(19)
(11)EP 2 883 424 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
20.05.2020 Bulletin 2020/21

(21)Application number: 13829186.9

(22)Date of filing:  13.08.2013
(51)Int. Cl.: 
H05B 37/02  (2006.01)
G08C 17/00  (2006.01)
(86)International application number:
PCT/AU2013/000892
(87)International publication number:
WO 2014/026226 (20.02.2014 Gazette  2014/08)

(54)

A LIGHTING CONTROL APPARATUS AND PROCESS

BELEUCHTUNGSSTEUERUNGSVORRICHTUNG UND -VERFAHREN

APPAREIL ET PROCÉDÉ DE COMMANDE D'ÉCLAIRAGE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 13.08.2012 AU 2012903471

(43)Date of publication of application:
17.06.2015 Bulletin 2015/25

(73)Proprietor: OR Technologies Pty Ltd
Melbourne Airport VIC 3045 (AU)

(72)Inventors:
  • BISHOP, Daniel, John
    St Kilda, Victoria 3182 (AU)
  • DUFFIELD, Christopher, Robert
    Richmond, Victoria 3121 (AU)

(74)Representative: Gill Jennings & Every LLP 
The Broadgate Tower 20 Primrose Street
London EC2A 2ES
London EC2A 2ES (GB)


(56)References cited: : 
EP-A1- 2 451 252
WO-A1-2011/057313
WO-A1-2011/134003
US-B2- 7 529 594
WO-A1-2010/124315
WO-A1-2011/134003
US-A1- 2012 112 667
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to systems and methods for controlling the illumination output of lighting based on environmental sensing, and in particular to a lighting control apparatus and process for configuring and operating a lighting control apparatus.

    BACKGROUND



    [0002] Existing lighting systems such as those used for relatively large (e.g. office) installations suffer from a number of difficulties, including complex and expensive installation and wasted energy when unoccupied spaces are illuminated. Additionally, although the centralised nature of prior art addressable lighting systems in theory facilitates their configuration, in practice this process is complex and time-consuming, with control engineers spending time mapping virtual components to their real counterparts, and ensuring that the various systems and components are correctly communicating with one another. This can obfuscate the step of directly programming the operation of individual lights or lighting zones to optimise lighting and energy usage while also providing occupant satisfaction.

    [0003] It is desired to provide a lighting control apparatus and related processes that alleviate one or more difficulties of the prior art, or at least provide a useful alternative to existing lighting systems and processes.

    [0004] WO 2011/134003 A1 discloses background art.

    SUMMARY



    [0005] In accordance with some embodiments of the present invention, there is provided a lighting control apparatus as set out in claim 1 and a lighting control process according to claim 11; further embodiments are set out in the dependent claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0006] Some embodiments of the present invention are hereinafter described, by way of example only, with reference to the accompanying drawings, wherein:

    Figure 1 is a block diagram of a lighting control apparatus or sensor node in accordance with the described embodiments of the present invention;

    Figure 2 is a perspective illustration of a lighting control apparatus or sensor node in accordance with some embodiments of the present invention;

    Figure 3 is a schematic plan view of an intelligent luminaire or lighting node including the lighting control apparatus of Figure 2, a light source in the form of a fluorescent lamp and associated ballast, and a lighting power controller;

    Figure 4 is a schematic side view illustrating the typical operation of a lighting system consisting of an array of lighting nodes such as the luminaire of Figure 3;

    Figure 5 is a perspective illustration showing zones of respective different illumination intensities surrounding occupants in an office environment;

    Figure 6 is a schematic illustration of the use of different lighting configurations or moods that result in different lighting envelopes surrounding each occupant;

    Figure 7 is a flow diagram of a group configuration process in accordance with some embodiments of the present invention;

    Figure 8 is a flow diagram of a configuration request process in accordance with some embodiments of the present invention; and

    Figure 9 is a flow diagram of a transmit range test process in accordance with some embodiments of the present invention.


    DETAILED DESCRIPTION



    [0007] International Patent Application No. PCT/AU2011/000459, entitled Illumination Apparatus Methods and Systems ("the Sensor Node Patent Application"), describes a lighting system and architecture in which a plurality of lighting control apparatuses or "sensor nodes" communicate with each other using peer-to-peer multi-hop wireless networking to form an ad hoc wireless network. As shown in Figure 1, each sensor node 100 (which is typically but not necessarily situated adjacent to its controlled light source 102) includes a wireless transmitter 104 for transmitting wireless signals to other sensor nodes, a wireless receiver 106 for receiving wireless signals from other sensor nodes, and at least one sensing component or sensor 108 configured to detect or sense at least one parameter of interest (e.g., presence of an occupant and/or ambient light level) and to generate a corresponding output, and a programmable intelligent controller 110 for controlling the at least one light source 102 associated with the sensor node 100 by way of a lighting power controller 112. Optionally, the sensor node 100 may also include one or more additional components 114, such as a WiFi transceiver module or a global positioning system module, for example.

    [0008] The controller 110 of each sensor node is configured to control its associated light source(s) 102 based on: (i) the output of each sensing component 108, or (ii) wireless signals received from one or more other sensor nodes by the receiver 106, or (iii) data stored in memory within or associated with the controller 110, or (iv) any combination of (i), (ii) and (iii). The controller 110 is also configured to cause the transmitter 104 to transmit wireless signals for use by other sensor nodes to control their own light sources.

    [0009] A group of these sensor nodes 100 (and their associated lighting power controllers 110 and light sources 102) in mutual peer-to-peer communication constitutes an intelligent, configurable lighting system that provides many advantages over prior art lighting systems, some of these advantages being described in the Sensor Node Patent Application.

    [0010] A perspective view of one embodiment of a lighting control apparatus or sensor node 200 is shown in Figure 2. In this embodiment, the lighting control apparatus 200 includes sensing components in the form of a motion sensor 202 and an ambient light Sensor 204, and the wireless receiver and transmitter are provided in the form of an infrared (IR) receiver 206 and an infrared transmitter 208. The lighting control apparatus 200 also includes a status indicator 210 and an in-field firmware upgrade port 212 for direct connection by a corresponding programmer, allowing the firmware of the controller (not visible in Figure 2) to be installed or replaced. However, as described below, this can also be done via wireless means.

    [0011] Figure 3 is a schematic diagram showing how the sensor node 200 of Figure 2 can be installed into a housing 302 with a fluorescent lamp 304 and associated ballast 306 and lighting power controller 308 in order to provide an integral, intelligent luminaire or lighting node 300 that requires only mounting and connection of mains power 310 for installation.

    [0012] Figure 4 is a schematic side view of an illuminated space illustrating one mode of operation of a lighting system consisting of an array of intelligent lighting nodes such as the intelligent luminaires 300 shown in Figure 3. A person 402 walking under the motion sensor of a first sensor node 404 causes that motion sensor to output a signal representing the detection of motion in the motion sensor's field of view or sensing region. The controller of that node receives the signal and controls its associated light source to a configurable power setting (e.g., 100%) by outputting a corresponding control signal to the lighting power controller associated with the node. In addition, the controller causes the node's transmitter to output wireless signals representing the detection of motion by its motion sensor. For reasons that will become clear in the following description, these signals are referred to herein as "level 1" signals.

    [0013] In the described embodiment, the transmitter is an infrared (IR) optical transmitter and is configured so that the transmitted IR signals are directed downwards in the form of a diverging cone 406 that is reflected from the floor 408 and/or any furnishings illuminated by the IR signals 406 to provide reflected IR signals 410 that can be received by other sensor nodes within range of the reflected IR signals 410.

    [0014] In this example, the reflected level 1 IR signals 410 are received by the receiver of a second lighting node 406, indicating to the second node 406 that one of its immediate neighbour nodes (i.e., one hop away) has detected motion. Accordingly, the second node 406 controls its own light source to a corresponding illumination intensity (e.g., 80%) and transmits its own IR signals 414 representing the information that a node spaced two hops away from any receiving nodes has detected motion. Accordingly, these IR signals 414 are referred to herein as "level 2" signals.

    [0015] This process continues, so that the IR signals 414 are again reflected from the floor 408 to provide reflected IR signals 416 that are received by a third sensor node 418. The third sensor node 418 is thus informed that motion has been detected at a location spaced two nodes away from it, and in response it controls its own light source to a corresponding illumination intensity (e.g., 60%), and transmits corresponding "level 3" IR signals 420 indicating to any further receiving sensor nodes that motion has been detected at a location three node spacings away. This process continues until the spatial separation of a receiving node from the node detecting motion reaches a configurable threshold separation (e.g., 5 hops), at which point that node does not transmit any further IR signals.

    [0016] Although the schematic representation shown in Figure 4 is only one dimensional, it will be appreciated that in reality the transmission of wireless signals from node to node, and consequently the control of the corresponding light sources, occurs in two dimensions, as shown in Figure 5. Considering the dependence on spatial separation in terms of the spatial separation (or number of hops) between neighbouring sensor nodes, the wireless signals representing motion detection at different spatial separations (corresponding to the 'level' or hop count represented by the signals) define respective motion zones of respective illumination intensities. Thus in Figure 5, human movement causes the illumination of concentric, generally annular regions of respective illumination intensities (represented as "L5", L4", L3", and "L2" in Figure 5) disposed about a central circular zone of (typically) maximum illumination intensity ("LI").

    [0017] The sensor nodes (hereinafter also referred to simply as "nodes" for the sake of brevity) of the lighting system can be regarded as a platform, since the nodes can be programmed or re-programmed as desired, either as part of the manufacturing process, during installation, or in the field, or indeed at any time after installation, This ability to reconfigure the nodes as desired allows the system as a whole to provide enhanced functionality and to support configurations and applications as the need arises. In particular, the sensor nodes can be programmed not only to modify the processes or algorithms that each node uses to control its own light source(s), but also how the nodes exchange data with one another and what data is exchanged, whether related to lighting or otherwise.

    Group Configuration



    [0018] Although the centralised nature of prior art addressable lighting systems in theory facilitates their configuration, in practice this process is complex and time-consuming, with control engineers spending time mapping virtual components to their real counterparts, and ensuring that the various systems and components are correctly communicating with one another. This can obfuscate the step of directly programming the operation of individual lights or lighting zones to optimise lighting and energy usage while also providing occupant satisfaction.

    [0019] In contrast, the distributed intelligence system described herein and in the Sensor Node Patent Application requires no configuration in that it can operate satisfactorily 'out of the box': i.e., without requiring any specific configuration to the installation.

    Distributed Intelligence Architecture



    [0020] A substantial benefit of the distributed intelligence architecture of the lighting system is its robustness. Since each sensor node is self sufficient, consistency of communication is not a critical requirement to avoid catastrophic failure. Each node is configured to control its associated light source(s) based on the information available to the node. More information generally leads to better control, although limited information still allows acceptable system performance. Furthermore, due to the removal of central control, there is no requirement to create a virtual mapping of the light and sensor system.

    Behaviour configuration and moods



    [0021] The distributed architecture of the peer-to-peer lighting system allows decisions to be made locally by a sensor node co-located with each light source. There are a number of parameters that can be used by each node to determine the response of its light source to a given set of environmental conditions. These parameters include light output and dwell time, low lux output and low lux dwell time. The response of a node to a given lighting configuration can differ, depending on the circumstance of that node, for example, whether it is located in an open office, or a car park or a mine shaft. The nodes can be preconfigured during manufacture with a set of lighting moods that provide behaviour suitable for standard installation situations. Users can subsequently adjust the relevant parameters based on their preferences, as described below.

    [0022] For example, Figure 6 is a schematic diagram illustrating one possible set of different lighting configurations or "moods" that can be programmed into the controllers of sensor nodes in order to determine the illumination intensity envelope that will result from the detection of motion at different separations from each node. For example, an "extreme saver" lighting configuration 602 can be defined to provide 100% illumination intensity at locations at or within one sensor node separation or spacing from the detected motion, falling to 40% illumination intensity at two separations, 20% at 3 separations, and 0% at greater separations. Thus this lighting configuration results in strong illumination immediately surrounding each occupant, but very little illumination at greater distances. Clearly, this lighting configuration envelope 602 will result in lower consumption of energy at the expense of comfort for the occupants.

    [0023] In contrast, an "open floor" lighting configuration 604 provides the same illumination intensity at locations within one node separation of the occupant, but increases the illumination intensity from 40% to 70% at locations between 1 and 2 node separations, from 20% to 40% between 2 and 3 node separations, and extends the outer illumination boundary from 3 node separations to 15 node separations, thus providing a very large illumination zone of low intensity,

    [0024] Finally, a 3rd "corridor" illumination configuration envelope 606 provides a maximum illumination to a maximum separation of 10 nodes from each occupant, but at a relatively high illumination intensity of 70%.

    Sensors and Microprocessor dedicated to each light allows ultimate optimisation



    [0025] In the prior art, high end centralised control systems allow for control of individual lights, often referred to as individual addressability. In such systems, when controlling a chosen individually addressable light source, a central computer receives information from a distributed set of sensors, and processes the received sensor information together with a virtual mapping to make calculations based on the sensed information and how that information relates to the environmental conditions under the chosen light source, and from those calculations determine appropriate instructions or control data that can be used to control the light source in order to achieve the desired lighting outcome.

    [0026] The peer-to-peer lighting system described herein provides substantial improvements in performance and simplification by dedicating a set of sensors and a controller to each light source, and by making decisions locally. By having the controller co-located with the light source (and typically, but not necessarily, both being disposed within a common housing (e.g., in the form of a luminaire as shown in Figure 3)), the requirement for a virtual mapping or separate communication system (either wired or wireless) for carrying control instructions is removed. By having sensors dedicated to each light source, the requirement for a virtual mapping is again avoided, and the need to conduct analysis or make approximations about the conditions under a given light source based on information under remotely located sensors is removed.

    Task Lighting & lumen maintenance



    [0027] The system also allows for accurate lumen maintenance at every given location, suitable for the task conducted at each location. For example, if a lighting node is located above a pot plant, it can be set to a much lower illumination intensity than if it was illuminating a watchmaker's workbench. Importantly, the system will also know when the watchmaker is at his workbench, and so can be configured to only illuminate to the desired level when the occupant is present. This is commonly referred to as task lighting.

    [0028] A further enhancement is the ability of the described system to provide a lumen maintenance function to offset factors that may impact a light source's illumination efficacy; for example, light output deterioration in fluorescent lamps or temperature effects on light emitting diodes (LEDs). In embodiments where each sensor node includes a dedicated ambient light sensor, the node's light source can be controlled to deliver a certain luminance which automatically drives a light source harder when its efficiency drops.

    Single Node Configuration Process - Hand Held Device



    [0029] The system described herein allows the control of individual light sources (i.e., nodes) to be reconfigured independently of other light sources (nodes), either by the occupant or another party. A significant benefit of independent node configuration is that it can be done using a simple handheld device (e.g., a smartphone, infrared remote control, or the like) while standing directly under the node (in situ). This facilitates a higher level of access to control lighting parameters by users, since configuration is not conducted at a remote (and typically locked) location, or via a virtual representation that requires interpretation skills, as is the case of a centralised system. It also allows the party performing the configuration to have an appreciation of the specific environment that is being illuminated by that light source (node), and to get direct feedback of the effect of the lighting adjustment both through their own senses, and/or optionally also using measurement technology, for example, a hand held light meter.

    [0030] The system also allows individual occupants to control their own lights, which in the context of an indoor environment has been demonstrated to widen the occupants' environmental comfort bands, which in turn permits reduced energy consumption. Some of the variables an individual might want to adjust include the light output or illumination of the lighting node while the space is occupied, and the dwell time of the node's sensor (typically, a motion sensor or other sensor whose output can be used to detect or infer human presence) before it switches the light source off.

    Group Configuration Process



    [0031] The ability to configure lighting nodes in situ is a significant advantage of the lighting system. However there are scenarios where it is preferable to have an entire array of lights set to the same setting, either permanently, or as a starting point to assist individual configuration. For example, office grids are often quite uniform, and can be designed to provide quite high illumination (lux) levels. If the percentage light output required to meet a relevant lighting code is determined in one location, it is typically similar for all the light fittings in the same installation. In another example, a particular facilities manager might be aggressive with energy savings and wants a very short motion sensor dwell time, at the risk of some of the lights switching off occasionally when occupants are present. In such scenarios, it is desirable to have a more centralised method of bulk configuration.

    [0032] In some embodiments, the re-configurability of many nodes is facilitated by a group configuration process executed by each node of a group or set of nodes, in which configuration data received by one node (for example, from a handheld user device) is then relayed to other nodes of the group to propagate the configuration to those other nodes.

    [0033] An example scenario is shown in the flow diagram of Figure 7. At step 702, a user configures an individual node, using a hand held device such as a smartphone, for example. When the user is satisfied with the node configuration and wishes other lights in the same room or zone (see below) to have the same or a corresponding configuration, at step 704 the user instructs the node to execute the group configuration process.

    [0034] In response to receipt of a command to execute the group configuration process, at step 706 the node retrieves or generates configuration data representing its own configuration, as set by the user, and then forwards or otherwise transmits the configuration data from its wireless transmitter.

    [0035] At step 708, each other node within range of the wireless signals generated by the initial node receives the transmitted configuration data, updates its own configuration in accordance with the received configuration data, and the re-transmits the configuration data from its own wireless transmitter. In this manner, the configuration data and the node configuration propagate from the initial node to other nodes in a peer-to-peer manner at steps 710, 712 until all of the nodes are configured in accordance with the configuration data at step 714.

    [0036] It will be apparent from the above that each node will receive the configuration data more than once. In particular, any given node will generally receive the configuration data back from each node that received the configuration data from that given node. The potential problem of almost simultaneous, overlapping transmissions by multiple nodes, leading to signal interference between nodes can be almost entirely avoided by each node waiting a random delay period before relaying a message. By relaying the message more than once (with another random delay before the second and each subsequent transmission), any occasional interference can be overcome or alleviated. Many other possible arrangements for avoiding collisions will be apparent to those skilled in the art, including methods based on standard collision avoidance methods and protocols known to those skilled in the art.

    [0037] To prevent the group configuration process from infinitely looping, in some embodiments the transmitted configuration data includes an index or hop count that is incremented by each receiving node prior to re-sending and is used to limit the number of hops. In other embodiments, each node starts a timer following its reconfiguration and ignores any configuration data or configuration commands that are identical in content to those already relayed, and that are received before the corresponding timer expires. In some embodiments, the original node generates a random number that is included with the configuration data, and each node then stores the random number for a predetermined period (e.g., 1 hour) and compares the stored number with the random number included in any subsequently received configuration data so that the node ignores configuration data that it has already used.

    Configuration Interrogation



    [0038] In general, it is not necessary to know or document how each node has been configured. However, if it is desired to determine how a node has been configured, the user is able to interrogate one or more nodes by sending each such node a configuration query command. This can be done, for example, by the user standing under a selected node and using a hand-held device such as a smart phone or IR controller to communicate with the wireless receiver of the node.

    [0039] For example, Figure 8 is a flow diagram of a configuration query process. After configuring a sensor node at step 802, using either the single node configuration process or group configuration process described above, at step 804 a user transmits a configuration query request from a hand-held IR controller. At step 806, the node receives the configuration request and in response transmits configuration information representing its current configuration to the user device. At step 808, the user device then receives the configuration data and displays the node's configuration to the user. If desired, the user can save the configuration information to storage of or otherwise associated with the user device.

    Adaptive Motion Dwell Time



    [0040] A significant drawback of many motion sensor controlled lights is the sensitivity of the motion sensor, which is often inadequate to sense occupants without some minimum level of movement, resulting in lights switching off or dimming at inappropriate times when occupants are present. One method to reduce the impact of this issue is to use a dwell time that is used to keep the lights on for a fixed period of time after occupants are no longer sensed, and is reset each time the motion sensor senses occupants. However, choosing a value for the dwell time is a balancing act between occupancy comfort and energy efficiency: too long a dwell time and a lot of energy is wasted illuminating an empty space; conversely, too short a dwell time risks disrupting the occupants by forcing them to consciously move solely to activate the motion sensors.

    [0041] The lighting system described herein overcomes this problem to a large degree due to the following inherent redundancies within the system:
    1. 1. There is an array of sensors (which may or may not be motion sensors) that generate outputs representative of human occupancy, each sensor serving the area that the corresponding node is illuminating, as opposed to traditional systems that have one wide angle sensor serving a zone of several luminaires. This means that there are no blind spots; for example, pillars or partitions do not block the view of the motion sensor. In prior art lighting systems, this often happens, forcing the occupants to actually get up and walk to an area where the motion sensor can detect the occupants.
    2. 2. There is overlap between the sensors, which results in several motion sensors being able to see a given occupant. This means that micro-movements that might be invisible to a motion sensor at a particular angle can activate a different motion sensor that has a different angle of view.
    3. 3. Any given light can be activated not just by its own dedicated (e.g., motion) sensor, but by occupancy information transmitted to it from neighbouring sensor nodes. So if one person does not move, but there are other occupants in the vicinity activating the sensors of corresponding lighting nodes, the light above the non-moving occupant can be kept on.
    4. 4. The ability to easily configure each light individually allows different sensor nodes to have different dwell times, so if there is one occupant that is particularly prone to having their light switch off, then the dwell time of that node can easily be extended without extending the dwell time of other nodes in the system. This results in improved lighting conditions without significant increases in energy consumption.


    [0042] The above features are inherent in the distributed intelligence peer-to-peer lighting system described herein. However, it will be apparent that point 3 above does not apply if an occupant is alone in the office. The lighting node above the occupant will, however, be aware that that no one else is close (due to the absence of received messages from other nodes - or at least from nodes that are far away) and is therefore able to change its behaviour accordingly. In some embodiments, each node selects its dwell time based on whether occupancy information or not has been received from distant nodes. The particular dwell times and the node separation threshold (i.e., being or corresponding to the number of nodes between the receiving node and originating nodes detecting human presence) are user configurable parameters. Thus the system can be said to use adaptive presence dwell times.

    Transmit Test Range & Calibration



    [0043] In some embodiments, the lighting system described herein depends on wireless peer-to-peer communications that are sensitive to the environment. Consequently, in some environments the communications cannot be guaranteed on specification alone, and transmit range testing may be required, the objective being to ascertain how reliably the nodes communicate with each other.

    [0044] In order to address this potential issue, in some embodiments the nodes are configured to execute a range test process on demand, as shown in Figure 9. For example, at step 902 a user may issue a range test request or command to a node by standing under that node and issuing the command from a hand-held communications device, which may be in the form of a dedicated control device with wireless (e.g., infrared (IR), Wi-Fi, Zigbee, Bluetooth, or the like) transceiver, or a general purpose device such as a portable or tablet computer or smartphone.

    [0045] The node receives the range test request, and controls its light source(s) to provide a visual indication that the request was successfully received by that node (e.g., by causing the light source to flash or blink on and off three times). After a configurable but typically short delay (e.g., 1 second), at step 904 the node then transmits, via its wireless transmitter, a corresponding test request for receipt by one or more other nodes within wireless range of the transmitting node. Like the first node, at step 906 each node receiving the signal controls its light source(s) to provide a visual indication that the request was successfully received by that node. The requests thus propagate or hop from node to node, enabling the user to visualise the communications (or absence thereof) by way of the visual indications generated by the nodes that successfully received test requests.

    [0046] In some embodiments, the visual indications are representative of the number of hops from the originating node that the request had undergone before reaching the node (e.g., the number of flashes is equal to the number of hops). Additionally, as with the configuration process described above, the nodes can ignore subsequent tests requests in a manner described above; for example by using timers or a random number included with the test requests. Other variations and options will be apparent to those skilled in the art in light of this disclosure.

    Point to Point communication optimisation



    [0047] It is generally desirable that each node directly communicates with its immediate neighbour nodes, but not with more distant nodes (i.e., where there is at least one intermediate and closer node). To test communication performance, each sensor node can execute a point-to-point test (P2PT) process. This can be self-executed, or initiated by a user. The purpose of the test process is to optimise or improve the reliability of communication between neighbouring sensor nodes. The test involves a node transmitting wireless signals representing a set of test messages and then receiving corresponding wireless signals transmitted by other nodes in response to receipt of the transmitted test messages. During the test, one or more wireless signal transmission parameters are changed, one of which may be signal strength. Following the test, an analysis is performed on the received response signals, and the node's controller then determines the preferred signal transmission parameters to optimise communication with other nodes. To assist other sensor nodes conducting P2PT configuration, a node may be configured to respond with a P2PT response message including data representing its own wireless transmission parameters. The nodes can be configured to propagate test messages to other nodes only up to certain number of hops.

    [0048] In one embodiment, a sensor node is put into test mode (Test Node) to optimise communication with other nodes. The Test Node tests at least one wireless communications parameter across a corresponding predetermined range. For example, the parameter might be wireless signal transmission strength and might vary between 1A and 2A. Ten test messages are sent out at 1A, and the controller records how many different nodes (Neighbour Nodes) return P2PT response messages, and the reliability of the response received from each of them. Collisions of these responses can be reduced by using any of the methods described above.

    [0049] An equivalent set of test messages is then sent out at the higher transmission strength of 1.1A, and this is then repeated through the tested range of transmission powers. Following the test, the results are then analysed by the Test Node to assess, for each signal strength, which Neighbour Nodes are direct (i.e., single hop) neighbours, and which are two or more hops away. The Test Node then selects a preferred configuration for the parameter, in this example being wireless signal transmission strength.

    [0050] To assist other sensor nodes in conducting P2PTs, various configurations may be used to ensure that the P2PT response messages are most useful. For example, the nodes can be configured so that the P2PT response messages are always sent with maximum signal transmission strength to ensure that they will be received by the originating (test) node. Additionally, the nodes can be configured so that they send a "level 2" P2PT response message if they receive a P2PT response message they didn't originate, regardless of how far the receiving node is from the originating test node. (as described in the Sensor Node Patent Application, a peer-to-peer relayed "level n" message (where n is an integer > 0) is a message containing or representing the value n as the number of hops from the node that generated the message). A node may also measure the strength of the reflected signals originated from itself to optimise transmission.

    Harmony of Communication wavelength and Visible light



    [0051] A substantial advantage of the described peer-to-peer lighting system is the ability to adapt to environmental changes, such as moving partitions or office layouts. In some embodiments, a high degree of flexibility is gained where the wireless transmissions have similar properties to visible light. Since the function of a lighting system is to provide light to occupants, in a situation where an obstruction is introduced such that an occupant can no longer "see" a light source, so it makes sense that the light source no longer responds to the presence of the occupant.

    [0052] Consequently, in embodiments where the wireless transmitters are infrared transmitters, thw resulting correspondence between the optical lighting function of the system and the optical peer-to-peer communication means provides functional advantages over configurations that use non-optical communication means.

    Zoning



    [0053] The lighting system described herein is elegant in its fundamental simplicity, and yet allows great flexibility and, indeed, potential complexity in its processing. The Sensor Node Patent Application describes various ways that each lighting node can behave in a range of different lighting situations by using pre-programmed illumination outputs depending on how close the closest occupant is to the node.

    [0054] However, there may be situations where it is desired to modify the response of nodes across different areas. For example, it might not be desirable for the light in a meeting room to come on in response to the signals received from a nearby node located in a corridor, or vice versa. One solution to this problem is to configure a sensor node as being a member of a specific "zone" or group identified by a corresponding zone (or group) identifier, include the zone identifier in its wireless transmissions, and define rules determining how the node treats wireless signals received from each other node, depending on the zone identifier of the other node. An installation of the lighting system can thus be broken down into zones or groups of lighting nodes, if desired.

    [0055] It will be apparent from the above, that the use of zone identifiers and associated rules allows great flexibility in behaviour. Although perhaps the most common configuration is to define rules that tell a node to ignore signals from zones other than its own, it will also be apparent that more complex rules can be defined to provide additional functionality to the system. In another simple example, the nodes in two adjacent zones A and B are configured to allow processing of signals from Zone A to another zone (B), but not in the other direction.

    [0056] Depending on the desired application, the zone identifier in each transmission may identify the zone associated with the (previous hop) transmitting node itself (including where that node is simply propagating or forwarding a message received from another node), or alternatively the zone identifier may identify the zone associated with only the originating node (which may be many hops away) that first generated the message that is then propagated from node to node.

    Dynamic Motion Thresholds



    [0057] In some embodiments of the lighting system, due to constraints of cost or size, it may be the case that the wireless transmitters have the potential to cause interference to the sensing components, potentially resulting in the incorrect identification of human presence or occupancy when no occupants are present. However, this can be avoided by altering the decision threshold used to determine whether the output of the sensing device is indicative of human presence. The threshold can be increased temporarily by an amount known to be as large as or greater than the magnitude of the interference that is caused by the wireless transmitter. Thus the sensor detection by a node is effectively desensitised during transmission of wireless signals by that node to suppress spurious detection caused by interference.

    Motion Sensor Failure Detection



    [0058] In a large lighting installation with many sensing components present in many nodes, it is possible that one of the sensors will over time develop a fault that results in it permanently providing an output indicative of the presence of humans, even when no humans are in fact present. This would have quite serious consequences for the energy consumption of the lighting installation, because the faulty sensor would not just switch on one light unnecessarily, but via peer-to-peer communication, the single faulty sensor would switch on many, or even all, of the lights, all of the time (depending on configuration). If the building is not occupied continuously all day and night, every day and night, then it is possible to address this potential problem by having each node monitor the output(s) of its sensing component to determine whether that output is permanently on (or otherwise indicative of human presence) for an entire 24 hour period (or some other long period). If so, then the node can infer that its sensing component is likely faulty. In this case of a sensing component that is probably faulty, the sensor can be disabled or ignored, so that it does not cause neighbouring nodes to be notified of human presence (incorrectly) detected by the faulty node. In addition to deactivating its sensor(s), the light source associated with the node can be turned on continuously to indicate that the node requires maintenance, or alternatively the light source can continue to switch on and off for short periods (i.e., flash or blink), based purely on the signals received from neighbouring nodes, meaning that the light source would be on only when neighbouring nodes detect occupancy.

    Lamp Burn - In Function



    [0059] Some light sources (for example certain fluorescent tubes) need to be operated for an initial part of their lives at maximum brightness, because they can be damaged by dimming during this initial period. Accordingly, each node includes a timer that can be reset using a remote control handset when the fluorescent tube is changed, and this timer is used to ensure that, for the initial period of operation of the fluorescent tube, the tube is either switched on or off, but is never dimmed. After the timer expires, the node permits dimming. This avoids the need for a human to keep track of the cumulative running time and revisit the node to reconfigure the node after the new fluorescent tube has completed its initial run-in period.

    [0060] Many modifications will be apparent to those skilled in the art without departing from the scope of the present invention.


    Claims

    1. A lighting control apparatus (200) for controlling one or more corresponding light sources, the lighting control apparatus being one of a plurality of lighting control apparatuses, each of which includes:

    at least one sensing component (202, 204) configured to detect or sense at least one parameter of interest and to generate a corresponding output;

    a transmitter (208);

    a receiver (206) for receiving wireless signals from one or more others of the lighting control apparatuses; and

    a controller (110) having at least one processor and a memory in communication with the processor, and configured to store configuration data representing a configuration of the lighting control apparatus, including one or more processes to be executed by the processor;

    wherein the one or more processes include a process that, when executed by the processor, causes the processor to:

    (a) control the one or more corresponding light sources based on:

    (i) the output of the at least one sensing component (202, 204), and

    (ii) wireless signals received from one or more others of said lighting control apparatuses; and

    (b) based on the output of the at least one sensing component (202, 204) and the wireless signals received from the one or more others of said lighting control apparatuses, transmit, by said transmitter, wireless signals for use by others of said plurality of lighting control apparatuses to control their corresponding light sources;

    characterised in that:

    the lighting control apparatus (200) is a member of at least one group of light control apparatuses of said plurality of lighting control apparatuses, wherein each group defines a corresponding lighting zone of a plurality of lighting zones, such that each of the lighting zones is illuminated by the light sources of the lighting control apparatuses of the corresponding group;

    the received wireless signals include wireless signals representing at least one zone identifier identifying at least one corresponding lighting zone of at least one of the one or more others of the lighting control apparatuses;

    the control of the one or more corresponding light sources by the at least one processor is further based on rules that determine how the lighting control apparatus (200) is controlled based on the at least one received zone identifier of the at least one other of the lighting control apparatuses, such that all of the lighting apparatuses in a lighting zone can be controlled as a group.


     
    2. The lighting control apparatus (200) of claim 1, wherein the one or more processes include a process that, when executed by the processor, causes the processor to:

    receive, via the receiver (206), configuration update data representing a modified configuration of the lighting control apparatus; and

    modify the configuration data stored in the memory to represent the modified configuration of the lighting control apparatus (200).


     
    3. The lighting control apparatus (200) of claim 1 or 2, wherein the one or more processes include a process that, when executed by the processor, causes the processor to transmit, via the transmitter, configuration update data to modify the configuration of others of the lighting control apparatuses.
     
    4. The lighting control apparatus (200) of any one of claims 1 to 3, wherein the one or more processes include a process that, when executed by the processor, causes the processor to:

    receive, via the receiver (206), a request for configuration information representing a configuration of the lighting control apparatus; and

    responsive to receipt of said request, transmit the requested configuration information.


     
    5. The lighting control apparatus (200) of any one of claims 1 to 4, wherein the one or more processes include a process that, when executed by the processor, causes the processor to:

    receive, from one or more other lighting control apparatuses, occupancy data representative of occupancies of respective sensing regions of the one or more other lighting control apparatuses and respective spatial separations between a sensing region of the lighting control apparatus and said sensing regions; and

    determine a dwell time for determining when to dim or turn off the light sources in the absence of occupancy of the sensing region of the lighting control apparatus, the dwell time being determined on the basis of the spatial separations between the sensing region of the lighting control apparatus and the sensing regions of the one or more other lighting control apparatuses.


     
    6. The lighting control apparatus (200) of any one of claims 1 to 5, wherein the one or more processes include a process that, when executed by the processor, causes the processor to:

    receive, via the receiver (206), a request to test wireless communications between said lighting control apparatus (200) and one or more other lighting control apparatuses;

    control the one or more light sources to provide a visual indication that the request was received by said lighting control apparatus (200); and

    transmit, via the transmitter (208), a corresponding request to test wireless communications for receipt by one or more other lighting control apparatuses.


     
    7. The lighting control apparatus (200) of any one of claims 1 to 6, wherein the one or more processes include a process that, when executed by the processor, causes the processor to:

    (i) receive, via the receiver (206), a request to test wireless communications between said lighting control apparatus (200) and one or more other lighting control apparatuses;

    (ii) transmit, via the transmitter (208) and at a corresponding selected wireless transmission power, a test message for receipt by one or more other lighting control apparatuses;

    (iii) receive, via the receiver (206), response messages confirming receipt of the test message from one or more other lighting control apparatuses;

    (iv) repeat steps (ii) and (iii) for respective different wireless transmission powers; and

    (v) process the received response messages and data representing the corresponding wireless transmission powers to select a wireless transmission power for use in subsequent wireless transmissions by the transmitter.


     
    8. The lighting control apparatus (200) of any one of claims 1 to 7, wherein the at least one sensing component is a motion detector, wherein the one or more processes include a process that, when executed by the processor, causes the processor to:

    monitor the output of the motion detector over time, and

    based on said monitoring, determine a threshold value for use in processing the output of the motion detector at subsequent times to determine whether motion has been detected at said subsequent times.


     
    9. The lighting control apparatus (200) of any one of claims 1 to 8, wherein the at least one sensing component is a motion detector, wherein the one or more processes include a process that, when executed by the processor, causes the processor to:

    monitor the output of the motion detector over time, and

    based on said monitoring, determine whether the motion detector is faulty; and

    if said determining determines that the motion detector is faulty, ignoring output of the motion detector at subsequent times.


     
    10. The lighting control apparatus (200) of any one of claims 1 to 9, wherein the one or more processes include a process that, when executed by the processor, causes the processor to:

    receive, via the receiver (206), an instruction to reset a timer of the controller; and

    control the power applied to the light sources based on the state of the timer, wherein a first power is applied to the light sources when the timer has not expired, and a second power different to the first power is applied to the light sources after the timer has expired.


     
    11. A lighting control process executed by a lighting control apparatus (200) of a plurality of lighting control apparatuses each having a controller having at least one processor and a memory in communication with the processor, and including the steps of:

    detecting or sensing, by at least one sensing component (202, 204) of the lighting control apparatus (200), at least one parameter of interest and generating a corresponding output;

    receiving wireless signals, by a receiver (206), from one or more other lighting control apparatuses, the received signals representing detection or sensing of at least one parameter of interest by at least one sensing component (202, 204) of the one or more other lighting control apparatuses; and

    storing, by means of the at least one processor and the memory, configuration data representing a configuration of the lighting control apparatus, including one or more processes to be executed by the processor; and

    (a) controlling, by the at least one processor of the lighting control apparatus, one or more corresponding light sources based on:

    (i) the output of the at least one sensing component (202, 204), and

    (ii) wireless signals received from one or more others of said lighting control apparatuses; and

    (b) based on the output of the at least one sensing component (202, 204) of the lighting control apparatus (200) and the wireless signals received from the one or more others of said lighting control apparatuses, transmitting, by a transmitter (208) of the lighting control apparatus, wireless signals for use by others of said lighting control apparatuses to control their corresponding light sources;

    characterised in that:

    the lighting control apparatus is a member of at least one group of light control apparatuses of said plurality of lighting control apparatuses, wherein each group defines a corresponding lighting zone of a plurality of lighting zones, such that each of the lighting zones is illuminated by the light sources of the lighting control apparatuses of the corresponding group;

    the received wireless signals include wireless signals representing at least one zone identifier identifying at least one corresponding lighting zone of at least one other of the lighting control apparatuses; and

    the controlling of the one or more corresponding light sources by the at least one processor is further based on rules that determine how the lighting control apparatus (200) is controlled based on the at least one received zone identifier of the at least one other of the lighting control apparatuses, such that all of the lighting control apparatuses in a lighting zone can be controlled as a group.


     
    12. The lighting control process of claim 11, further including the steps of:

    receiving, via the receiver (206), configuration update data representing a modified configuration of the lighting control apparatus (200); and

    modifying the stored configuration data to represent the modified configuration of the lighting control apparatus.


     
    13. The lighting control process of claim 11 or 12, wherein the stored configuration data represents a process that, when executed by the processor, causes the processor to transmit, via the transmitter (208), configuration update data to modify the configuration of others of the lighting control apparatuses.
     
    14. The lighting control process of any one of claims 11 to 13, further including the steps of:

    receiving, via the receiver (206), a request for configuration information representing a configuration of the lighting control apparatus (200); and

    responsive to receipt of said request, transmitting the requested configuration information.


     
    15. The lighting control process of any one of claims 11 to 14, further including the steps of:

    receiving, from one or more other lighting control apparatuses, occupancy data representative of occupancies of respective sensing regions of the one or more other lighting control apparatuses and respective spatial separations between a sensing region of the lighting control apparatus (200) and said sensing regions; and

    determining a dwell time for determining when to dim or turn off the light sources in the absence of occupancy of the sensing region of the lighting control apparatus (200), the dwell time being determined on the basis of the spatial separations between said sensing region of the lighting control apparatus (200) and the sensing regions of the one or more other lighting control apparatuses.


     
    16. The lighting control process of any one of claims 11 to 15, further including the steps of

    receiving, via the receiver (206), a request to test wireless communications between said lighting control apparatus and one or more other lighting control apparatuses;

    controlling the one or more light sources to provide a visual indication that the request was received by said lighting control apparatus; and

    transmitting, via the transmitter (208), a corresponding request to test wireless communications for receipt by one or more other lighting control apparatuses.


     
    17. The lighting control process of any one of claims 11 to 16, further including the steps of:

    (i) receiving, via the receiver (206), a request to test wireless communications between said lighting control apparatus (200) and one or more other lighting control apparatuses;

    (ii) transmitting, via the transmitter (208) and at a corresponding selected wireless transmission power, a test message for receipt by one or more other lighting control apparatuses;

    (iii) receiving, via the receiver (206), response messages confirming receipt of the test message from one or more other lighting control apparatuses;

    (iv) repeating steps (ii) and (iii) for respective different wireless transmission powers; and

    (v) processing the received response messages and data representing the corresponding wireless transmission powers to select a wireless transmission power for use in subsequent wireless transmissions by the transmitter (208).


     
    18. The lighting control process of any one of claims 11 to 17 and wherein the at least one sensing component is a motion detector, further including the steps of:

    monitoring the output of the motion detector over time, and

    based on said monitoring, determining a threshold value for use in processing the output of the motion detector at subsequent times to determine whether motion has been detected at said subsequent times.


     
    19. The lighting control process of any one of claims 11 to 18 and wherein the at least one sensing component is a motion detector, further including the steps of:

    monitoring the output of the motion detector over time, and

    based on said monitoring, determining whether the motion detector is faulty; and

    if said determining determines that the motion detector is faulty, ignoring output of the motion detector at subsequent times.


     
    20. The lighting control process of any one of claims 11 to 19, further including the steps of:

    receiving, via the receiver (206), an instruction to reset a timer of the controller; and

    controlling the power applied to the light sources based on the state of the timer, wherein a first power is applied to the light sources when the timer has not expired, and a second power different to the first power is applied to the light sources after the timer has expired.


     


    Ansprüche

    1. Beleuchtungssteuerungsvorrichtung (200) zum Steuern einer oder mehrerer entsprechender Lichtquellen, wobei die Beleuchtungssteuerungsvorrichtung eine von mehreren Beleuchtungssteuerungsvorrichtungen ist, von denen jede Folgendes umfasst:

    mindestens eine Abtastkomponente (202, 204), die so konfiguriert ist, dass sie mindestens einen interessierenden Parameter erfasst oder abtastet und eine entsprechende Ausgabe erzeugt;

    einen Sender (208);

    einen Empfänger (206) zum Empfangen von drahtlosen Signalen von einem oder mehreren anderen Beleuchtungssteuerungsvorrichtungen; und

    eine Steuerung (110) mit mindestens einem Prozessor und einem Speicher, der mit dem Prozessor in Verbindung steht und so konfiguriert ist, dass er Konfigurationsdaten speichert, die eine Konfiguration der Beleuchtungssteuerungsvorrichtung darstellen, einschließlich eines oder mehrerer Prozesse, die von dem Prozessor ausgeführt werden sollen;

    wobei der eine oder mehrere Prozesse einen Prozess beinhalten, der bei Ausführung durch den Prozessor den Prozessor zu Folgendem veranlasst:

    (a) Steuern einer oder mehrerer entsprechender Lichtquellen basierend auf:

    (i) der Ausgabe der mindestens einen Erfassungskomponente (202, 204), und

    (ii) drahtlosen Signalen, die von einer oder mehreren anderen der genannten Beleuchtungssteuerungsvorrichtungen empfangen werden; und

    (b) basierend auf der Ausgabe der mindestens einen Erfassungskomponente (202, 204) und den drahtlosen Signalen, die von einer oder mehreren anderen der Beleuchtungssteuerungsvorrichtungen empfangen werden, Senden, durch den Sender, von drahtlosen Signalen zur Verwendung durch andere der mehreren Beleuchtungssteuerungsvorrichtungen zur Steuerung ihrer entsprechenden Lichtquellen;

    dadurch gekennzeichnet, dass:

    die Beleuchtungssteuerungsvorrichtung (200) ein Bestandteil mindestens einer Gruppe von Beleuchtungssteuerungsvorrichtungen der mehreren Beleuchtungssteuerungsvorrichtungen ist, wobei jede Gruppe einen entsprechenden Beleuchtungsbereich mehrerer Beleuchtungsbereiche definiert, so dass jeder der Beleuchtungsbereiche durch die Lichtquellen der Beleuchtungssteuerungsvorrichtungen der entsprechenden Gruppe beleuchtet wird;

    die empfangenen drahtlosen Signale drahtlose Signale beinhalten, die mindestens eine Bereichskennung repräsentieren, die mindestens einen entsprechenden Beleuchtungsbereich von mindestens einer der einen oder mehreren anderen Beleuchtungssteuerungsvorrichtungen identifiziert;

    die Steuerung der einen oder mehreren entsprechenden Lichtquellen durch den mindestens einen Prozessor ferner auf Regeln basiert, die bestimmen, wie die Beleuchtungssteuerungsvorrichtung (200) basierend auf der mindestens einen empfangenen Bereichskennung der mindestens einen anderen der Beleuchtungssteuerungsvorrichtungen gesteuert wird, so dass alle Beleuchtungsvorrichtungen in einem Beleuchtungsbereich als eine Gruppe gesteuert werden können.


     
    2. Beleuchtungssteuerungsvorrichtung (200) nach Anspruch 1, wobei der eine oder mehrere Prozesse einen Prozess umfassen, der bei Ausführung durch den Prozessor den Prozessor zu Folgendem veranlasst:

    Empfangen, über den Empfänger (206), von Konfigurationsaktualisierungsdaten, die eine geänderte Konfiguration der Beleuchtungssteuerungsvorrichtung repräsentieren; und

    Ändern der im Speicher gespeicherten Konfigurationsdaten, um die geänderte Konfiguration der Beleuchtungssteuerungsvorrichtung (200) zu repräsentieren.


     
    3. Beleuchtungssteuerungsvorrichtung (200) nach Anspruch 1 oder 2, wobei der eine oder die mehreren Prozesse einen Prozess umfassen, der bei Ausführung durch den Prozessor den Prozessor veranlasst, über den Sender Konfigurationsaktualisierungsdaten zu senden, um die Konfiguration anderer Beleuchtungssteuerungsvorrichtungen zu ändern.
     
    4. Beleuchtungssteuerungsvorrichtung (200) nach einem der Ansprüche 1 bis 3, wobei der eine oder mehrere Prozesse einen Prozess beinhalten, der bei Ausführung durch den Prozessor den Prozessor zu Folgendem veranlasst:

    Empfangen, über den Empfänger (206), einer Anforderung von Konfigurationsinformationen, die eine Konfiguration der Beleuchtungssteuerungsvorrichtung repräsentieren; und

    Senden der angeforderten Konfigurationsinformationen, als Reaktion auf den Empfang der genannten Anforderung.


     
    5. Beleuchtungssteuerungsvorrichtung (200) nach einem der Ansprüche 1 bis 4, wobei der eine oder mehrere Prozesse einen Prozess beinhalten, der bei Ausführung durch den Prozessor den Prozessor zu Folgendem veranlasst:

    Empfangen, von einer oder mehreren anderen Beleuchtungssteuerungsvorrichtungen, von Belegungsdaten, die für die Belegung der jeweiligen Erfassungsbereiche der einen oder mehreren anderen Beleuchtungssteuerungsvorrichtungen und die jeweiligen räumlichen Trennungen zwischen einem Erfassungsbereich der Beleuchtungssteuerungsvorrichtung und den Erfassungsbereichen repräsentativ sind; und

    Bestimmen einer Verweilzeit, um zu bestimmen, wann die Lichtquellen bei fehlender Belegung des Erfassungsbereichs der Beleuchtungssteuerungsvorrichtung zu dimmen oder auszuschalten sind, wobei die Verweilzeit auf der Grundlage der räumlichen Abstände zwischen dem Erfassungsbereich der Beleuchtungssteuerungsvorrichtung und den Erfassungsbereichen der einen oder mehreren anderen Beleuchtungssteuerungsvorrichtungen bestimmt wird.


     
    6. Beleuchtungssteuerungsvorrichtung (200) nach einem der Ansprüche 1 bis 5, wobei der eine oder mehrere Prozesse einen Prozess umfassen, der bei Ausführung durch den Prozessor den Prozessor zu Folgendem veranlasst:

    Empfangen, über den Empfänger (206), einer Anforderung zum Testen der drahtlosen Kommunikation zwischen der Beleuchtungssteuerungsvorrichtung (200) und einer oder mehreren anderen Beleuchtungssteuerungsvorrichtungen;

    Steuern der einen oder mehreren Lichtquellen, um eine visuelle Anzeige bereitzustellen, dass die Anforderung von der Beleuchtungssteuerungsvorrichtung (200) empfangen wurde; und

    Senden, über den Sender (208), einer entsprechenden Anforderung zum Testen der drahtlosen Kommunikation für den Empfang durch eine oder mehrere andere Beleuchtungssteuerungsvorrichtungen.


     
    7. Beleuchtungssteuerungsvorrichtung (200) nach einem der Ansprüche 1 bis 6, wobei der eine oder mehrere Prozesse einen Prozess beinhalten, der bei Ausführung durch den Prozessor den Prozessor zu Folgendem veranlasst:

    (i) Empfangen, über den Empfänger (206), einer Anforderung zum Testen der drahtlosen Kommunikation zwischen der Beleuchtungssteuerungsvorrichtung (200) und einer oder mehreren anderen Beleuchtungssteuerungsvorrichtungen;

    (ii) Senden, über den Sender (208) und mit einer entsprechend gewählten drahtlosen Sendeleistung, einer Testnachricht zum Empfang durch eine oder mehrere andere Beleuchtungssteuerungsvorrichtungen;

    (iii) Empfangen, über den Empfänger (206), von Antwortnachrichten, die den Empfang der Testnachricht von einer oder mehreren anderen Beleuchtungssteuerungsvorrichtungen bestätigen;

    (iv) Wiederholen der Schritte (ii) und (iii) für jeweils unterschiedliche drahtlose Sendeleistungen; und

    (v) Verarbeiten der empfangenen Antwortnachrichten und Daten, die die entsprechenden drahtlosen Sendeleistungen repräsentieren, um eine drahtlose Sendeleistung zur Verwendung bei nachfolgenden drahtlosen Übertragungen durch den Sender auszuwählen.


     
    8. Beleuchtungssteuerungsvorrichtung (200) nach einem der Ansprüche 1 bis 7, wobei die mindestens eine Erfassungskomponente ein Bewegungsdetektor ist, wobei der eine oder die mehreren Prozesse einen Prozess umfassen, der bei Ausführung durch den Prozessor den Prozessor zu Folgendem veranlasst:
    Überwachen der Ausgabe des Bewegungsdetektors im Zeitverlauf und, basierend auf der genannten Überwachung, Bestimmen eines Schwellenwerts zur Verwendung bei der Verarbeitung des Ausgangs des Bewegungsdetektors zu nachfolgenden Zeiten, um zu bestimmen, ob zu den genannten nachfolgenden Zeiten eine Bewegung erfasst worden ist.
     
    9. Beleuchtungssteuerungsvorrichtung (200) nach einem der Ansprüche 1 bis 8, wobei die mindestens eine Erfassungskomponente ein Bewegungsdetektor ist, wobei der eine oder mehrere Prozesse einen Prozess umfassen, der bei Ausführung durch den Prozessor den Prozessor zu Folgendem veranlasst:

    Überwachen der Ausgabe des Bewegungsdetektors im Zeitverlauf und, basierend auf dieser Überwachung, Feststellen, ob der Bewegungsdetektor fehlerhaft ist; und

    wenn bei dieser Bestimmung festgestellt wird, dass der Bewegungsdetektor fehlerhaft ist, wird die Ausgabe des Bewegungsdetektors zu nachfolgenden Zeiten ignoriert.


     
    10. Beleuchtungssteuerungsvorrichtung (200) nach einem der Ansprüche 1 bis 9, wobei der eine oder die mehreren Prozesse einen Prozess beinhalten, der bei Ausführung durch den Prozessor den Prozessor zu Folgendem veranlasst:

    Empfangen, über den Empfänger (206), eines Befehls zum Zurücksetzen eines Zeitgebers der Steuerung; und

    Steuern der an die Lichtquellen angelegten Leistung auf der Grundlage des Zustands des Zeitgebers, wobei eine erste Leistung an die Lichtquellen angelegt wird, wenn der Zeitgeber nicht abgelaufen ist, und eine zweite Leistung, die sich von der ersten Leistung unterscheidet, an die Lichtquellen angelegt wird, nachdem der Zeitgeber abgelaufen ist.


     
    11. Beleuchtungssteuerungsprozess, der von einer Beleuchtungssteuerungsvorrichtung (200) aus mehreren Beleuchtungssteuerungsvorrichtungen ausgeführt wird, die jeweils eine Steuerung mit mindestens einem Prozessor und einem mit dem Prozessor kommunizierenden Speicher aufweisen, und der die folgenden Schritte umfasst:

    Erfassen oder Abtasten mindestens eines interessierenden Parameters durch mindestens eine Abtastkomponente (202, 204) der Beleuchtungssteuerungsvorrichtung (200) und Erzeugen einer entsprechenden Ausgabe;

    Empfangen, mittels eines Empfängers (206), von einer oder mehreren anderen Beleuchtungssteuerungsvorrichtungen, wobei die empfangenen Signale das Erfassen oder Abtasten mindestens eines interessierenden Parameters durch mindestens eine Abtastkomponente (202, 204) der einen oder mehreren anderen Beleuchtungssteuerungsvorrichtungen repräsentieren; und

    Speichern, mittels des mindestens einen Prozessors und des Speichers, von Konfigurationsdaten, die eine Konfiguration der Beleuchtungssteuerungsvorrichtung repräsentieren, einschließlich eines oder mehrerer Prozesse, die vom Prozessor ausgeführt werden sollen; und

    (a) Steuern, durch den mindestens einen Prozessor der Beleuchtungssteuerungsvorrichtung, einer oder mehrerer entsprechender Lichtquellen, basierend auf:

    (i) der Ausgabe der mindestens einen Erfassungskomponente (202, 204), und

    (ii) drahtlosen Signalen, die von einer oder mehreren anderen der genannten Beleuchtungssteuerungsvorrichtungen empfangen werden; und

    (b) basierend auf der Ausgabe der mindestens einen Erfassungskomponente (202, 204) der Beleuchtungssteuerungsvorrichtung (200) und den drahtlosen Signalen, die von einer oder mehreren anderen der Beleuchtungssteuerungsvorrichtungen empfangen werden, Senden, durch einen Sender (208) der Beleuchtungssteuerungsvorrichtung, von drahtlosen Signalen zur Verwendung durch andere der Beleuchtungssteuerungsvorrichtungen zur Steuerung ihrer entsprechenden Lichtquellen;

    dadurch gekennzeichnet, dass:

    die Beleuchtungssteuerungsvorrichtung ein Bestandteil mindestens einer Gruppe von Beleuchtungssteuerungsvorrichtungen der mehreren Beleuchtungssteuerungsvorrichtungen ist, wobei jede Gruppe einen entsprechenden Beleuchtungsbereich mehrerer Beleuchtungsbereiche definiert, so dass jeder der Beleuchtungsbereiche durch die Lichtquellen der Beleuchtungssteuerungsvorrichtungen der entsprechenden Gruppe beleuchtet wird;

    die empfangenen drahtlosen Signale drahtlose Signale enthalten, die mindestens eine Bereichskennung repräsentieren, die mindestens einen entsprechenden Beleuchtungsbereich mindestens einer anderen der Beleuchtungssteuerungsvorrichtungen identifiziert; und

    das Steuern der einen oder mehreren entsprechenden Lichtquellen durch den mindestens einen Prozessor ferner auf Regeln basiert, die bestimmen, wie die Beleuchtungssteuerungsvorrichtung (200) basierend auf der mindestens einen empfangenen Bereichskennung der mindestens einen anderen der Beleuchtungssteuerungsvorrichtungen gesteuert wird, so dass alle Beleuchtungssteuerungsvorrichtungen in einer Beleuchtungszone als eine Gruppe gesteuert werden können.


     
    12. Beleuchtungssteuerungsprozess nach Anspruch 11, ferner die folgenden Schritte umfassend:

    Empfangen, über den Empfänger (206), von Konfigurationsaktualisierungsdaten, die eine geänderte Konfiguration der Beleuchtungssteuerungsvorrichtung (200) repräsentieren; und

    Ändern der gespeicherten Konfigurationsdaten, um die geänderte Konfiguration der Beleuchtungssteuerungsvorrichtung zu repräsentieren.


     
    13. Beleuchtungssteuerungsprozess nach Anspruch 11 oder 12, wobei die gespeicherten Konfigurationsdaten einen Prozess darstellen, der bei Ausführung durch den Prozessor den Prozessor veranlasst, über den Sender (208) Konfigurationsaktualisierungsdaten zu senden, um die Konfiguration anderer Beleuchtungssteuerungsvorrichtungen zu ändern.
     
    14. Beleuchtungssteuerungsprozess nach einem der Ansprüche 11 bis 13, ferner die folgenden Schritte umfassend:

    Empfangen, über den Empfänger (206), einer Anforderung von Konfigurationsinformationen, die eine Konfiguration der Beleuchtungssteuerungsvorrichtung (200) repräsentieren; und

    Senden der angeforderten Konfigurationsinformationen, als Reaktion auf den Empfang der Anforderung.


     
    15. Beleuchtungssteuerungsprozess nach einem der Ansprüche 11 bis 14, ferner folgende Schritte umfassend:

    Empfangen, von einer oder mehreren anderen Beleuchtungssteuerungsvorrichtungen, von Belegungsdaten, die für die Belegung der jeweiligen Erfassungsbereiche der einen oder mehreren anderen Beleuchtungssteuerungsvorrichtungen und die jeweiligen räumlichen Trennungen zwischen einem Erfassungsbereich der Beleuchtungssteuerungsvorrichtung (200) und den Erfassungsbereichen repräsentativ sind; und

    Bestimmen einer Verweilzeit, um zu bestimmen, wann die Lichtquellen bei fehlender Belegung des Erfassungsbereichs der Beleuchtungssteuerungsvorrichtung (200) zu dimmen oder auszuschalten sind, wobei die Verweilzeit auf der Grundlage der räumlichen Trennungen zwischen dem Erfassungsbereich der Beleuchtungssteuerungsvorrichtung (200) und den Erfassungsbereichen der einen oder mehreren anderen Beleuchtungssteuerungsvorrichtungen bestimmt wird.


     
    16. Beleuchtungssteuerungsprozess nach einem der Ansprüche 11 bis 15, ferner umfassend die Schritte des Empfangens, über den Empfänger (206), einer Anforderung zum Testen der drahtlosen Kommunikation zwischen der Beleuchtungssteuerungsvorrichtung und einer oder mehreren anderen Beleuchtungssteuerungsvorrichtungen;

    Steuern der einen oder mehreren Lichtquellen, um eine visuelle Anzeige bereitzustellen, dass die Anforderung von der Beleuchtungssteuerungsvorrichtung empfangen wurde; und

    Senden, über den Sender (208), einer entsprechenden Anforderung zum Testen der drahtlosen Kommunikation für den Empfang durch eine oder mehrere andere Beleuchtungssteuerungsvorrichtungen.


     
    17. Beleuchtungssteuerungsprozess nach einem der Ansprüche 11 bis 16, ferner die folgenden Schritte umfassend:

    (i) Empfangen, über den Empfänger (206), einer Anforderung zum Testen der drahtlosen Kommunikation zwischen der Beleuchtungssteuerungsvorrichtung (200) und einer oder mehreren anderen Beleuchtungssteuerungsvorrichtungen;

    (ii) Senden, über den Sender (208) und mit einer entsprechend gewählten drahtlosen Sendeleistung, einer Testnachricht zum Empfang durch eine oder mehrere andere Beleuchtungssteuerungsvorrichtungen;

    (iii) Empfangen, über den Empfänger (206), von Antwortnachrichten, die den Empfang der Testnachricht von einer oder mehreren anderen Beleuchtungssteuerungsvorrichtungen bestätigen;

    (iv) Wiederholen der Schritte (ii) und (iii) für jeweils unterschiedliche drahtlose Sendeleistungen; und

    (v) Verarbeiten der empfangenen Antwortnachrichten und Daten, die die entsprechenden drahtlosen Sendeleistungen repräsentieren, um eine drahtlose Sendeleistung zur Verwendung bei nachfolgenden drahtlosen Übertragungen durch den Sender auszuwählen (208).


     
    18. Beleuchtungssteuerungsprozess nach einem der Ansprüche 11 bis 17, wobei die mindestens eine Abtastkomponente ein Bewegungsdetektor ist, ferner die folgenden Schritte umfassend:
    Überwachen der Ausgabe des Bewegungsdetektors im Zeitverlauf und, basierend auf dieser Überwachung, Bestimmen eines Schwellenwertes zur Verwendung bei der Verarbeitung der Ausgabe des Bewegungsdetektors zu nachfolgenden Zeiten, um zu bestimmen, ob zu den nachfolgenden Zeiten eine Bewegung erfasst worden ist.
     
    19. Beleuchtungssteuerungsprozess nach einem der Ansprüche 11 bis 18, wobei die mindestens eine Erfassungskomponente ein Bewegungsdetektor ist, ferner folgende Schritte umfassend:

    Überwachen der Ausgabe des Bewegungsdetektors im Zeitverlauf, und basierend auf dieser Überwachung, Bestimmen, ob der Bewegungsdetektor fehlerhaft ist; und

    wenn bei dieser Bestimmung festgestellt wird, dass der Bewegungsdetektor fehlerhaft ist, wird die Ausgabe des Bewegungsdetektors zu nachfolgenden Zeiten ignoriert.


     
    20. Beleuchtungssteuerungsprozess nach einem der Ansprüche 11 bis 19, ferner folgende Schritte umfassend:

    Empfangen, über den Empfänger (206), eines Befehls zum Zurücksetzen eines Zeitgebers der Steuerung; und

    Steuerung der an die Lichtquellen angelegten Leistung auf der Grundlage des Zustands des Zeitgebers, wobei eine erste Leistung an die Lichtquellen angelegt wird, wenn der Zeitgeber nicht abgelaufen ist, und wobei eine zweite Leistung, die sich von der ersten Leistung unterscheidet, an die Lichtquellen angelegt wird, nachdem der Zeitgeber abgelaufen ist.


     


    Revendications

    1. Appareil de commande d'éclairage (200) destiné à commander une ou plusieurs sources lumineuses correspondantes, l'appareil de commande d'éclairage étant l'un d'une pluralité d'appareils de commande d'éclairage, chacun comportant :

    au moins un composant de détection (202, 204) configuré pour percevoir ou détecter au moins un paramètre d'intérêt et pour générer des données de sortie correspondantes ;

    un émetteur (208) ;

    un récepteur (206) destiné à recevoir des signaux sans fil d'un ou de plusieurs autres appareils de commande d'éclairage ; et

    un dispositif de commande (110) ayant au moins un processeur et une mémoire en communication avec le processeur, et configuré pour stocker des données de configuration représentant une configuration de l'appareil de commande d'éclairage, comportant un ou plusieurs procédés à exécuter par le processeur ;

    les un ou plusieurs procédés comportant un procédé qui, lorsqu'il est exécuté par le processeur, amène le processeur à :

    (a) commander les une ou plusieurs sources lumineuses correspondantes en fonction :

    (i) des données de sortie de l'au moins un composant de détection (202, 204), et

    (ii) des signaux sans fil reçus d'un ou de plusieurs autres desdits appareils de commande d'éclairage ; et

    (b) en fonction des données de sortie de l'au moins un composant de détection (202, 204) et des signaux sans fil reçus des un ou plusieurs autres desdits appareils de commande d'éclairage, transmettre, par ledit émetteur, des signaux sans fil destinés à être utilisés par d'autres appareils de ladite pluralité d'appareils de commande d'éclairage afin de commander leurs sources lumineuses correspondantes ;

    caractérisé en ce que :

    l'appareil de commande d'éclairage (200) est un élément d'au moins un groupe d'appareils de commande d'éclairage de ladite pluralité d'appareils de commande d'éclairage, chaque groupe définissant une zone d'éclairage correspondante d'une pluralité de zones d'éclairage, de sorte que chacune des zones d'éclairage est éclairée par les sources lumineuses des appareils de commande d'éclairage du groupe correspondant ;

    les signaux sans fil reçus comportent des signaux sans fil représentant au moins un identificateur de zone identifiant au moins une zone d'éclairage correspondante d'au moins un appareil des un ou plusieurs autres des appareils de commande d'éclairage ;

    la commande des une ou plusieurs sources lumineuses correspondantes par l'au moins un processeur est en outre basée sur des règles qui déterminent comment l'appareil de commande d'éclairage (200) est commandé en fonction de l'au moins un identifiant de zone reçu de l'au moins un autre des appareils de commande d'éclairage, de sorte que tous les appareils d'éclairage d'une zone d'éclairage peuvent être commandés en tant que groupe.


     
    2. Appareil de commande d'éclairage (200) selon la revendication 1, dans lequel les un ou plusieurs procédés comportent un procédé qui, lorsqu'il est exécuté par le processeur, amène le processeur à :

    recevoir, par l'intermédiaire du récepteur (206), des données de mise à jour de configuration représentant une configuration modifiée de l'appareil de commande d'éclairage ; et

    modifier les données de configuration stockées dans la mémoire pour représenter la configuration modifiée de l'appareil de commande d'éclairage (200).


     
    3. Appareil de commande d'éclairage (200) selon la revendication 1 ou 2, dans lequel les un ou plusieurs procédés comportent un procédé qui, lorsqu'il est exécuté par le processeur, amène le processeur à transmettre, par l'intermédiaire de l'émetteur, des données de mise à jour de configuration pour modifier la configuration d'autres appareils de commande d'éclairage.
     
    4. Appareil de commande d'éclairage (200) selon l'une quelconque des revendications 1 à 3, dans lequel les un ou plusieurs procédés comportent un procédé qui, lorsqu'il est exécuté par le processeur, amène le processeur à :

    recevoir, par l'intermédiaire du récepteur (206), une demande d'informations de configuration représentant une configuration de l'appareil de commande d'éclairage ; et

    en réponse à la réception de ladite demande, transmettre les informations de configuration demandées.


     
    5. Appareil de commande d'éclairage (200) selon l'une quelconque des revendications 1 à 4, dans lequel les un ou plusieurs procédés comportent un procédé qui, lorsqu'il est exécuté par le processeur, amène le processeur à :

    recevoir, à partir d'un ou de plusieurs autres appareils de commande d'éclairage, des données d'occupation représentatives des occupations des régions de détection respectives des un ou plusieurs autres appareils de commande d'éclairage et des séparations spatiales respectives entre une région de détection de l'appareil de commande d'éclairage et lesdites régions de détection ; et

    déterminer une durée de temporisation pour déterminer quand atténuer ou éteindre les sources lumineuses en l'absence d'occupation de la région de détection de l'appareil de commande d'éclairage, la durée de temporisation étant déterminée en fonction des séparations spatiales entre la région de détection de l'appareil de commande d'éclairage et les régions de détection des un ou plusieurs autres appareils de commande d'éclairage.


     
    6. Appareil de commande d'éclairage (200) selon l'une quelconque des revendications 1 à 5, dans lequel les un ou plusieurs procédés comportent un procédé qui, lorsqu'il est exécuté par le processeur, amène le processeur à :

    recevoir, par l'intermédiaire du récepteur (206), une demande pour tester les communications sans fil entre ledit appareil de commande d'éclairage (200) et un ou plusieurs autres appareils de commande d'éclairage ;

    commander les une ou plusieurs sources lumineuses pour fournir une indication visuelle que la demande a été reçue par ledit appareil de commande d'éclairage (200) ; et

    transmettre, par l'intermédiaire de l'émetteur (208), une demande correspondante pour tester les communications sans fil pour réception par un ou plusieurs autres appareils de commande d'éclairage.


     
    7. Appareil de commande d'éclairage (200) selon l'une quelconque des revendications 1 à 6, dans lequel les un ou plusieurs procédés comportent un procédé qui, lorsqu'il est exécuté par le processeur, amène le processeur à :

    (i) recevoir, par l'intermédiaire du récepteur (206), une demande pour tester les communications sans fil entre ledit appareil de commande d'éclairage (200) et un ou plusieurs autres appareils de commande d'éclairage ;

    (ii) transmettre, par l'intermédiaire de l'émetteur (208) et à une puissance de transmission sans fil sélectionnée correspondante, un message de test pour réception par un ou plusieurs autres appareils de commande d'éclairage ;

    (iii) recevoir, par l'intermédiaire du récepteur (206), des messages de réponse confirmant la réception du message de test d'un ou de plusieurs autres appareils de commande d'éclairage ;

    (iv) répéter les étapes (ii) et (iii) pour les différentes puissances de transmission sans fil respectives ; et

    (v) traiter les messages de réponse reçus et les données représentant les puissances de transmission sans fil correspondantes pour sélectionner une puissance de transmission sans fil à utiliser par l'émetteur dans les transmissions sans fil ultérieures.


     
    8. Appareil de commande d'éclairage (200) selon l'une quelconque des revendications 1 à 7, dans lequel l'au moins un composant de détection est un détecteur de mouvement, les un ou plusieurs procédés comportant un procédé qui, lorsqu'il est exécuté par le processeur, amène le processeur à :
    surveiller les données de sortie du détecteur de mouvement au fil du temps, et en fonction de ladite surveillance, déterminer une valeur de seuil à utiliser dans le traitement des données de sortie du détecteur de mouvement à des instants ultérieurs pour déterminer si un mouvement a été détecté auxdits instants ultérieurs.
     
    9. Appareil de commande d'éclairage (200) selon l'une quelconque des revendications 1 à 8, dans lequel l'au moins un composant de détection est un détecteur de mouvement, les un ou plusieurs procédés comportant un procédé qui, lorsqu'il est exécuté par le processeur, amène le processeur à :

    surveiller les données de sortie du détecteur de mouvement au fil du temps, et en fonction de ladite surveillance, déterminer si le détecteur de mouvement est défectueux ; et

    si ladite détermination détermine que le détecteur de mouvement est défectueux, ignorer les données de sortie du détecteur de mouvement à des instants ultérieurs.


     
    10. Appareil de commande d'éclairage (200) selon l'une quelconque des revendications 1 à 9, dans lequel les un ou plusieurs procédés comportent un procédé qui, lorsqu'il est exécuté par le processeur, amène le processeur à :

    recevoir, par l'intermédiaire du récepteur (206), une instruction de réinitialisation d'une minuterie du dispositif de commande ; et

    commander la puissance appliquée aux sources lumineuses en fonction de l'état de la minuterie, une première puissance étant appliquée aux sources lumineuses lorsque la minuterie n'a pas expiré, et une seconde puissance différente de la première puissance étant appliquée aux sources lumineuses après que la minuterie a expiré.


     
    11. Procédé de commande d'éclairage exécuté par un appareil de commande d'éclairage (200) d'une pluralité d'appareils de commande d'éclairage ayant chacun un dispositif de commande ayant au moins un processeur et une mémoire en communication avec le processeur, et comportant les étapes :

    de perception et de détection, par au moins un composant de détection (202, 204) de l'appareil de commande d'éclairage (200), d'au moins un paramètre d'intérêt et de génération de données de sortie correspondantes ;

    de réception des signaux sans fil, par un récepteur (206), d'un ou de plusieurs autres appareils de commande d'éclairage, les signaux reçus représentant la perception ou la détection d'au moins un paramètre d'intérêt par au moins un composant de détection (202, 204) des un ou plusieurs autres appareils de commande d'éclairage ; et

    de stockage, au moyen de l'au moins un processeur et de la mémoire, des données de configuration représentant une configuration de l'appareil de commande d'éclairage, comportant un ou plusieurs procédés à exécuter par le processeur ; et

    (a) de commande, par l'au moins un processeur de l'appareil de commande d'éclairage, d'une ou de plusieurs sources lumineuses correspondantes en fonction :

    (i) des données de sortie de l'au moins un composant de détection (202, 204), et

    (ii) des signaux sans fil reçus d'un ou de plusieurs autres desdits appareils de commande d'éclairage ; et

    (b) en fonction des données de sortie de l'au moins un composant de détection (202, 204) de l'appareil de commande d'éclairage (200) et des signaux sans fil reçus des un ou plusieurs autres desdits appareils de commande d'éclairage, de transmission, par un émetteur (208) de l'appareil de commande d'éclairage, de signaux sans fil destinés à être utilisés par d'autres desdits appareils de commande d'éclairage pour commander leurs sources lumineuses correspondantes ;

    caractérisé en ce que :

    l'appareil de commande d'éclairage est un élément d'au moins un groupe d'appareils de commande d'éclairage de ladite pluralité d'appareils de commande d'éclairage, chaque groupe définissant une zone d'éclairage correspondante d'une pluralité de zones d'éclairage, de sorte que chacune des zones d'éclairage est éclairée par les sources lumineuses des appareils de commande d'éclairage du groupe correspondant ;

    les signaux sans fil reçus comportent des signaux sans fil représentant au moins un identificateur de zone identifiant au moins une zone d'éclairage correspondante d'au moins un autre des appareils de commande d'éclairage ; et

    la commande des une ou plusieurs sources lumineuses correspondantes par l'au moins un processeur est en outre basée sur des règles qui déterminent comment l'appareil de commande d'éclairage (200) est commandé en fonction de l'au moins un identifiant de zone reçu de l'au moins un autre des appareils de commande d'éclairage, de sorte que tous les appareils de commande d'éclairage dans une zone d'éclairage peuvent être commandés en tant que groupe.


     
    12. Procédé de commande d'éclairage selon la revendication 11, comportant en outre les étapes :

    de réception, par l'intermédiaire du récepteur (206), des données de mise à jour de configuration représentant une configuration modifiée de l'appareil de commande d'éclairage (200) ; et

    de modification des données de configuration stockées pour représenter la configuration modifiée de l'appareil de commande d'éclairage.


     
    13. Procédé de commande d'éclairage selon la revendication 11 ou 12, dans lequel les données de configuration stockées représentent un procédé qui, lorsqu'il est exécuté par le processeur, amène le processeur à transmettre, par l'intermédiaire de l'émetteur (208), des données de mise à jour de configuration pour modifier la configuration d'autres des appareils de commande d'éclairage.
     
    14. Procédé de commande d'éclairage selon l'une quelconque des revendications 11 à 13, comportant en outre les étapes :

    de réception, par l'intermédiaire du récepteur (206), d'une demande d'informations de configuration représentant une configuration de l'appareil de commande d'éclairage (200) ; et

    en réponse à la réception de ladite demande, de transmission des informations de configuration demandées.


     
    15. Procédé de commande d'éclairage selon l'une quelconque des revendications 11 à 14, comportant en outre les étapes :

    de réception, d'un ou de plusieurs autres appareils de commande d'éclairage, des données d'occupation représentatives des occupations des régions de détection respectives des un ou plusieurs autres appareils de commande d'éclairage et des séparations spatiales respectives entre une région de détection de l'appareil de commande d'éclairage (200) et lesdites régions de détection ; et

    de détermination d'une durée de temporisation pour déterminer quand atténuer ou éteindre les sources lumineuses en l'absence d'occupation de la région de détection de l'appareil de commande d'éclairage (200), la durée de temporisation étant déterminée en fonction des séparations spatiales entre ladite région de détection de l'appareil de commande d'éclairage (200) et les régions de détection des un ou plusieurs autres appareils de commande d'éclairage.


     
    16. Procédé de commande d'éclairage selon l'une quelconque des revendications 11 à 15, comportant en outre les étapes de réception, par l'intermédiaire du récepteur (206), d'une demande pour tester les communications sans fil entre ledit appareil de commande d'éclairage et un ou plusieurs autres appareils de commande d'éclairage ;

    de commande des une ou plusieurs sources lumineuses pour fournir une indication visuelle que la demande a été reçue par ledit appareil de commande d'éclairage ; et

    de transmission, par l'intermédiaire de l'émetteur (208), d'une demande correspondante pour tester les communications sans fil pour réception par un ou plusieurs autres appareils de commande d'éclairage.


     
    17. Procédé de commande d'éclairage selon l'une quelconque des revendications 11 à 16, comportant en outre les étapes :

    (i) de réception, par l'intermédiaire du récepteur (206), d'une demande pour tester les communications sans fil entre ledit appareil de commande d'éclairage (200) et un ou plusieurs autres appareils de commande d'éclairage ;

    (ii) de transmission, par l'intermédiaire de l'émetteur (208) et à une puissance de transmission sans fil sélectionnée correspondante, d'un message de test pour réception par un ou plusieurs autres appareils de commande d'éclairage ;

    (iii) de réception, par l'intermédiaire du récepteur (206), des messages de réponse confirmant la réception du message de test d'un ou de plusieurs autres appareils de commande d'éclairage ;

    (iv) de répétition des étapes (ii) et (iii) pour différentes puissances de transmission sans fil respectives ; et

    (v) de traitement des messages de réponse reçus et des données représentant les puissances de transmission sans fil correspondantes pour sélectionner une puissance de transmission sans fil à utiliser par l'émetteur (208) dans les transmissions sans fil ultérieures.


     
    18. Procédé de commande d'éclairage selon l'une quelconque des revendications 11 à 17 et dans lequel l'au moins un composant de détection est un détecteur de mouvement, comportant en outre les étapes :
    de surveillance des données de sortie du détecteur de mouvement au fil du temps, et en fonction de ladite surveillance, de détermination d'une valeur seuil à utiliser dans le traitement des données de sortie du détecteur de mouvement à des instants ultérieurs pour déterminer si un mouvement a été détecté auxdits instants ultérieurs.
     
    19. Procédé de commande d'éclairage selon l'une quelconque des revendications 11 à 18 et dans lequel l'au moins un composant de détection est un détecteur de mouvement, comportant en outre les étapes :

    de surveillance des données de sortie du détecteur de mouvement au fil du temps, et en fonction de ladite surveillance, le fait de déterminer si le détecteur de mouvement est défectueux ; et

    si ladite détermination détermine que le détecteur de mouvement est défectueux, d'ignorance des données de sortie du détecteur de mouvement à des instants ultérieurs.


     
    20. Procédé de commande d'éclairage selon l'une quelconque des revendications 11 à 19, comportant en outre les étapes :

    de réception, par l'intermédiaire du récepteur (206), d'une instruction de réinitialisation d'une minuterie du dispositif de commande ; et

    de commande de la puissance appliquée aux sources lumineuses en fonction de l'état de la minuterie, une première puissance étant appliquée aux sources lumineuses lorsque la minuterie n'a pas expiré, et une seconde puissance différente de la première puissance étant appliquée aux sources lumineuses après que la minuterie a expiré.


     




    Drawing



























    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description