(19)
(11)EP 2 885 244 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 13752608.3

(22)Date of filing:  13.08.2013
(51)International Patent Classification (IPC): 
G01N 33/543(2006.01)
G01N 21/47(2006.01)
G01N 21/77(2006.01)
B82Y 20/00(2011.01)
(86)International application number:
PCT/EP2013/066880
(87)International publication number:
WO 2014/026968 (20.02.2014 Gazette  2014/08)

(54)

PROTEIN SPECIFIC OPTICAL DETECTION

PROTEINSPEZIFISCHE OPTISCHE DETEKTION

DÉTECTION OPTIQUE SPÉCIFIQUE À UNE PROTÉINE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 16.08.2012 NO 20120916

(43)Date of publication of application:
24.06.2015 Bulletin 2015/26

(73)Proprietor: Sintef TTO AS
7465 Trondheim (NO)

(72)Inventors:
  • MIELNIK, Michal Marek
    N-1358 Jar (NO)
  • GREPSTAD, Jon Olav
    N-0495 Oslo (NO)
  • JOHANSEN, Ib-Rune
    N-0882 Oslo (NO)

(74)Representative: Protector IP AS 
Pilestredet 33
0166 Oslo
0166 Oslo (NO)


(56)References cited: : 
US-A1- 2008 278 722
US-A1- 2009 079 976
  
  • JON OLAV GREPSTAD ET AL: "Enhanced scattering from nano-particles trapped in photonic crystal membranes", OPTICAL MEMS AND NANOPHOTONICS (OMN), 2012 INTERNATIONAL CONFERENCE ON, IEEE, 6 August 2012 (2012-08-06), pages 21-22, XP032261751, DOI: 10.1109/OMEMS.2012.6318782 ISBN: 978-1-4577-1511-2
  • Berg JM, Tymoczko JL, Stryer L: "Biochemistry. 5th edition. Section 4.3, Immunology Provides Important Techniques with Which to Investigate Proteins", , 2002, pages 1-7, XP002713261, Retrieved from the Internet: URL:http://www.ncbi.nlm.nih.gov/books/NBK2 2420/ [retrieved on 2013-09-19]
  • J O Grepstad ET AL: "Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application", Optics Express, 26 March 2012 (2012-03-26), pages 7954-7964, XP55079975, DOI: 10.1364/OE.20.007954 Retrieved from the Internet: URL:http://www.opticsinfobase.org/DirectPD FAccess/F0C2DEB2-A39E-AFFE-970471DF5F2DA38 2_230491/oe-20-7-7954.pdf?da=1&id=230491&s eq=0&mobile=no [retrieved on 2013-09-18]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Introduction



[0001] This invention relates to an optical sensor element comprising a photonic crystal constituted by a membrane of a chosen transparent material, and more specifically the membrane being provided with a number of defined openings (pores) in a chosen pattern, the pattern being adapted to provide resonance at a chosen wavelength or range of wavelengths.

[0002] The detector can detect and spatially locate nano-particles. The sensing unit in the device can potentially be chemically functionalized to capture macromolecules such as e.g. proteins and nucleic acids (RNA, DNA), exosomes, viruses, and other bioparticles and biomarkers in human samples such as blood, saliva, urine, tissue samples, and others. The device can hence be used as a biosensor, applied both in vivo and in vitro. Additionally, the device can be used to analyse other, non-medical sample types such as e.g. water and food. The photonic crystal and measuring principle as such is described in WO2010/0108952.

[0003] US2009/0079976 A1 exploits resonant grating structures. The sample fluid is exposed to the sensor by passing it over the grating, and targets are detected as a shift in resonance wavelength of the grating. In medical diagnostics, where the main goal is to detect and identify (and quantify, if possible) biomarkers, both the sensitivity and the specificity of the biosensor are of high importance. The sensitivity of a biosensor is defined as the sensor's ability to avoid false negatives, while the specificity is its ability to avoid false positives. Under this definition, a sensor with 100% sensitivity will identify all true positive samples as positive. How many negative samples the sensor identifies as positive (i.e. false positive) is irrelevant with respect to the definition of sensitivity. As a limiting case, a sensor which identifies ALL samples as positive has 100% sensitivity because it does not have any false negatives (i.e. it does not miss any positive samples). Similarly, a sensor with 1 00% specificity will identify all true negative samples as negative. Again, how many positive samples it identifies as negative (false negative) is irrelevant with respect to the definition of specificity. As a limiting case, a sensor which identifies ALL samples as negative has 100% specificity because it does not have any false positives.

[0004] In a typical sample of interest there can be millions of different bioparticles (e.g. proteins), only a few of which are targeted by the biosensor. Many of them are similar. It is therefore not possible to make capture-molecules which react exclusively with the targeted proteins and no others. Even for a capture site with very high selectivity (i.e. very high affinity to target proteins and very low affinity to other proteins and bioparticles) there is some probability of binding a non-targeted protein to the sensor. In the case of a sample containing a very large number of non-targeted proteins compared to the number of targeted proteins, capturing of some non-targeted particles is therefore inevitable, consequently giving rise to false positives which in turn lowers the specificity of the sensor.

[0005] The object of the present invention is improving the specificity of the sensor. This object is obtained by a method according to claim 1 and a system according to claim 4. Preferred embodiments are defined in the dependent claims.

[0006] Thus the present invention provides means for spatially locating nano-particles in combination with image processing. The biochemical means and active molecules may be based on the well known Enzyme-linked immunosorbent assay (ELISA) or similar methods.

[0007] The invention will be discussed more in detail below, with reference to the accompanying drawings, illustrating the invention by way of examples.

Figure 1 illustrates the sensor element according to the known art used according to the invention.

Figure 2 illustrates the two chemical and optical detection steps that will increase specificity.

Figure 3 illustrates the image intensity on a CCD screen as recorded after the first step.

Figure 4 illustrates the steps according to the invention



[0008] Figure 1 illustrates the sensor element used for performing the method according to the invention based on a photonic crystal unit as described in WO2010/108952. The following present invention being performed in order to increase the specificity of the measurements compared to the known solution being illustrated in figure 2.

[0009] In figure 2 a chemical process is illustrated where the target molecules A are captured as well as some unwanted molecules B. In the optically detected image dashed circles mark the captured target molecules (true positives), while the rest of the bright spots are unwanted captured molecules (false positives). The reactants on the surface (the capture molecules) capturing the target molecules are named C.

[0010] The illustrated process may be described as comprising the following steps:

Step 1 Capture target molecules A chemically in the photonic crystal sensor by a functionalized surface (molecule C) with high affinity to target molecules and low affinity to all other molecules.

Step 2 Record an image of the photonic crystal sensor (by e.g. a CCD camera) containing the captured nano-particles. Captured particles are represented by bright spots in the image.

Step 3 Introduce a second capture molecule D with high affinity to the target molecule and low affinity to all other molecules.

Step 4 Record another image of the photonic crystal sensor. The sensing sites where molecule D has been captured will now stand out in brightness. Do image processing to find and count the target molecules (type A).



[0011] In addition to the described steps a number of washing steps are required.

Detail description



[0012] Referring to figure 1 the process may be starting with a number NA of molecules A. They bind to a specific capture molecule C with likelihood PCA. The likelihood P (i.e PCA) may be defined in several ways, i.e. the total likelihood for a capture within one hole (defined openings), where the number of capture molecules can be N, N=1,2,3, .... Furthermore, all other molecules are labeled B and it is known that there is also a likelihood PCB for a molecule of type B to bind to C. Let the number of molecules of type B be NB. As mentioned above the chemical step 1 is illustrated on the left side of figure 2 together with the resulting image of the sensor element.

[0013] It is reasonable to assume that PCA can be made much larger than PCB. However, in real samples, the substance to be detected may be a minority population. NB can for example be 106, while NA = 102. If PCA = 90 % and PCB = 0.1 %, the number of captured molecules that are non-targeted (B) can hence be much larger (106×0.001 = 103) than the number of captured target (A) molecules (102×0.9 = 90)

[0014] In the example given here, the total number of captured molecules is on average



[0015] In the above mentioned sensor device, all these 1090 molecules appear as bright spots on a dark background, as illustrated in figure 3. In the figure 3, dashed circles mark the target proteins (A). The other bright spots represent molecules of type B captured by the biosensor. At this stage, it is not possible to distinguish between the type A target molecules captured with probability PCA and the type B non-target molecules captured with probability PCB. The biosensor detects a large number of false positives and hence exhibits low specificity.

[0016] Improvement of sensor specificity can be achieved as illustrated in figure 4, showing a two step reaction. In the first step, both molecules type A (blue molecules) and B (orange) bind to the capture molecules (C) with probabilities PCA and PCB. The probability of binding type B molecules to the capture molecule is, as mentioned above, very low compared to the probability of binding molecules A. However, since there are many more type B molecules than type A molecules, more type B molecules end up being captured than molecules of type A.

[0017] At this point, the imaged biosensor appears as shown in fig. 3, with no possibility to distinguish between type A (target) and type B (non-target) molecules. Referring to figure 3, in order to separate A and B molecules, a second step is introduced. This is a new reaction, introducing a fourth molecule, D, represented by the legged yellow sphere. D is selected or synthesized such that it has high affinity to the target molecule A, and low affinity to the non-target molecules B. Assume that the capture probability of D to A is PAD = 90%, and the capture probability of D to B is PBD = 0.1%. In addition, we note that D can react and bind directly to the capture molecules, C, at the red surface. Let us assume that this reaction has a probability PCD = 0.1%.

[0018] Imagine now that we start out with molecules of type A (target molecules) and molecules of type B (non-target molecules), and in the second step add
molecules of type D (tag). In the first reaction step, 90 molecules of type A and 1000 molecules of type B are captured. In the second reaction step, we will on average be left with 81 stacks of C +A +D, 1 stack of C +B +D and 1000 stacks of C +D. There will also be 9 stacks of C +A and 999 stacks of C+B.

[0019] The stacks are separated in the following way:
First of all, stacks of different size induce different light output. The power scattered from an object trapped in the sensing element is proportional to the radius to the power of 6. The power scattered from a stack C +A +D, can hence easily be separated from a stack C +B. In a similar way, signals induced by change in refractive index will be dependent of the size of the trapped object. Their sizes differ, and they induce different light output. Secondly, we can locate the particles in two dimensions. So, if new bright spots appear between reaction 1 and 2, we know that these can not represent capture events of molecules A. The basic idea is illustrated on the right side of figure 2.

[0020] Figure 2 thus illustrates the two chemical and optical detection steps that will increase specificity. Dashed circles mark the targeted molecules A. After the first chemical reaction, the captured particles may be detected as bright spots appearing on the image of the biosensor. The problem is that only a small part of these bright spots represents target molecules A. However, after the second chemical step, most of type A molecules become much more bright compared to the rest of the spots, as tag molecules D attach to the target. If molecule A and B are the same size, there may be some false positives, but since in general will be very small, the specificity is significantly increased.

[0021] Thus the captured target molecules may be found by looking for the brightest spots in the images, but also by comparing the images after the first capture and the second capture so as to detect the spots experiencing an increased illumination in both reactions.

[0022] A specific example of such possible two-step detection procedure is the detection of human interferon gamma (IFN-γ) where the capture -detection antibody pair consists of Mouse anti-human IFN-γ (capture) and biotinylated goat anti-human IFN-γ (detection), as applied in sandwich ELISA. By applying monoclonal and polyclonal capture and detection antibodies, the sensitivity and specificity of the device can be further adjusted as monoclonal antibodies assure higher specificity, while polyclonal antibodies increase the sensitivity. Polyclonal and monoclonal antibodies may also be combined, by using e.g. monoclonal capture antibodies to ensure high specificity of the capture step, and polyclonal detection antibodies to ensure sensitive detection of the captured antigens. Such procedures are common within sandwich ELISA.

[0023] To summarize the invention relates to a method and system for detecting target molecules using an optical sensor element comprising a photonic crystal constituted by a membrane of a chosen transparent material, and more specifically the membrane being provided with a number of defined openings in a chosen pattern, the pattern being adapted to provide resonance at a chosen wavelength or range of wavelengths. The method including the following steps:
  1. a) in a chosen number of said openings providing a capture molecules C having a high affinity to said target molecules A,
  2. b) moving a first fluid flow containing target molecules A through said openings,
  3. c) moving a second fluid flow containing a second reactant D being different from said capture molecules C but having a high affinity for the target molecules but a low affinity for other possible molecules in said first flow,
  4. d) illuminating said sensor element at said chosen wavelength thus obtaining a resonance and providing an image of said sensor element from a position outside the sensor element plane so as to detect light leaking from the resonator, and
  5. e) analyzing said image so as to detect the captured molecules as well as the reactant having reacted with them.


[0024] For comparison a step b1) is included after step b) above where the sensor element is illuminated at said chosen wavelength thus obtaining a resonance and providing an image of said sensor element from a position outside the sensor element plane so as to detect light leaking from the resonator and thus detecting the captured molecules as well as the reactant having reacted with them. The analysis then includes an analysis in step e) includes a comparison between the images from step b1) and step d). The detection of a target molecule is then registered when an increase in the induced signal in one position is detected in the resulting images in both steps b1) and d) as the combination of molecules C, A and D will be larger than the C and B combination.

[0025] In order to increase the sensitivity the reactant in step c) may be constituted by a large molecule chosen so as to maximize the induced signal in the photonic crystal.

[0026] In all of these cases the analysis in step e) may include a determination of the points in the image having the highest intensity.

[0027] The system according to the invention is related to detecting target molecules using an optical sensor element comprising a photonic crystal constituted by a membrane of a chosen transparent material, being provided with a number of defined openings in a chosen pattern. A chosen number of said openings providing capture molecules having a high affinity to said target molecules. The pattern being adapted to provide resonance at a chosen wavelength or range of wavelengths as described in the above mentioned WO2010/0108952.

[0028] The system also comprises fluid conducting means for moving a first fluid flow containing target molecules through said openings, where the fluid conduction means also being adapted to, after conducting said first fluid flow conducting a second fluid flow containing a second reactant being different from said capture molecules but having a high affinity for the target molecules but a low affinity for other possible molecules in said first flow.

[0029] In addition illuminating means is used for illuminating said sensor element at said chosen wavelength thus obtaining a resonance and imaging means for providing an image of said sensor element from a position outside the sensor element plane so as to detect light leaking from the resonator.

[0030] The included analyzing means provides an analysis of said image so as to detect the captured molecules as well as the reactant having reacted with them. This analysis may comprise a detection of the induced points in the sensor element having the highest intensity, i.e. being above a predefined threshold. The analyzing means is adapted to provide a comparison between images taken after the first and second fluid for detecting the point having increased induced signal after both steps, indicating that molecules A is captured from the first fluid in the first step and molecule D was captured from the second fluid, indicating which of the points from the first picture that represents the target molecule.

[0031] It is also possible to introduce several additional steps to identify the number of other bindings, i.e. introduce an additional step with a third reactant E with a high affinity for B. Or, the additional steps may contain several reactants suitable for recognizing specific parts of nucleic acids or sequencing of such. In example, a specific part of a nucleic acid may be captured in one position, and then tagged with several reactants in sequence, enabling us to read out the capture of each of these reactants.

[0032] Between the chemical step 1 and the chemical step 2, an additional chemical step may be introduced. This additional step may block the capture molecule C for further reactions or disable the capture molecule C for further reactions. The purpose of this additional step is to reduce the likelihood for D to bind directly to C.

[0033] The second step may also include other methods for tagging that are suitable for imaging or spatial detection, like fluorescence, Raman, magnetic particles, radioactive tags and other methods may be applied.

[0034] The second step may also be a part of an amplification step. The purpose is to generate or induce a second signal that can be used to increase the specificity. In the case of a nucleic acid i.e. DNA or mRNA, an amplification step like the ones used in PCR or NASBA (or other amplification methods), can be used to increase the signal. The second step may also use a tag that enables polymerization or other methods that increase the signal response.

[0035] The specificity may be further increased by modifying pH, temperature or introducing chemical means to release the captured molecules. The release condition and the release time will give further information suitable to identify the target molecule, and monitoring of these will thereby increase the specificity.

[0036] The specificity may be further increased by modifying pH, temperature or introducing chemical means to modify the structure of the captured molecules, in example stretch out a nucleic acid or make it contract. The modification condition and the modification time will give further information suitable to identify the target molecule, and monitoring of these will thereby increase the specificity. Since the captured target molecule is not released in this case, several iterations of modifications may be performed.


Claims

1. Method for detecting target molecules using an optical sensor element comprising a photonic crystal constituted by a membrane of a chosen transparent material, and more specifically the membrane being provided with a number of defined openings in a chosen pattern, the pattern being adapted to provide resonance at a chosen wavelength or range of wavelengths, the method including the following steps:

a) in a chosen number of said openings providing capture molecules having a high affinity to said target molecules,

b) moving a first fluid flow containing target molecules through said openings,

b1) wherein said sensor element is illuminated at said chosen wavelength thus obtaining a resonance, and providing a first image of said sensor element from a position outside the sensor element plane so as to detect light leaking from the resonator at the target molecule position,

c) moving a second fluid flow containing a second reactant being different from said capture molecules but having a high affinity for the target molecules but a low affinity for other possible molecules in said first flow,

d) illuminating said sensor element at said chosen wavelength thus obtaining a resonance and providing a second image of said sensor element from a position outside the sensor element plane so as to detect light leaking from the resonator, and

e) an analyzing step including a comparison of said images obtained in steps b1) and d), wherein the detection of a target molecule is registered when an increase in the induced signal in one position is detected in both the resulting images obtained in steps b1) and d).


 
2. Method according to claim 1, wherein said reactant in step c) is constituted by a large molecule adapted to maximize the induced signal in the photonic crystal.
 
3. Method according to claim 1, wherein said analysis in step e) includes a determination of the points in the image having the highest intensity.
 
4. System for detecting target molecules using an optical sensor element comprising a photonic crystal constituted by a membrane of a chosen transparent material, being provided with a number of defined openings in a chosen pattern, a chosen number of said openings providing capture molecules having a high affinity to said target molecules, the pattern being adapted to provide resonance at a chosen wavelength or range of wavelengths, the system also comprising:

- fluid conducting means for moving a first fluid flow containing target molecules through said openings,

- the fluid conduction means also being adapted to, after conducting said first fluid flow conducting a second fluid flow containing a second reactant being different from said capture molecules but having a high affinity for the target molecules but a low affinity for other possible molecules in said first flow,

- illuminating means for illuminating said sensor element at said chosen wavelength thus obtaining a resonance and imaging means for providing an image of said sensor element from a position outside the sensor element plane so as to detect light leaking from the resonator, the illumination and imaging means being adapted to provide images of the sensor element after the application of each fluid flow, and

- analyzing means adapted to store and compare the said images obtained after each fluid flow, so as to detect the captured molecules as well as the reactant having reacted with them based on the difference between said images, wherein said analyzing means is adapted to register a target molecule when detecting an increase in the induced signal in one position in both the image provided after the first fluid flow and the image provided after the second fluid flow.


 
5. System according to claim 4, wherein said reactant in said second fluid flow is constituted by a large molecule adapted to maximize the induced signal in the photonic crystal.
 
6. System according to claim 4, wherein said analyzing means is adapted to detect the points in the image having an intensity above a predefined threshold.
 


Ansprüche

1. Verfahren zum Nachweis von Zielmolekülen unter Verwendung eines optischen Sensorelements, umfassend einen aus einer Membran aus einem gewählten transparenten Material bestehenden photonischen Kristall, das mit einer Anzahl definierter Öffnungen in einem gewählten Muster bereitgestellt ist, wobei das Muster zur Erzeugung von Resonanz bei einer gewählten Wellenlänge oder einem gewählten Bereich von Wellenlängen geeignet ist, wobei das Verfahren die folgenden Schritte umfasst:

a) in einer gewählten Anzahl der Öffnungen, Bereitstellen von Fangmolekülen mit einer hohen Affinität zu den Zielmolekülen,

b) Bewegen eines ersten Fluidstroms, der Zielmoleküle enthält, durch die Öffnungen,

b1) wobei das Sensorelement bei der gewählten Wellenlänge beleuchtet wird, wodurch Resonanz erhalten und ein erstes Bild des Sensorelements von einer Position außerhalb der Sensorelementebene bereitgestellt wird, so dass Licht nachgewiesen wird, das aus dem Resonator an der Zielmolekülposition austritt,

c) Bewegen eines zweiten Fluidstroms, der einen zweiten Reaktanten enthält, der von den Fangmolekülen verschieden ist, aber mit einer hohen Affinität für die Zielmoleküle, aber einer geringen Affinität für andere mögliche Moleküle in dem ersten Strom,

d) Beleuchten des Sensorelements bei der gewählten Wellenlänge, und damit Erhalten von Resonanz und Bereitstellen eines zweites Bildes des Sensorelements von einer Position außerhalb der Sensorelementebene, so dass aus dem Resonator austretendes Licht nachgewiesen wird, und

e) einen Analyseschritt einschließlich eines Vergleichs der in Schritten b1) und d) erhaltenen Bilder, wobei der Nachweis eines Zielmoleküls registriert wird, wenn eine Zunahme in dem induzierten Signal an einer Position in beiden der in den Schritten b1) und d) erhaltenen Bildern nachgewiesen wird.


 
2. Verfahren nach Anspruch 1, wobei der Reaktant in Schritt c) aus einem großen Molekül besteht, das zur Maximierung des induzierten Signals in dem photonischen Kristall geeignet ist.
 
3. Verfahren nach Anspruch 1, wobei die Analyse in Schritt e) eine Bestimmung der Punkte mit der höchsten Intensität in dem Bild einschließt.
 
4. System zum Nachweis von Zielmolekülen unter Verwendung eines optischen Sensorelements, umfassend einen aus einer Membran aus einem gewählten transparenten Material bestehenden photonischen Kristall, das mit einer Anzahl definierter Öffnungen in einem gewählten Muster bereitgestellt ist, wobei eine gewählte Anzahl der Öffnungen Fangmoleküle mit einer hohen Affinität zu den Zielmolekülen bereitstellt, wobei das Muster zur Bereitstellung von Resonanz bei einer gewählten Wellenlänge oder einem gewählten Bereich von Wellenlängen geeignet ist, wobei das System auch Folgendes umfasst:

- Fluidleitungsmittel zum Bewegen eines ersten Zielmoleküle enthaltenden Fluidstroms durch die Öffnungen,

- wobei das Fluidleitungsmittel nach dem Leiten des ersten Fluidstroms auch zum Leiten eines zweiten Fluidstroms geeignet ist, der einen zweiten Reaktanten enthält, der von den Fangmolekülen verschieden ist, aber mit einer hohen Affinität für die Zielmoleküle, aber einer geringen Affinität für andere mögliche Moleküle in dem ersten Strom,

- Beleuchtungsmittel zum Beleuchten des Sensorelements bei der gewählten Wellenlänge, um so Resonanz zu erhalten, und Bildgebungsmittel zum Bereitstellen eines Bildes des Sensorelements von einer Position außerhalb der Sensorelementebene, so dass aus dem Resonator austretendes Licht nachgewiesen wird, wobei die Beleuchtungs- und Bildgebungsmittel zur Bereitstellung von Bildern des Sensorelements nach der Applikation jedes Fluidstroms geeignet ist, und

- Analysemittel, die zur Speicherung und zum Vergleich der nach jedem Fluidstrom erhaltenen Bilder geeignet sind,

so dass die abgefangenen Moleküle sowie der Reaktant, der mit ihnen reagiert hat, auf Basis der Differenz zwischen den Bildern nachgewiesen wird, wobei das Analysemittel zur Registrierung eines Zielmoleküls geeignet ist, wenn ein Anstieg des induzierten Signals an einer Position sowohl in dem nach dem ersten Fluidstrom bereitgestellten Bild, als auch in dem nach dem zweiten Fluidstrom bereitgestellten Bild nachgewiesen wird.
 
5. System nach Anspruch 4, wobei der Reaktant in dem zweiten Fluidstrom aus einem großen Molekül besteht, das zur Maximierung des induzierten Signals in dem photonischen Kristall geeignet ist.
 
6. System nach Anspruch 4, wobei das Analysemittel zum Nachweis der Punkte mit einer Intensität über einem vordefinierten Schwellenwertes in dem Bild geeignet ist.
 


Revendications

1. Méthode de détection de molécules cibles en utilisant un élément de capteur optique comprenant un cristal photonique constitué par une membrane d'un matériau transparent choisi, et plus spécifiquement la membrane étant pourvue d'un certain nombre d'ouvertures définies selon un motif choisi, le motif étant adapté pour fournir une résonance à une longueur d'onde ou une plage de longueurs d'onde choisie, la méthode comprenant les étapes suivantes consistant à :

a) dans un nombre choisi desdites ouvertures, fournir des molécules de capture ayant une affinité élevée pour lesdites molécules cibles,

b) déplacer un premier écoulement de fluide contenant des molécules cibles à travers lesdites ouvertures,

b1) dans laquelle ledit élément de capteur est illuminé à ladite longueur d'onde choisie, en obtenant ainsi une résonance, et fournir une première image dudit élément de capteur à partir d'une position en dehors du plan d'élément de capteur afin de détecter de la lumière s'échappant du résonateur au niveau de la position de molécule cible,

c) déplacer un second écoulement de fluide contenant un second réactif différent desdites molécules de capture mais ayant une affinité élevée pour les molécules cibles mais une faible affinité pour d'autres molécules possibles dans ledit premier écoulement,

d) éclairer ledit élément de capteur à ladite longueur d'onde choisie, obtenant ainsi une résonance et en fournissant une seconde image dudit élément de capteur à partir d'une position à l'extérieur du plan d'élément de capteur afin de détecter une fuite de lumière à partir du résonateur, et

e) une étape d'analyse comprenant une comparaison desdites images obtenues aux étapes b1) et d), dans laquelle la détection d'une molécule cible est enregistrée lorsqu'une augmentation du signal induit dans une position est détecté dans les images résultantes obtenues aux étapes b1) et d).


 
2. Méthode selon la revendication 1, dans laquelle ledit réactif à l'étape c) est constitué par une grosse molécule adaptée pour maximiser le signal induit dans le cristal photonique.
 
3. Méthode selon la revendication 1, dans laquelle ladite analyse à l'étape e) comprend une détermination des points de l'image ayant l'intensité la plus élevée.
 
4. Système de détection de molécules cibles en utilisant un élément de capteur optique comprenant un cristal photonique constitué par une membrane d'un matériau transparent choisi, pourvue d'un certain nombre d'ouvertures définies selon un motif choisi, un nombre choisi desdites ouvertures fournissant des molécules de capture ayant une affinité élevée avec lesdites molécules cibles, le motif étant adapté pour fournir une résonance à une longueur d'onde ou une plage de longueurs d'onde choisie, le système comprenant également :

- des moyens conducteurs de fluide pour déplacer un premier écoulement de fluide contenant des molécules cibles à travers lesdites ouvertures,

- les moyens de conduction de fluide étant également adaptés pour, après avoir conduit ledit premier écoulement de fluide, conduire un second écoulement de fluide contenant un second réactif différent desdites molécules de capture mais ayant une affinité élevée pour les molécules cibles mais une faible affinité pour d'autres molécules possibles dans ledit premier écoulement,

- des moyens d'éclairage pour éclairer ledit élément de capteur à ladite longueur d'onde choisie, en obtenant ainsi une résonance et des moyens d'imagerie pour fournir une image dudit élément de capteur à partir d'une position en dehors du plan de l'élément de capteur afin de détecter une fuite de lumière à partir du résonateur, les moyens d'éclairage et d'imagerie étant adaptés pour fournir des images de l'élément de capteur après l'application de chaque écoulement de fluide, et

- des moyens d'analyse adaptés pour stocker et comparer lesdites images obtenues après chaque écoulement de fluide, de manière à détecter les molécules capturées ainsi que le réactif ayant réagi avec elles en fonction de la différence entre lesdites images, dans lequel lesdits moyens d'analyse sont adaptés pour enregistrer une molécule cible lors d'une détection d'une augmentation du signal induit dans une position à la fois dans l'image fournie après le premier écoulement de fluide et l'image fournie après le second écoulement de fluide.


 
5. Système selon la revendication 4, dans laquelle ledit réactif dans ledit second écoulement de fluide est constitué par une grosse molécule adaptée pour maximiser le signal induit dans le cristal photonique.
 
6. Système selon la revendication 4, dans laquelle lesdits moyens d'analyse sont adaptés pour détecter les points de l'image ayant une intensité supérieure à un seuil prédéfini.
 




Drawing














Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description