(19)
(11)EP 2 884 182 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
14.08.2019 Bulletin 2019/33

(21)Application number: 14197238.0

(22)Date of filing:  10.12.2014
(51)Int. Cl.: 
F23R 3/00  (2006.01)
B23K 26/34  (2014.01)
B23K 26/06  (2014.01)

(54)

A fabrication process

Herstellungsverfahren

Procédé de fabrication


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 12.12.2013 US 201314104363

(43)Date of publication of application:
17.06.2015 Bulletin 2015/25

(73)Proprietor: General Electric Company
Schenectady, NY 12345 (US)

(72)Inventors:
  • Lin, Dechao
    Greenville, SC South Carolina 29615 (US)
  • Kottilingam, Srikanth Chandrudu
    Greenville, SC South Carolina 29615 (US)
  • Cui, Yan
    Greenville, SC South Carolina 29615 (US)
  • Bucci, David Vincent
    Greenville, SC South Carolina 29615 (US)
  • Diao, Xiaoxue
    Greenville, SC South Carolina 29615 (US)

(74)Representative: Openshaw & Co. 
8 Castle Street
Farnham, Surrey GU9 7HR
Farnham, Surrey GU9 7HR (GB)


(56)References cited: : 
DE-A1- 10 248 548
US-A1- 2006 042 255
US-B1- 6 399 217
GB-A- 2 453 943
US-A1- 2010 034 647
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention is directed to a fabrication process.

    [0002] More specifically, the present invention is directed to a turbulator fabrication process.

    BACKGROUND OF THE INVENTION



    [0003] Many components, such as gas turbine combustors, are exposed to increased temperatures during operation. For example, combustion within a combustion chamber of a traditional gas turbine may produce flame temperatures exceeding 2149°C (3,900°F). Often, the components include tolerance temperatures well below the increased temperatures experienced during operation. To maintain material temperatures below the tolerance temperature, cooling features may be incorporated into the component.

    [0004] One cooling feature includes providing continuous linear turbulators on an exterior surface of a component, such as a combustor liner. The continuous linear turbulators include protruding bodies placed in the flow path over the exterior surface of the component to disrupt the flow. The disruption in the flow creates shear layers and high turbulence to enhance heat transfer on the exterior surface and increase convective cooling of the component.

    [0005] Often, a plurality of turbulators is formed on the exterior surface of the component. Forming the plurality of turbulators may require an extended period of time, which decreases efficiency and increases both cost and fabrication time for the component. For example, forming 90 turbulators by machining may take upwards of 24 hours for superalloys.

    [0006] US 2010/0034647 A1 discloses a process for the formation of positive features on the surface of a turbine shroud component. The process involves applying a feature-forming material to a selected portion of the component surface with a laser consolidation apparatus.
    GB 2 453 943 A discloses an additive process for building structures on a substrate. A secondary heat source provided by a laser may be moved about the melt pool to alter the heat flux distribution.

    BRIEF DESCRIPTION OF THE INVENTION



    [0007] The invention provides a turbulator fabrication process according to claim 1.

    [0008] In an exemplary embodiment, the directing of the first fusion energy and the second fusion energy modifies the turbulator material forming one or more turbulators on the substrate, and proceeds in a direction of formation at a rate of at least 38.1 cm (15 inches) per minute.

    [0009] Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0010] 

    FIG. 1 shows a flow chart of a fabrication process, according to an embodiment of the invention.

    FIG. 2 is a perspective view of a component having a plurality of turbulators formed thereon, according to an embodiment of the invention.

    FIG. 3 is a process view of a process for forming a turbulator, according to an embodiment of the invention.

    FIG. 4 is a process view of a process for forming a turbulator, according to an embodiment of the invention.

    FIG. 5 is an enlarged cross-section view of a turbulator, according to an embodiment of the invention.



    [0011] Wherever possible, the same reference numbers will be used throughout the drawings to represent the same parts.

    DETAILED DESCRIPTION OF THE INVENTION



    [0012] Provided is a fabrication process. Embodiments of the present invention, in comparison to fabrication processes and fabricated articles not using one or more of the features disclosed herein, increase turbulator fabrication efficiency, increase turbulator formation speed, provide turbulators including concave roots at increased fabrication speeds, or a combination thereof.

    [0013] Referring to FIGS. 1-2, in one embodiment, a turbulator fabrication process 100 includes providing a system 200 configured for directing a first fusion energy 201 and a second fusion energy 202 (step 110), positioning a turbulator material 205 on a substrate 207 (step 120), and directing the first fusion energy 201 and the second fusion energy 202 toward the turbulator material 205 and the substrate 207 (step 130). The directing of the first fusion energy 201 and the second fusion energy 202 modifies the turbulator material 205 to form one or more turbulators 210 on the substrate 207. As used herein, the term "turbulator" refers to a protruding body configured to be placed in a flow path to transform laminar flow into turbulent flow. The turbulent flow increases a cooling effect of the fluid flowing over the substrate 207.

    [0014] Referring to FIG. 2, the substrate 207 includes any suitable substrate, such as, but not limited to, a portion of a combustion liner, a convex surface, a concave surface, a planar surface, or a combination thereof. Substrate materials include, but are not limited to, composite materials, such as a ceramic matrix composite, superalloys, a nickel-based alloy, an iron-based alloy, a cobalt-based alloy, or a combination thereof. Referring to FIG. 3, positioning the turbulator material 205 on the substrate 207 (step 120) includes providing the turbulator material 205 to the substrate 207 in any suitable configuration for forming a predetermined shape, orientation, and/or spacing of the one or more turbulators 210. The turbulator material 205 positioned on the substrate 207 includes a first interface 221 and a second interface 222 between the turbulator material 205 and the substrate 207. The first interface 221 corresponds to a first side 231 of the turbulator 210 formed from the turbulator material 205, and the second interface 222 corresponds to a second side 232 of the turbulator 210 formed from the turbulator material 205. One suitable configuration for providing the turbulator material 205 includes a bead at least substantially devoid of concave surfaces. Another suitable configuration includes providing the turbulator material 205 around portions of the substrate 207, or entirely around the substrate 207. For example, providing the bead at least substantially devoid of concave surfaces extending around the combustion liner. After positioning of the turbulator material 205, the directing of the fusion energy (step 130) forms the one or more turbulators 210 from the turbulator material 205. Suitable turbulator material 205 includes, but is not limited to, a ceramic matrix composite, a superalloy, a high temperature metal, or a combination thereof.

    [0015] The turbulator fabrication process 100 permits formation of the one or more turbulators 210 on various substrate profiles. During the turbulator fabrication process 100, the forming of the one or more turbulators 210 from the turbulator material 205 includes a linear uninterrupted process, a linear interrupted process, or a non-linear process. The type of process for forming the one or more turbulators 210 is at least partially dependent upon the configuration of the turbulator material 205 positioned on the substrate 207. For example, in one embodiment, the one or more turbulators 210 extend around the substrate 207, and are formed with the linear uninterrupted process from the turbulator material 205 extending around the substrate 207. In another example, the one or more turbulators 210 extend around portions of the substrate 207, and are formed with the linear interrupted process from the turbulator material 205 extending around portions of the substrate 207. In yet another example, the one or more turbulators 210 extend around portions of the substrate 207, and are formed with the non-linear process from the turbulator material 205 extending around portions of the substrate 207.

    [0016] Referring to FIGS. 3-5, the first fusion energy 201 is directed toward the turbulator material 205 and the substrate 207 to form a height 212 and/or a width 213 of the turbulator 210 (see FIG. 5). The first fusion energy 201 is directed from a first fusion energy source 241, such as, but not limited to, laser energy, an arc beam, a plasma beam, or a combination thereof. The height 212 of the turbulator 210 includes any suitable height for disrupting laminar flow and/or introducing turbulence into a fluid flow. Suitable heights include, but are not limited to, up to about 1.27 mm (0.05 inches), up to about 0.76 mm (0.03 inches), between about 0.25 mm (0.01 inches) and about 1.02 mm (0.04 inches), or any combination, sub-combination, range, or sub-range thereof. In another embodiment, the width 213 of the turbulator 210 includes any suitable width for providing support to the turbulator 210. Suitable widths include, but are not limited to, up to about 1.27 mm (0.05 inches), up to about 0.76 mm (0.03 inches), between about 0.25 mm (0.01 inches) and about 1.02 mm (0.04 inches), or any combination, sub-combination, range, or sub-range thereof. In a further embodiment, the width 213 is similar, or substantially similar, to the height 212. In an alternate embodiment, the width 213 differs from the height 212.

    [0017] The second fusion energy 202 is directed toward the turbulator material 205 and the substrate 207 to form a first root portion 214 on a first side 231 and/or a second root portion 215 on a second side 232 of the turbulator 210. The second fusion energy 202 is directed from a second fusion energy source 242, such as, but not limited to, laser energy, an arc beam, a plasma beam, or a combination thereof. In one embodiment, the second fusion energy 202 is directed toward the first interface 221 to form the first root portion 214 on the first side 231 of the turbulator 210. In another embodiment, the second fusion energy 202 is split to direct the second fusion energy 202 towards the first interface 221 and the second interface 222. Directing the second fusion energy 202 toward the first interface 221 and the second interface 222 forms the first root portion 214 on the first side 231 and the second root portion 215 on the second side 232, respectively.

    [0018] In one embodiment, a third fusion energy 203 is directed toward the turbulator material 205 and the substrate 207 concurrently with the first fusion energy 201 and the second fusion energy 202. The third fusion energy 203 is directed from a third fusion energy source 243, such as, but not limited to, laser energy, an arc beam, a plasma beam, or a combination thereof. In an embodiment with the third fusion energy 203, the first fusion energy 201 is directed toward the turbulator material 205 and the substrate 207, the second fusion energy 202 is directed towards the first interface 221, and the third fusion energy 203 is directed towards the second interface 222. The first fusion energy 201 forms the height 212 and/or the width 213 of the turbulator 210, while the second fusion energy 202 forms the first root portion 214 on the first side 231 of the turbulator 210 and the third fusion energy 203 forms the second root portion 215 on the second side 232 of the turbulator 210.

    [0019] Referring to FIG. 5, together, the height 212 and the width 213 form a convex region of the turbulator 210 extending from the substrate 207. The first root portion 214 and the second root portion 215 form concave regions providing a transition between the substrate 207 and the convex region of the turbulator 210. In one embodiment, the first root portion 214 and/or the second root portion 215 is raised from the substrate 207 to form at least a portion of the convex region extending from the substrate 207. The transition between the substrate 207 and the convex region of the turbulator 210 includes an angle α of at least 90 degrees. In one embodiment, the concave transition forms a smooth and/or semi-circular shape having a radius including, but not limited to, up to about 1.27 mm (0.05 inches), up to about 0.76 mm (0.03 inches), between about 0.25 mm (0.01 inches) and about 1.02 mm (0.04 inches), or any combination, sub-combination, range, or sub-range thereof. The concave transition is not limited to the semi-circular shape, and may include any suitable shape not forming an acute angle between the substrate 207 and the turbulator 210.

    [0020] In an alternate embodiment, the first fusion energy 201 is split at least once to direct the first fusion energy 201 toward the turbulator material 205 and the substrate 207, the first interface 221, and/or the second interface 222. In one example, the first fusion energy 201 is split once to direct the first fusion energy 201 toward the turbulator material 205 and the substrate 207, as well as the first interface 221. In another example, the first fusion energy 201 is split into three beams to direct the first fusion energy 201 toward the turbulator material 205 and the substrate 207, the first interface 221, and the second interface 222.

    [0021] Referring again to FIG. 3, during the directing (step 130), the second fusion energy 202 and/or the third fusion energy 203 trail the first fusion energy 201 in a direction of formation 401. The directing of the first fusion energy 201 proceeds in the direction of formation 401 at any suitable rate for forming the turbulator 210 including the first root portion 214 and/or the second root portion 215. Suitable rates for directing the first fusion energy 201 include, but are not limited to, up to about 35 inches per minute (ipm), between about 3 ipm and about 35 ipm, between about 10 ipm and about 35 ipm, between about 20 ipm and about 35 ipm, or any combination, sub-combination, range, or sub-range thereof. The directing of the second fusion energy 202 and/or the third fusion energy 203 concurrently with the directing of the first fusion energy 201 permits increased rates for forming the turbulator 210 having the first root portion 214 and/or the second root portion 215 including the angle α. Increased rates include, but are not limited to, up to about 75 ipm, up to about 50 ipm, between about 10 ipm and about 50 ipm, between about 15 ipm and about 45 ipm, between about 10 ipm and about 30 ipm, between about 30 ipm and about 50 ipm, between about 20 ipm and about 40 ipm, or any combination, sub-combination, range, or sub-range thereof.

    [0022] The first fusion energy 201, the second fusion energy 202, and the third fusion energy 203 include any suitable power energy source, such as, but not limited to, a 2 kW laser source. The first fusion energy 201 is directed towards the turbulator material 205 and the substrate 207 with increased power as compared to the second fusion energy 202 and/or the third fusion energy 203. For example, in one embodiment, the first fusion energy 201 includes any suitable power for forming the turbulator 210, such as, but not limited to, between about 600 W and about 800 W, between about 650 W and about 750 W, between about 675 W and about 725 W, about 700 W, or any combination, sub-combination, range, or sub-range thereof. In another embodiment, the second fusion energy 202 and/or the third fusion energy 203 includes any suitable power for forming the first root portion 214 and/or the second root portion, such as, but not limited to, between about 200 W and about 400 W, between about 250 W and about 350 W, between about 275 W and about 325 W, about 300 W, or any combination, sub-combination, range, or sub-range thereof.

    [0023] Referring to FIG. 4, in one embodiment, a powder feeding 250 is provided concurrently with the first fusion energy 201, the second fusion energy 202, and/or the third fusion energy 203. The powder feeding 250 deposits a powder material simultaneously with the directing of the fusion energy (step 130). In one embodiment, the powder feeding 250 provided concurrently with the first fusion energy 201 deposits the powder material on the substrate 207 to position the turbulator material 205 (step 120) simultaneously with the directing of the fusion energy (step 130). In an alternate embodiment, after positioning the turbulator material 205 on the substrate 207 (step 120), the powder feeding 250 provided concurrently with the first fusion energy 201 deposits the powder material on the turbulator material 205 to increase the height 212 and/or the width 213 of the turbulator 210. The powder feeding 250 provided concurrently with the second fusion energy 202 and/or the third fusion energy 203 deposits the powder material to fill an acute angle formed by the first fusion energy 201, and/or form the first root portion 214 or the second root portion 215.

    [0024] The powder material includes, but is not limited to, the turbulator material 205, any material including a similar or substantially similar coefficient of thermal expansion (CTE) to the turbulator material 205, a material to impart various predetermined properties to the turbulator 210, or a combination thereof. In one embodiment, the powder material provided concurrently with the first fusion energy 201 differs from the powder material provided concurrently with the second fusion energy 202 and/or the third fusion energy 203. In an alternate embodiment, the powder material provided concurrently with the first fusion energy 201 is similar, or substantially similar, to the powder material provided concurrently with the second fusion energy 202 and/or the third fusion energy 203.

    [0025] The powder feeding 250 includes a powder delivery rate corresponding to the rate at which the directing (step 130) proceeds in the direction of formation 401. Powder delivery rates include, but are not limited to, between about 50 g/m and about 200 g/m, between about 50 g/m and about 150 g/m, up to about 100 g/m, between about 50 g/m and about 100 g/m, about 99 g/m, or any combination, sub-combination, range, or sub-range thereof.

    [0026] In one embodiment, the substrate 207 and/or the turbulator material 205 is pre-heated prior to the directing of at least the first fusion energy 201. The pre-heating includes directing a pre-heat energy toward the substrate 207 and/or the turbulator material 205 to increase the temperature of the substrate 207 and/or the turbulator material 205. In another embodiment, the turbulator 210 undergoes a post-heat treatment. The post-heat treatment includes directing a post-heat energy toward the turbulator 210 to either increase the temperature of the turbulator 210 or decrease a rate of cooling of the turbulator 210. The pre-heat energy and the post-heat energy include any suitable energy source, such as, but not limited to, laser energy, an arc beam, a plasma beam, or a combination thereof.

    EXAMPLE



    [0027] In an example, a first laser energy with a power of 700 w is directed towards an external surface of a combustion liner to form a portion of the turbulator 210. The first laser energy is directed from the first fusion energy source 241 concurrently with the powder feeding 250 to deposit the powder material on the substrate 207 and position the turbulator material 205 (step 120) simultaneously with the directing of the fusion energy (step 130). Concurrently with the directing of the first laser energy, a second laser energy with a power of 300 w is directed toward the first side 231 of the turbulator 210, and a third laser energy with a power of 300 w is directed toward the second side 232 of the turbulator 210. The first laser energy, the second laser energy, and the third laser energy proceed in the direction of formation 401 at 35 ipm, with the second laser energy and the third laser energy trailing the first laser energy to form the first root portion 214 and the second root portion 215, respectively. Together, the first laser energy, the second laser energy, and the third laser energy form 90 turbulators 210 in 2 hours or less with the height 212 of each turbulator 210 being about 0.76 mm (about 0.03 inches), the width 213 of each turbulator 210 being about 0.76 mm (about 0.03 inches), and an angle α between each turbulator 210 and the external surface being about 90 degrees. Additionally, each of the turbulators 210 includes the first root portion 214 on the first side 231 and the second root portion 215 on the second side 232, the first root portion 214 and the second root portion 215 forming the concave interfaces including a radius of about 0.76 mm (about 0.03 inches) between the turbulator 210 and the external surface of the combustion liner. While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.


    Claims

    1. A turbulator fabrication process (100), comprising:

    providing (110) a system (200) configured for directing a first fusion energy (201) and a second fusion energy (202);

    positioning (120) a turbulator material (205) on a substrate (207); and

    directing (130) the first fusion energy (201) and the second fusion energy (202) toward the turbulator material (205) and the substrate (207);

    the directing of the first fusion energy (201) and the second fusion energy (202) modifying the turbulator material (205) forming one or more turbulators (210) on the substrate (207);

    the turbulator (210) extending from the substrate (207) with a first root portion (214) proximal to the substrate (207) providing a concave transition between the substrate (207) and a first side of a convex region of the turbulator (210);

    the turbulator (210) extending from the substrate with a second root portion (215) proximal to the substrate (207) providing a concave transition between the substrate (207) and a second side of the convex region of the turbulator (210);

    the first root portion (214) and the second root portion (215) being raised from the substrate (207) to form at least a portion of the convex region extending from the substrate (207); wherein the process further comprises directing a third fusion energy (203) toward the substrate (207), wherein the first concave portion is formed by the second fusion energy (202), the second concave portion is formed by the third fusion energy (203), and the convex region is formed by the first fusion energy (201).


     
    2. The fabrication process of claim 1, wherein the first fusion energy (201) and/or second fusion energy (202) are selected from the group consisting of laser energy, an arc beam, a plasma beam, and combinations thereof.
     
    3. The fabrication process of claim 1 or 2, wherein the substrate (207) is a portion of a combustion liner.
     
    4. The fabrication process of claim 3, wherein at least one of the one or more turbulators (210) extends around the combustion liner and the forming of the turbulator (210) is one of a linear uninterrupted process, a linear interrupted process or a non-linear process.
     
    5. The fabrication process of any preceding claim, wherein the substrate (207) comprises a surface selected from the group consisting of a concave surface, a convex surface, a planar surface, and combinations thereof.
     
    6. The fabrication process of any preceding claim, wherein the first root portion (214) is formed by the second fusion energy (202) and the second root portion (215) is formed by the third fusion energy (203).
     
    7. The fabrication process of any preceding claim, wherein the turbulator material (205) is a bead at least substantially devoid of concave surfaces.
     
    8. The fabrication process of any preceding claim, wherein the second fusion energy (202) and the third fusion energy trail (203) the first fusion energy (201) in a direction of formation.
     
    9. The fabrication process of any preceding claim,
    wherein the directing of the first fusion energy (201) and the second fusion energy (202) proceeds in a direction of formation at a rate of at least 38.1 cm (15 inches) per minute.
     


    Ansprüche

    1. Turbulator-Herstellungsverfahren (100), umfassend:

    Bereitstellen (110) eines Systems (200), das für das Leiten einer ersten Fusionsenergie (201) und einer zweiten Fusionsenergie (202) konfiguriert ist;

    Positionieren (120) eines Turbulatormaterials (205) auf einem Substrat (207); und

    Leiten (130) der ersten Fusionsenergie (201) und der zweiten Fusionsenergie (202) in Richtung des Turbulatormaterials (205) und des Substrats (207);

    wobei das Leiten der ersten Fusionsenergie (201) und der zweiten Fusionsenergie (202), das Turbulatormaterial (205) verändert, das einen oder mehrere Turbulatoren (210) auf dem Substrat (207) bildet;

    wobei der Turbulator (210), der sich vom Substrat (207) mit einem ersten Wurzelabschnitt (214) in der Nähe des Substrats (207) erstreckt, einen konkaven Übergang zwischen dem Substrat (207) und einer ersten Seite eines konvexen Bereichs des Turbulators (210) bereitstellt;

    wobei der Turbulator (210), der sich vom Substrat mit einem zweiten Wurzelabschnitt (215) in der Nähe des Substrats (207) erstreckt, einen konkaven Übergang zwischen dem Substrat (207) und einer zweiten Seite des konvexen Bereichs des Turbulators (210) bereitstellt;

    wobei der erste Wurzelabschnitt (214) und der zweite Wurzelabschnitt (215) aus dem Substrat (207) angehoben werden, um mindestens einen Teil des konvexen Bereichs zu bilden, der sich aus dem Substrat (207) erstreckt;

    wobei das Verfahren ferner das Leiten einer dritten Fusionsenergie (203) in Richtung des Substrats (207) umfasst, wobei der erste konkave Abschnitt durch die zweite Fusionsenergie (202) gebildet wird, der zweite konkave Abschnitt durch die dritte Fusionsenergie (203) gebildet wird und der konvexe Bereich durch die erste Fusionsenergie (201) gebildet wird.


     
    2. Herstellungsverfahren nach Anspruch 1, wobei die erste Fusionsenergie (201) und/oder die zweite Fusionsenergie (202) aus der Gruppe ausgewählt werden, die aus Laserenergie, einem Lichtbogenstrahl, einem Plasmastrahl und deren Kombinationen besteht.
     
    3. Herstellungsverfahren nach Anspruch 1 oder 2, wobei das Substrat (207) ein Abschnitt einer Verbrennungsauskleidung ist.
     
    4. Herstellungsverfahren nach Anspruch 3, wobei mindestens einer des einen oder der mehreren Turbulatoren (210) sich um die Verbrennungsauskleidung erstreckt und das Bilden des Turbulators (210) eines von einem linearen, ununterbrochenen Verfahren, von einem linearen unterbrochenen Verfahren oder von einem nicht-linearen Verfahren ist.
     
    5. Herstellungsverfahren nach einem der vorhergehenden Ansprüche, wobei das Substrat (207) eine Oberfläche umfasst, die aus der Gruppe ausgewählt ist, welche eine konkave Oberfläche, eine konvexe Oberfläche, eine ebene Oberfläche und deren Kombinationen umfasst.
     
    6. Herstellungsverfahren nach einem der vorhergehenden Ansprüche, wobei der erste Wurzelabschnitt (214) durch die zweite Fusionsenergie (202) gebildet wird, und der zweite Wurzelabschnitt (215) durch die dritte Fusionsenergie (203) gebildet wird.
     
    7. Herstellungsverfahren nach einem der vorhergehenden Ansprüche, wobei das Turbulatormaterial (205) eine Perle ist, die zumindest im Wesentlichen keine konkaven Oberflächen aufweist.
     
    8. Herstellungsverfahren nach einem der vorhergehenden Ansprüche, wobei die zweite Fusionsenergie (202) und die dritte Fusionsenergie (203) der ersten Fusionsenergie (201) in der Bildungsrichtung folgen.
     
    9. Herstellungsverfahren nach einem der vorhergehenden Ansprüche, wobei das Leiten der ersten Fusionsenergie (201) und der zweiten Fusionsenergie (202) in einer Bildungsrichtung mit einer Geschwindigkeit von mindestens 38,1 cm pro Minute verläuft.
     


    Revendications

    1. Procédé de fabrication d'un turbulateur (100), comprenant de :

    fournir (110) un système (200) conçu pour diriger une première énergie de fusion (201) et une seconde énergie de fusion (202) ;

    positionner (120) un matériau de turbulateur (205) sur un substrat (207) ; et

    diriger (130) la première énergie de fusion (201) et la seconde énergie de fusion (202) vers le matériau de turbulateur (205) et vers le substrat (207) ;

    le fait de diriger la première énergie de fusion (201) et la seconde énergie de fusion (202) modifiant le matériau de turbulateur (205) formant un ou plusieurs turbulateurs (210) sur le substrat (207) ;

    le turbulateur (210) s'étendant à partir du substrat (207) avec une première partie racine (214) proximale au substrat (207) fournissant une transition concave entre le substrat (207) et un premier côté d'une région convexe du turbulateur (210) ;

    le turbulateur (210) s'étendant à partir du substrat avec une seconde partie racine (215) proximale au substrat (207) fournissant une transition concave entre le substrat (207) et un second côté de la région convexe du turbulateur (210) ;

    la première partie de racine (214) et la seconde partie de racine (215) étant soulevées du substrat (207) pour former au moins une partie de la région convexe s'étendant à partir du substrat (207) ;

    le procédé comprenant en outre le fait de diriger une troisième énergie de fusion (203) vers le substrat (207), la première partie concave étant formée par la deuxième énergie de fusion (202), la deuxième partie concave étant formée par la troisième énergie de fusion (203) et la région convexe étant formée par la première énergie de fusion (201).


     
    2. Procédé de fabrication selon la revendication 1, dans lequel la première énergie de fusion (201) et/ou la deuxième énergie de fusion (202) sont choisies dans le groupe constitué par une énergie laser, un faisceau d'arc, un faisceau de plasma et leurs combinaisons.
     
    3. Procédé de fabrication selon la revendication 1 ou 2, dans lequel le substrat (207) est une partie d'une chemise de combustion.
     
    4. Procédé de fabrication selon la revendication 3, dans lequel au moins l'un des turbulateurs (210) s'étend autour de la chemise de combustion et où la formation du turbulateur (210) est un processus linéaire ininterrompu, un processus linéaire interrompu ou un processus non linéaire.
     
    5. Procédé de fabrication selon l'une quelconque des revendications précédentes, dans lequel le substrat (207) comprend une surface choisie dans le groupe constitué par une surface concave, une surface convexe, une surface plane et des combinaisons de celles-ci.
     
    6. Procédé de fabrication selon l'une quelconque des revendications précédentes, dans lequel la première partie de racine (214) est formée par la deuxième énergie de fusion (202) et la seconde partie de racine (215) est formée par la troisième énergie de fusion (203).
     
    7. Procédé de fabrication selon l'une quelconque des revendications précédentes, dans lequel le matériau de turbulateur (205) est un cordon au moins sensiblement dépourvu de surfaces concaves.
     
    8. Procédé de fabrication selon l'une quelconque des revendications précédentes, dans lequel la deuxième énergie de fusion (202) et la troisième énergie de fusion (203) suivent la première énergie de fusion (201) dans une direction de formation.
     
    9. Procédé de fabrication selon l'une quelconque des revendications précédentes, dans lequel la direction de la première énergie de fusion (201) et de la deuxième énergie de fusion (202) progresse dans une direction de formation à une vitesse d'au moins 38,1 cm (15 pouces) par minute.
     




    Drawing


















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description