cap.

    [0063] The invention additionally provides a wind turbine comprising at least one, and advantageously two or three, such wind turbine blades.

    Description of the Invention



    [0064] The invention is explained in detail below with reference to an embodiment shown in the drawings, in which

    Fig. 1 shows a wind turbine,

    Fig. 2 shows a schematic view of a wind turbine blade,

    Fig. 3 shows a schematic view of a cross-section of a wind turbine blade,

    Fig. 4 shows a first embodiment of a pre-cured web foot flange according to the invention,

    Fig. 5 shows a second embodiment of a pre-cured web foot flange according to the invention,

    Fig. 6 illustrates a first embodiment of a manufacturing method according to the invention for manufacturing a shear web, and

    Fig. 7 illustrates a second embodiment of a manufacturing method according to the invention for manufacturing a shear web.



    [0065] Fig. 1 illustrates a conventional modern upwind wind turbine according to the so-called "Danish concept" with a tower 4, a nacelle 6 and a rotor with a substantially horizontal rotor shaft. The rotor includes a hub 8 and three blades 10 extending radially from the hub 8, each having a blade root 16 nearest the hub and a blade tip 14 farthest from the hub 8. The rotor has a radius denoted R.

    [0066] Fig. 2 shows a schematic view of a wind turbine blade 10. The wind turbine blade 10 has the shape of a conventional wind turbine blade and comprises a root region 30 closest to the hub, a profiled or an airfoil region 34 farthest away from the hub and a transition region 32 between the root region 30 and the airfoil region 34. The blade 10 comprises a leading edge 18 facing the direction of rotation of the blade 10, when the blade is mounted on the hub, and a trailing edge 20 facing the opposite direction of the leading edge 18.

    [0067] The airfoil region 34 (also called the profiled region) has an ideal or almost ideal blade shape with respect to generating lift, whereas the root region 30 due to structural considerations has a substantially circular or elliptical cross-section, which for instance makes it easier and safer to mount the blade 10 to the hub. The diameter (or the chord) of the root region 30 may be constant along the entire root area 30. The transition region 32 has a transitional profile gradually changing from the circular or elliptical shape of the root region 30 to the airfoil profile of the airfoil region 34. The chord length of the transition region 32 typically increases with increasing distance r from the hub. The airfoil region 34 has an airfoil profile with a chord extending between the leading edge 18 and the trailing edge 20 of the blade 10. The width of the chord decreases with increasing distance r from the hub.

    [0068] A shoulder 40 of the blade 10 is defined as the position, where the blade 10 has its largest chord length. The shoulder 40 is typically provided at the boundary between the transition region 32 and the airfoil region 34.

    [0069] It should be noted that the chords of different sections of the blade normally do not lie in a common plane, since the blade may be twisted and/or curved (i.e. pre-bent), thus providing the chord plane with a correspondingly twisted and/or curved course, this being most often the case in order to compensate for the local velocity of the blade being dependent on the radius from the hub.

    [0070] The blade is typically made from a pressure side shell part 36 and a suction side shell part 38 that are glued to each other along bond lines at the leading edge 18 and the trailing edge of the blade 20.

    [0071] Fig. 3 shows a schematic view of a cross section of the blade along the line I-I shown in Fig. 2. As previously mentioned, the blade 10 comprises a pressure side shell part 36 and a suction side shell part 38. The pressure side shell part 36 comprises a spar cap 41, also called a main laminate, which constitutes a load bearing part of the pressure side shell part 36. The spar cap 41 comprises a plurality of fibre layers 42 mainly comprising unidirectional fibres aligned along the longitudinal direction of the blade in order to provide stiffness to the blade. The suction side shell part 38 also comprises a spar cap 45 comprising a plurality of fibre layers 46. The pressure side shell part 38 may also comprise a sandwich core material 43 typically made of balsawood or foamed polymer and sandwiched between a number of fibre-reinforced skin layers. The sandwich core material 43 is used to provide stiffness to the shell in order to ensure that the shell substantially maintains its aerodynamic profile during rotation of the blade. Similarly, the suction side shell part 38 may also comprise a sandwich core material 47.

    [0072] The spar cap 41 of the pressure side shell part 36 and the spar cap 45 of the suction side shell part 38 are connected via a first shear web 50 and a second shear web 55. The shear webs 50, 55 are in the shown embodiment shaped as I-shaped webs. However, other configurations, such as C-shaped webs may also be utilised. The first shear web 50 comprises a shear web body and two web foot flanges. The shear web body comprises a sandwich core material 51, such as balsawood or foamed polymer, covered by a number of skin layers 52. The second shear web 55 has a similar design with a shear web body and two web foot flanges, the shear web body comprising a sandwich core material 56 covered by a number of skin layers 57. The sandwich core material 51, 56 of the two shear webs 50, 55 is chamfered near the flanges in order to transfer loads from the webs 50, 55 to the main laminates 41, 45 without the risk of failure and fractures in the joints between the shear web body and web foot flange. However, such a design will normally lead to resin rich areas in the joint areas between the legs and the flanges. Further, such resin rich area may comprise burned resin due to high exothermic peeks during the curing process of the resin, which in turn may lead to mechanical weak points.

    [0073] In order to compensate for this, a number of filler ropes 60 comprising glass fibres are normally arranged at these joint areas. Further, such ropes 60 will also facilitate transferring loads from the skin layers of the leg to the flanges. However, according to the invention, the web foot flanges and the shear web body are manufactured separately, and the web foot flanges are then laminated onto the ends of the shear web body.

    [0074] The blade shells 36, 38 may comprise further fibre-reinforcement at the leading edge and the trailing edge. Typically, the shell parts 36, 38 are bonded to each other via glue flanges in which additional filler ropes may be used (not shown). Additionally, very long blades may comprise sectional parts with additional spar caps, which are connected via one or more additional shear webs.

    [0075] Fig. 4 shows a first embodiment of a pre-cured web foot flange 70 according to the invention. The web foot flange 70 comprises a base part having a first side for mounting to the inner side of the wind turbine blade shell and an opposed, second side from which a first projection 73 and a second projection 76 extend. The two projections 73, 76 form a recess, which can take up an end of a shear web body.

    [0076] The pre-cured web foot flange may be formed by a number of outer fibre layers 71 and a number of inner fibre layers 72. A filler material 60' made of fibre reinforcement material is arranged so as to provide the projections 73, 76. The filler material 60' may for instance be ropes comprising reinforcement fibres, such as glass fibres. In the shown embodiment, the filler material 60' is shown as found. However, the filler material 60' may also be shaped in accordance with the desired web foot flange shape, in particular to shape the two projections 73, 76. The first projection comprises an inner side 74 facing the recess and an outer side 75 facing away from the recess. Similarly, the second projection 76 also comprises an inner side 77 facing towards the recess, and an outer side 78 facing away from the recess. The inner sides 74, 77 of the projections may be rounded and have a first curvature radius R1. The entire recess may advantageously follow a circle, e.g. along a measure of arc being approximately 140 degrees. The outer sides 75, 78 may also be rounded having an outer radius of curvature Ro, which will provide a smooth transition and thereby also a gradual load transition between the flange and the shear web body.

    [0077] The pre-cured web foot flange 70 may be moulded in a separate mould. Alternatively, the pre-cured web foot flange may be formed by known pultrusion or extrusion techniques.

    [0078] Fig. 5 shows a second embodiment of a pre-cured web foot flange 170 according to the invention. In this embodiment the projections are formed by a pre-shaped filler material 160. The pre-shaped filler material 160 may for instance be a pultruded or extruded body. In this embodiment, the filler 160 is shaped as a triangular. However, the sides of the pre-shaped filler 160 may also be slightly rounded to provide a rounded shape to the recess of the web foot flange. Similar to the first embodiment, the filler material 170 is covered by a number of outer fibre layers 171 and a number of inner fibre layers 172. As with the first embodiment, the pre-cured web foot flange 170 may be moulded with the pultruded or extruded filler material 170 in a separate mould. Alternatively, the entire body may be formed by extrusion or pultrusion.

    [0079] Fig. 6 illustrates a first embodiment of a manufacturing method according to the invention for manufacturing a shear web. In the shown embodiment a first pre-cured web foot flange 270 is laminated onto a first end 253 of a shear web body 250. The pre-cured web foot flange 270 may e.g. be formed like the two embodiments shown in Figs. 4 and 5.

    [0080] The shear web body 250 is pre-manufactured and comprises a sandwich core material 251, such as balsawood or foamed polymer, covered by a number of fibre skin layers 252. The shear web body 250 is an elongated body that - when mounted in the wind turbine blade shell - extends in the longitudinal direction of the wind turbine blade and may have a length of 30 metres or more. The shear web body comprises a first side 254 and a second side 258 as well as a first end 253 and a (not shown) second end.

    [0081] The first end 253 of the shear web body is rounded, e.g. having a second radius R2. The second radius R2 substantially matches or is smaller than the first radius of curvature R1 of the recess, so that the recess of the web foot flange 270 may take up the first end 253 of the shear web body 250 and so that the web foot flange 270 may be angled in relation to the shear web body. It is also possible to use an additional piece, e.g. having a semi-circular profile, in order to form the rounded or chamfered part. The piece may for instance be made of a foamed polymer or balsawood.

    [0082] In one example, the shear web body has a thickness of 32 mm, whereby the second radius R2 may be 16 mm. Further, the first radius of curvature is 17 mm.

    [0083] A fibre layer 280 is arranged between the recess of the web foot flange 270 and the first end 253 of the shear web body 250. The fibre layer 280 is wrapped around the first end 253 of the shear web body 250 and extends along a part of the first side 254 of the shear web body and along a part of the second side 258 of the shear web body. Further, a number of first fibre layers 281 are arranged along the surface of the web foot flange 270 along the outer side of the first projection 273 and further along the first side 254 of the shear web body 250. Similarly, a number of second fibre layers 282 are arranged along the surface of the web foot flange 270 along the outer side of the second projection 276 and further along the second side 258 of the shear web body 250.

    [0084] The first fibre layers 281 are covered by a first vacuum bag 290 and are sealed via a first sealant 291 to the web foot flange 270 and a second sealant 292 to the first side 254 of the shear web body 250. Similarly, the second fibre layers 280 are covered by a second vacuum bag 295 and are sealed via a first sealant 296 to the web foot flange 270 and a second sealant 297 to the second side 258 of the shear web body 250. The sealants 291, 292, 296, 297 may for instance be tacky tape or silicone. Thereby, a longitudinally extending mould cavity is formed between the first vacuum bag 290, the second vacuum bag 295, the web foot flange 270 and the shear web body 250. One end of the mould cavity is connected to a vacuum pump and the other end is connected to a resin source. Once the vacuum pump has evacuated the mould cavity, a valve to the resin source is opened and resin is injected into the mould cavity. Finally, the resin is cured so that a laminate bonding is formed between the web foot flange 270 and the first end 253 of the shear web body 250.

    [0085] In an alternative embodiment, only a single vacuum bag is used which is wrapped around the bottom of the web foot flange 270, whereby the first sealants 291, 296 may be omitted.

    [0086] The fibre layers 280, 281, 282 may also comprise a prepreg material. However, additional resin may advantageously be infused into the mould cavity as described above.

    [0087] The pre-cured web foot flange 270 is relatively flexible. Thereby, it can be varied or twisted in the longitudinal direction so that the angle relative to the shear web body may be varied in order to accommodate the shape of the wind turbine blade shell. Alternatively, the web foot flange may be sectionised and provided as individual parts extending along separate parts of the shear web body 250. The attachment method may be carried out by a relatively simple jig setup that holds the pre-manufactured shear web body 250 and the first web foot flange 270. In the shown embodiment, the shear web body 250 and the web foot flange are attached to each other in a setup, where shear web body is arranged in a substantially vertical orientation. Thereby, the resin may be injected from a lower part and flow upwards, which may compensate for air pockets forming and creep of the fibre layers due to gravity. The fibre layers 280, 281, 282 may advantageously be provided with a tackifier or a SAERfix® fabric in order for the fibre layers to maintain their shape during layup. It is also contemplated that the pre-cured web foot flange may be laminated onto the blade shell first and then laminated onto the shear web body.

    [0088] The fibre layers 280, 281, 282 extend along a length d along the sides 254, 258 of the shear web body. The length may for instance be 10-15 cm.

    [0089] The second web foot flange may be attached to the second end of the shear web body through a similar attachment method. The shear web body may advantageously be turned 180 degrees and the second web foot flange be attached to the second end of the shear web body in a setup, where the second web foot flange is arranged below the shear web body 250. Alternatively, the second web foot flange may be arranged above the shear web body without having to turn the shear web body 250.

    [0090] While the attachment method has been described in a setup, where the shear web body is arranged in a vertical orientation, it is recognised that the web foot flanges may also be attached to the shear web body in a setup, where the shear web body is arranged in a horizontal orientation, e.g. by arranging the shear web body on a simple work table.

    [0091] Fig. 7 illustrates a second embodiment of a manufacturing method according to the invention for manufacturing a shear web, in which similar reference numerals refer to like parts of the first embodiment shown in Fig. 6. Therefore, only the differences between the two embodiments are described.

    [0092] The second embodiment differs from the first embodiment in that the web foot flange 370 is not pre-cured. Instead the web foot flange is pre-formed as a sewn or weaved fibre body, advantageously comprising dry reinforcement fibres. In this embodiment, the fibre layers that are laminated onto the sides 354, 358 of the shear web body 350 are integrally formed as part of the two projections 373, 376 of the web foot flange 370.

    [0093] Since the pre-formed web foot flange 370 only maintains a rough shape for the final flange, it is necessary to utilise a forming tool in order to define the angle of the base part of the web foot flange 370 relative to the shear web body 350. Accordingly, a primary base plate 398 is utilised to define the angle of the base part of the web foot flange 370 relative to the shear web body 398. The first vacuum bag 390 is sealed to the base plate 398 via a first sealant and to the first side 354 of the shear web body 350 via a second sealant 392. Similarly, the second vacuum bag 395 is sealed to the base plate 398 via a first sealant 396 and to the second side 358 of the shear web body 350. The fibre material of the pre-formed web foot flange 370 may be provided with a tackifier or a SAERfix® fabric in order for the fibre layers to maintain their shape during layup. Alternatively, additional fibre layers comprising e.g. a tackifier or a SAERfix® fabric may be arranged to cover the projections 373, 376 in order to maintain the shape.

    [0094] The mould cavity formed between the vacuum bags 390, 395, the shear web body 350 and the base plate 398 may be connected to a vacuum pump and a resin source similar to the first embodiment in order to inject resin into the mould cavity and impregnate the fibre material of the pre-formed web foot flange 370. Finally, the resin is cured so that a laminate bonding is formed between the web foot flange 370 and the first end 353 of the shear web body 350.

    [0095] The reinforcement fibres used in the web foot flanges according to the first and the second embodiment are advantageously glass fibres. The same applies to the additional fibre layers used for laminating the web foot flange onto the shear web body. However, other applicable reinforcement fibre types could also be used.

    [0096] In the shown embodiments, the ends of the shear web body have been described as rounded. However, it is also possible to use other shapes in embodiments which do not form part of the present invention, such as chamfered or bevelled ends. However, it is advantageous that a large laminate bonding surface is formed between the ends of the shear web body and the recess of the web foot flange in order to provide a stronger mechanical attachment.
    List of reference numerals
    2 wind turbine
    4 tower
    6 nacelle
    8 hub
    10 blade
    14 blade tip
    16 blade root
    18 leading edge
    20 trailing edge
    22 pitch axis
    30 root region
    32 transition region
    34 airfoil region
    36 pressure side shell
    38 suction side shell
    40 shoulder
    41 main laminate / spar cap of pressure side
    42 fibre layers
    43 sandwich core material
    45 main laminate / spar cap of suction side
    46 fibre layers
    47 sandwich core material
    50 first shear web
    51 sandwich core material of first shear web
    52 skin layer(s)
    253, 353 First end of shear web body
    254, 354 First side of shear web body
    55 second shear web
    56 sandwich core material of second shear web
    57 skin layer(s)
    258, 358 Second side of shear web body
    60, 60', 160 Filler
    70, 170, 270, 370 First web foot flange
    71, 171 Fibre layer(s)
    72, 172 Fibre layer(s)
    73, 373 First projection
    74 Inner side of first projection
    75 Outer side of first projection
    76, 376 First projection
    77 Inner side of first projection
    78 Outer side of first projection
    280 Fibre layer(s)
    281 Fibre layer(s)
    282 Fibre layer(s)
    290, 390 Forming tool / vacuum bag
    291, 391 Sealant
    292, 392 Sealant
    295, 395 Forming tool / vacuum bag
    296, 396 Sealant
    297, 397 Sealant
    398 Base plate of forming tool
    d Length of fibre layer connection
    Ro Radius of curvature of outer side of projection
    R1 Radius of curvature of inner side of projection
    R2 Radius of curvature of shear web body end
    θ Measure of arc



    Claims

    1. A method of manufacturing a wind turbine blade component in form of a shear web (50, 55), the method comprising the steps of:

    a) providing a pre-manufactured shear web body (250, 350) having a first side (254, 354) and a second side (258, 358) as well as a first end (253, 353) and a second end;

    b) providing a first pre-formed web foot flange (70, 170, 270, 370) comprising a fibre-reinforcement material;

    c) arranging a first fibre layer (281) from the first pre-formed web foot flange and to a part of the first side of the shear web body;

    d) arranging a second fibre layer (282) from the first pre-formed web foot flange and to a part of the second side of the shear web body;

    e) supplying a resin to said first fibre layer and second fibre layer simultaneously with or subsequent to steps c) and d); and

    f) allowing the resin to cure so as to form the shear web (50, 55),

    wherein the first web foot flange (70, 170) comprises a base part having a first side and a second side, a first projection part (73) projecting from the second side of the base part and a second projection part (76) projecting from the second side of the base part so that a recess is formed between the first projecting part and the second projecting part, wherein the recess formed has a circular cross-section with a first radius (R1) and characterised in that the first end of the shear web body is rounded having a second radius (R2) substantially equal to or slightly smaller than the first radius.
     
    2. A method according to claim 1, wherein a tackifier is supplied to the first fibre layer (281) and the second fibre layer (282) in order to maintain the shape prior to supplying resin to said first and second fibre layers in step e).
     
    3. A method according to claim 1 or 2, wherein the pre-manufactured shear web body (250, 350) is a sandwich panel or a sandwich-structured composite member.
     
    4. A method according to any of the preceding claims, wherein the method comprises the step of providing a forming tool (290, 295) adjacent at least the first end (253) of the shear web body (250) to form a mould cavity covering the first pre-formed web foot flange (270), the first fibre layer (281), the second fibre layer (282), and a part of the shear web body near the first end of the shear web body, the forming tool optionally comprising a first vacuum bag (290) and possibly also a second vacuum bag (295).
     
    5. A method according to claim 4, wherein the resin in step e) is injected into the mould cavity.
     
    6. A method according to any of the preceding claims, wherein the pre-manufactured shear web body (250, 350) in step a) is arranged in a substantially vertical position, and wherein the first pre-formed web foot flange (270, 370) is arranged at the first end (253, 353) and below the shear web body.
     
    7. A method according to any of the preceding claims, wherein the recess has a measure of arc of 90-180 degrees, or 120-160 degrees, e.g. around 140 degrees.
     
    8. A method according to any of the preceding claims, wherein the first fibre layer and the second fibre layer comprise a multiaxial fibre layer, such as a biaxial, triaxial or quadaxial fibre layer.
     
    9. A method according to any of the preceding claims, wherein the first pre-formed web foot flange is a pre-cured composite body, such as a pultruded or extruded body.
     
    10. A method according to any of claims 1-8, wherein the first pre-formed web foot flange is a sewn or weaved fibre body (370).
     
    11. A method according to claim 10, wherein the sewn fibre body comprises dry reinforcement fibres.
     
    12. A wind turbine component in form of a shear web (50, 55) comprising:

    - a pre-manufactured shear web body (250, 350) having a first end (253, 353) and a second end as well as a first side (254, 354) and a second side (258, 358), and at least

    - a first pre-formed web foot flange (70, 170, 270, 370), wherein

    - the first pre-formed web foot flange is attached to the shear web body via

    - a first fibre layer (281) extending from the first pre-formed web foot flange and to a part of the first side (254, 354) of the shear web body, and

    - a second fibre layer (282) extending from the first pre-formed web foot flange and to a part of the second side of the shear web body (258, 358), wherein

    - the first fibre layer and the second fibre layer are embedded in a cured resin matrix, wherein the first pre-formed web foot flange is attached to the pre-manufactured shear web by one or more overlaminations comprising the first fibre layer and the second layer substantially without the use of a structural adhesive, wherein the first web foot flange (70, 170) comprises a base part having a first side and a second side, a first projection part (73) projecting from the second side of the base part and a second projection part (76) projecting from the second side of the base part so that a recess is formed between the first projecting part and the second projecting part, wherein the recess formed has a circular cross-section with a first radius (R1) and characterised in that the first end of the shear web body is rounded having a second radius (R2) substantially equal to or slightly smaller than the first radius.


     
    13. A wind turbine blade comprising a shear web according to claim 12, the shear web being connected between a pressure side (36) and a suction side (38) of the wind turbine blade (10).
     


    Ansprüche

    1. Verfahren zum Herstellen einer Windkraftanlagenflügelkomponente in der Gestalt eines Scherstegs (50, 55), wobei das Verfahren folgende Schritte umfasst:

    a) Bereitstellen eines vorgefertigten Scherstegkörpers (250, 350) mit einer ersten Seite (254, 354) und einer zweiten Seite (258, 358) sowie einem ersten Ende (253, 353) und einem zweiten Ende;

    b) Bereitstellen eines ersten vorgebildeten Stegfußflansches (70, 170, 270, 370), der ein Faserverstärkungsmaterial umfasst;

    c) Anordnen einer ersten Faserschicht (281) von dem ersten vorgebildeten Stegfußflansch und zu einem Teil der ersten Seite des Scherstegkörpers;

    d) Anordnen einer zweiten Faserschicht (282) von dem ersten vorgebildeten Stegfußflansch und zu einem Teil der zweiten Seite des Scherstegkörpers;

    e) Zuführen eines Harzes zu der ersten Faserschicht und der zweiten Faserschicht gleichzeitig mit oder anschließend an Schritte c) und d); und

    f) Aushärtenlassen des Harzes, um den Schersteg (50, 55) zu bilden,

    wobei der erste Stegfußflansch (70, 170) Folgendes umfasst: einen Basisteil mit einer ersten Seite und einer zweiten Seite, einen ersten Vorsprungsteil (73), der von der zweiten Seite des Basisteils vorsteht, und einen zweiten Vorsprungsteil (76), der von der zweiten Seite des Basisteils vorsteht, sodass eine Vertiefung zwischen dem ersten vorstehenden Teil und dem zweiten vorstehenden Teil gebildet wird, wobei die gebildete Vertiefung einen kreisförmigen Querschnitt mit einem ersten Radius (R1) aufweist, und dadurch gekennzeichnet, dass das erste Ende des Scherstegkörpers mit einem zweiten Radius (R2) gerundet ist, der im Wesentlichen gleich oder etwas kleiner als der erste Radius ist.
     
    2. Verfahren nach Anspruch 1, wobei der ersten Faserschicht (281) und der zweiten Faserschicht (282) ein Klebrigmacher zugeführt wird, um die Gestalt aufrechtzuerhalten, bevor der ersten und der zweiten Faserschicht in Schritt e) Harz zugeführt wird.
     
    3. Verfahren nach Anspruch 1 oder 2, wobei es sich bei dem vorgefertigten Scherstegkörper (250, 350) um eine Sandwichplatte oder ein Verbundelement mit Sandwichaufbau handelt.
     
    4. Verfahren nach einem der vorangehenden Ansprüche, wobei das Verfahren den Schritt des Bereitstellens eines Gestaltungswerkzeugs (290, 295) mindestens dem ersten Ende (253) des Scherstegkörpers (250) benachbart umfasst, um eine Formhöhlung zu bilden, die den ersten vorgebildeten Stegfußflansch (270), die erste Faserschicht (281), die zweite Faserschicht (282) und einen Teil des Scherstegkörpers in der Nähe des ersten Endes des Scherstegkörpers bedeckt, wobei das Gestaltungswerkzeug optional einen ersten Vakuumbeutel (290) und möglicherweise außerdem einen zweiten Vakuumbeutel (295) umfasst.
     
    5. Verfahren nach Anspruch 4, wobei das Harz in Schritt e) in die Formhöhlung eingespritzt wird.
     
    6. Verfahren nach einem der vorangehenden Ansprüche, wobei der vorgefertigte Scherstegkörper (250, 350) in Schritt a) in einer im Wesentlichen vertikalen Lage angeordnet wird und wobei der erste vorgefertigte Stegfußflansch (270, 370) an dem ersten Ende (253, 353) und unter dem Scherstegkörper angeordnet wird.
     
    7. Verfahren nach einem der vorangehenden Ansprüche, wobei die Vertiefung ein Bogenmaß von 90-180 Grad oder 120-160 Grad, z. B. etwa 140 Grad aufweist.
     
    8. Verfahren nach einem der vorangehenden Ansprüche, wobei die erste Faserschicht und die zweite Faserschicht eine mehrachsige Faserschicht, wie etwa eine zweiachsige, dreiachsige oder vierachsige Faserschicht umfassen.
     
    9. Verfahren nach einem der vorangehenden Ansprüche, wobei es sich bei dem ersten vorgebildeten Stegfußflansch um einen vorgehärteten Verbundkörper, wie etwa einen pultrudierten oder extrudierten Körper, handelt.
     
    10. Verfahren nach einem der Ansprüche 1-8, wobei es sich bei dem ersten vorgebildeten Stegfußflansch um einen genähten oder gewobenen Faserkörper (370) handelt.
     
    11. Verfahren nach Anspruch 10, wobei der genähte Faserkörper trockene Verstärkungsfasern umfasst.
     
    12. Windkraftanlagenkomponente in Form eines Scherstegs (50, 55), die Folgendes umfasst:

    - einen vorgefertigten Scherstegkörper (250, 350) mit einem ersten Ende (253, 353) und einem zweiten Ende sowie einer ersten Seite (254, 354) und einer zweiten Seite (258, 358) und mindestens

    - einen ersten vorgefertigten Stegfußflansch (70, 170, 270, 370), wobei

    - der erste vorgefertigte Stegfußflansch mittels Folgendem an dem Scherstegkörper angebracht ist:

    - einer ersten Faserschicht (281), die sich von dem ersten vorgebildeten Stegfußflansch und zu einem Teil der ersten Seite (254, 354) des Scherstegkörpers erstreckt; und

    - einer zweiten Faserschicht (282), die sich von dem ersten vorgebildeten Stegfußflansch und zu einem Teil der zweiten Seite des Scherstegkörpers (258, 358) erstreckt;

    - wobei die erste Faserschicht und die zweite Faserschicht in einer ausgehärteten Harzmatrix eingebettet sind, wobei der erste vorgebildete Stegfußflansch durch eine oder mehrere, die erste Faserschicht und die zweite Schicht umfassende Überlaminierungen im Wesentlichen ohne Verwendung eines tragenden Klebstoffs an dem vorgefertigten Schersteg angebracht ist,

    wobei der erste Stegfußflansch (70, 170) Folgendes umfasst: einen Basisteil mit einer ersten Seite und einer zweiten Seite, einen ersten Vorsprungsteil (73), der von der zweiten Seite des Basisteils vorsteht, und einen zweiten Vorsprungsteil (76), der von der zweiten Seite des Basisteils vorsteht, sodass eine Vertiefung zwischen dem ersten vorstehenden Teil und dem zweiten vorstehenden Teil gebildet wird, wobei die gebildete Vertiefung einen kreisförmigen Querschnitt mit einem ersten Radius (R1) aufweist, und dadurch gekennzeichnet, dass das erste Ende des Scherstegkörpers mit einem zweiten Radius (R2) gerundet ist, der im Wesentlichen gleich oder etwas kleiner als der erste Radius ist.
     
    13. Windkraftanlangenflügel umfassend einen Schersteg nach Anspruch 12, wobei der Schersteg zwischen einer Druckseite (36) und einer Saugseite (38) des Windkraftanlagenflügels (10) angeschlossen ist.
     


    Revendications

    1. Procédé de fabrication d'un composant de pale d'éolienne sous la forme d'une âme de cisaillement (50, 55), le procédé comportant les étapes consistant à :

    a) mettre en oeuvre un corps d'âme de cisaillement préfabriqué (250, 350) ayant un premier côté (254, 354) et un deuxième côté (258, 358) ainsi qu'une première extrémité (253, 353) et une deuxième extrémité ;

    b) mettre en oeuvre une première semelle de pied d'âme préformée (70, 170, 270, 370) comportant un matériau de renfort de fibres ;

    c) agencer une première couche de fibres (281) depuis la première semelle de pied d'âme préformée et jusqu'à une partie du premier côté du corps d'âme de cisaillement ;

    d) agencer une deuxième couche de fibres (282) depuis la première semelle de pied d'âme préformée et jusqu'à une partie du deuxième côté du corps d'âme de cisaillement ;

    e) fournir une résine à ladite première couche de fibres et à ladite deuxième couche de fibres simultanément avec les ou suite aux étapes c) et d) ; et

    f) laisser la résine durcir de manière à former l'âme de cisaillement (50, 55),

    dans lequel la première semelle de pied d'âme (70, 170) comporte une partie de base ayant un premier côté et un deuxième côté, une première partie faisant saillie (73) faisant saillie depuis le deuxième côté de la partie de base et une deuxième partie faisant saillie (76) faisant saillie depuis le deuxième côté de la partie de base de telle sorte qu'un évidement est formé entre la première partie faisant saillie et la deuxième partie faisant saillie, dans lequel l'évidement formé a une coupe transversale circulaire avec un premier rayon (R1) et caractérisé en ce que la première extrémité du corps d'âme de cisaillement est arrondie ayant un deuxième rayon (R2) sensiblement égal ou légèrement inférieur au premier rayon.
     
    2. Procédé selon la revendication 1, dans lequel un agent poisseux est fourni à la première couche de fibres (281) et à la deuxième couche de fibres (282) afin de maintenir la forme avant la fourniture de résine auxdites première et deuxième couches de fibres au cours de l'étape e).
     
    3. Procédé selon la revendication 1 ou la revendication 2, dans lequel le corps d'âme de cisaillement préfabriqué (250, 350) est un panneau sandwich ou un élément composite à structure sandwich.
     
    4. Procédé selon l'une quelconque des revendications précédentes, dans lequel le procédé comporte l'étape consistant à mettre en oeuvre un outil de forme (290, 295) adjacent par rapport à au moins la première extrémité (253) du corps d'âme de cisaillement (250) pour former une cavité de moule recouvrant la première semelle de pied d'âme préformée (270), la première couche de fibres (281), la deuxième couche de fibres (282), et une partie du corps d'âme de cisaillement à proximité de la première extrémité du corps d'âme de cisaillement, l'outil de forme comportant éventuellement un premier sac sous vide (290) et éventuellement également un deuxième sac sous vide (295).
     
    5. Procédé selon la revendication 4, dans lequel la résine au cours de l'étape e) est injectée dans la cavité de moule.
     
    6. Procédé selon l'une quelconque des revendications précédentes, dans lequel le corps d'âme de cisaillement préfabriqué (250, 350) au cours de l'étape a) est agencé dans une position sensiblement verticale, et dans lequel la première semelle de pied d'âme préformée (270, 370) est agencée au niveau de la première extrémité (253, 353) et sous le corps d'âme de cisaillement.
     
    7. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'évidement a une mesure d'arc de 90 à 180 degrés, ou de 120 à 160 degrés, par exemple environ 140 degrés.
     
    8. Procédé selon l'une quelconque des revendications précédentes, dans lequel la première couche de fibres et la deuxième couche de fibres comportent une couche de fibres à plusieurs axes, telle qu'une couche de fibres à deux axes, à trois axes ou à quatre axes.
     
    9. Procédé selon l'une quelconque des revendications précédentes, dans lequel la première semelle de pied d'âme préformée est un corps composite pré-durci, tel qu'un corps pultrudé ou extrudé.
     
    10. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel la première semelle de pied d'âme préformée est un corps de fibres cousu ou tissé (370).
     
    11. Procédé selon la revendication 10, dans lequel le corps de fibres cousu comporte des fibres de renfort sèches.
     
    12. Composant de pale d'éolienne sous la forme d'une âme de cisaillement (50, 55) comportant :

    - un corps d'âme de cisaillement préfabriqué (250, 350) ayant une première extrémité (253, 353) et une deuxième extrémité ainsi qu'un premier côté (254, 354) et un deuxième côté (258, 358), et au moins

    - une première semelle de pied d'âme préformée (70, 170, 270, 370) dans lequel

    - la première semelle de pied d'âme préformée est attachée au corps d'âme de cisaillement par

    - une première couche de fibres (281) s'étendant depuis la première semelle de pied d'âme préformée et jusqu'à une partie du premier côté (254, 354) du corps d'âme de cisaillement, et

    - une deuxième couche de fibres (282) s'étendant depuis la première semelle de pied d'âme préformée et jusqu'à une partie du deuxième côté du corps d'âme de cisaillement (258, 358), dans lequel

    - la première couche de fibres et la deuxième couche de fibres sont encastrées dans une matrice de résine durcie, dans lequel la première semelle de pied d'âme préformée est attachée à l'âme de cisaillement préfabriquée par un ou plusieurs pelliculages comportant la première couche de fibres et la deuxième couche sensiblement sans l'utilisation d'un adhésif structural,

    dans lequel la première semelle de pied d'âme (70, 170) comporte une partie de base ayant un premier côté et un deuxième côté, une première partie faisant saillie (73) faisant saillie depuis le deuxième côté de la partie de base et une deuxième partie faisant saillie (76) faisant saillie depuis le deuxième côté de la partie de base de telle sorte qu'un évidement est formé entre la première partie faisant saillie et la deuxième partie faisant saillie, dans lequel l'évidement formé a une coupe transversale circulaire avec un premier rayon (R1) et caractérisé en ce que la première extrémité du corps d'âme de cisaillement est arrondie ayant un deuxième rayon (R2) sensiblement égal ou légèrement inférieur au premier rayon.
     
    13. Pale d'éolienne comportant une âme de cisaillement selon la revendication 12, l'âme de cisaillement étant raccordée entre un côté en pression (36) et un côté en dépression (38) de la pale d'éolienne (10).
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description