(19)
(11)EP 2 891 021 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.02.2020 Bulletin 2020/09

(21)Application number: 13832491.8

(22)Date of filing:  23.08.2013
(51)International Patent Classification (IPC): 
G01F 23/38(2006.01)
H01H 35/18(2006.01)
G05D 9/12(2006.01)
G01D 9/12(2006.01)
H01H 36/02(2006.01)
H03K 17/97(2006.01)
(86)International application number:
PCT/CN2013/082178
(87)International publication number:
WO 2014/032547 (06.03.2014 Gazette  2014/10)

(54)

LIQUID LEVEL DETECTOR

FLÜSSIGKEITSSTANDDETEKTOR

DÉTECTEUR DE NIVEAU DE LIQUIDE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 30.08.2012 CN 201220450391 U

(43)Date of publication of application:
08.07.2015 Bulletin 2015/28

(73)Proprietor: Emerson Machinery Equipment (Shenzhen) Co., Ltd
Shenzhen, Guangdong 518101 (CN)

(72)Inventor:
  • YUAN, Bo
    Marshalltown Iowa 50158 (US)

(74)Representative: Foot, Paul Matthew James 
Withers & Rogers LLP 4 More London Riverside
London Greater London SE1 2AU
London Greater London SE1 2AU (GB)


(56)References cited: : 
CN-A- 1 741 222
CN-A- 101 769 779
CN-U- 202 929 493
CN-Y- 2 847 507
DE-A1- 2 627 865
RO-B1- 119 797
US-A- 3 161 055
US-B1- 7 204 143
CN-A- 101 604 168
CN-U- 201 893 289
CN-Y- 2 249 422
CN-Y- 201 222 722
GB-A- 548 466
SU-A1- 1 147 929
US-B1- 6 354 323
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE DISCLOSURE



    [0001] This disclosure relates generally to liquid level control devices and, more particularly, to liquid level detectors.

    BACKGROUND



    [0002] During natural gas extraction, a mixture of liquids and gases is pumped into a separator, which separates the liquids from the gases. The liquid level in the separator must be detected and controlled. If the liquid drops below a certain level in the separator, gases may enter storage tanks intended solely for liquids, and if the liquid exceeds a certain level in the separator, liquids may enter piping intended solely for gases. Thus, detecting and controlling the liquid level in a separator is critical to the proper operation of the separator.

    [0003] Traditionally, liquid level detectors used during natural gas extraction are powered by the pressure of the natural gases being extracted from the well site. These pneumatic liquid level detectors cause natural gas that would otherwise be sold to vent into the atmosphere. Also, the reliability of pneumatic liquid level detectors decreases when particulates are present in the gas and/or when the gas contains moisture. Patent publication US 7,204,143-B1 describes a a liquid level detector with a pneumatic switch.

    SUMMARY



    [0004] An aspect of the invention relates to a liquid level detector. The liquid level detector includes a housing and an arm extending through the housing. The arm is coupled to a displacer positioned outside the housing. The arm pivots when the displacer moves in response to a change in liquid level such that the end of the arm disposed outside the housing moves in the direction of the change in liquid level and the end of the arm disposed inside the housing moves in the opposite direction to the change in direction of the change in liquid level. A plurality of operatively coupled levers is disposed in the housing. A first one of the levers is operatively coupled to the arm and a second one of the levers is operatively coupled to the first lever. Movement of the arm moves the first lever to cause the second lever to open or close a switch without contacting the switch when a liquid reaches a predetermined level. A linkage is adjustably coupled to the second lever and the position of the linkage affects the predetermined level.

    [0005] In an embodiment, the first one of the levers moves in a first rotational direction and the second one of the levers moves in a second rotational direction opposite the first rotational direction.

    [0006] In an embodiment, the second lever defines an elongated aperture through which the linkage is adjustably coupled, and wherein the linkage may be moved to different positions along the second lever to contact the first lever at different positions along the first lever.

    [0007] In an embodiment, the spring is coupled to an adjustable spring seat to adjust a preload of the spring, and wherein the preload of the spring affects a magnitude of a movement of the arm in response to a change in the liquid level.

    [0008] In an embodiment, the second lever includes a ferrous material to open or close the switch.

    [0009] In an embodiment, the spring is coupled to an adjustable spring seat to adjust a preload of the spring, and wherein the preload of the spring affects a magnitude of a movement of the arm in response to a change in the liquid level.

    [0010] Another embodiment of a liquid level detector includes means for amplifying a movement of means for displacing a liquid. The means for amplifying has means for actuating a switch without contacting the switch when the liquid reaches a predetermined level.

    [0011] In an embodiment, the means for amplifying includes means for adjusting the means for amplifying to adjust the predetermined level.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0012] 

    FIG. 1 depicts an example liquid level detector.

    FIG. 2 depicts an example lever assembly that may be used to implement the example liquid level detector of FIG. 1.


    DETAILED DESCRIPTION



    [0013] While the following example liquid level detectors are described in conjunction with natural gas well sites, the example liquid level detectors described herein may also be used to control liquid levels for any other application.

    [0014] Natural gas is extracted from subterranean formations in a mixture of gases, liquids, and mud. Separators are often used to separate the natural gas from the mixture extracted from the formations. A separator is a tank with separate chambers (e.g., collection chambers) for liquids and gases. In many instances, the separator enables liquids to collect at the bottom of the separator in a liquid collection chamber and enables gases to collect at the top of the separator in a gas collection chamber. Once separated, the liquids and gases are piped to separate storage tanks.

    [0015] A dump valve in a liquid collection chamber is typically controlled to maintain the liquid between predetermined upper and lower levels. If the liquid drops below the predetermined lower level, gases may enter the liquid piping and vent out of the liquid storage tanks, possibly resulting in environmental hazards and government fines. If the liquid rises above the predetermined upper level, liquids may enter the gas piping, potentially blocking or harming the piping. Therefore, maintaining the liquid between the predetermined levels in the liquid collection chamber by controlling the dump valve is an important aspect of operating a separator at a natural gas well site.

    [0016] Liquid level detectors are often used to send instructions (e.g., a signal) to a controller that the liquid has reached a predetermined level. If the liquid reaches a predetermined upper level, the controller may instruct an actuator to open a dump valve, which releases liquid from the liquid collection chamber to lower the liquid level. If the liquid reaches a predetermined lower level, the controller may instruct the actuator to close the dump valve. Traditionally, liquid level detectors used during the extraction of natural gases are pneumatically powered by the pressure of the natural gases extracted from the well site. In operation, a pneumatic liquid level detector delivers a pneumatic output signal to an actuator, which vents the natural gas into the atmosphere, thereby wasting natural gas that would otherwise be sold. Also, the reliability of pneumatic liquid level detectors decreases when the particulates are present in the gas and/or when the gas contains moisture.

    [0017] The example liquid level detectors described herein do not require pneumatic or electrical power. In general, example liquid level detectors described herein open or close a switch (e.g., a TopWorx® GO Switch, which is a leverless limit switch, or a switch including an inductive proximity sensor) when a liquid reaches a predetermined level. An example liquid level detector described herein includes a housing and an arm extending through the housing. The arm may be coupled to a displacer that is at least partially submerged in liquid or fully submerged at the interface of two liquids of different specific gravities. In operation, the displacer moves in response to a change in the liquid level, and the movement of the displacer moves the arm. A lever assembly is coupled to the arm and the housing. Movement of the arm causes the lever assembly to open and close a switch without contacting the switch via a magnetic field when the liquid reaches a predetermined level.

    [0018] An example lever assembly may include a first lever and a second lever. The first lever is operatively coupled to the arm and the second lever. Movement of the arm moves the first lever to cause the second lever to open or close the switch without contacting the switch via the magnetic field when the liquid reaches a predetermined level. The switch may be wired directly to an actuator coupled to a dump valve so that when the switch is closed, the switch signals the actuator to open or close the dump valve. Thus, the example liquid level detectors described herein may be used to maintain a liquid between predetermined levels.

    [0019] The example liquid level detectors described herein do not require pneumatic power and do not cause natural gas to vent into the atmosphere. Further, the reliability of the liquid level detectors described herein is not affected by the quality of the natural gas extracted from the well site, and the liquid level detectors described herein do not require electrical power to actuate a switch.

    [0020] FIG. 1 depicts an example liquid level detector 100, which includes a housing 102 and an arm 104 extending through the housing 102. A displacer 106 is coupled to the arm 104 and, in use, may be at least partially submerged in a liquid or fully submerged between two liquids of different specific gravities. The arm 104 is disposed within a trunnion 108, which enables the arm 104 to pivot when the displacer 106 moves in response to a change in the liquid level. As described in greater detail below, movement of the arm 104 causes a lever assembly 200 (FIG. 2) disposed in the housing 102 to open or close a switch 202 (FIG. 2) without contacting the switch 202 (e.g., via a magnetic field) when the liquid reaches a predetermined level.

    [0021] FIG. 2 depicts the example lever assembly 200 that may be used to implement the example liquid level detector 100 of FIG. 1. A midpoint of a first lever 204 is pivotably coupled to a first shoulder screw 206 mounted to the housing 102, and an upper surface or edge 207 adjacent to an end 209 of the first lever 204 contacts the arm 104. An end 211 of a second lever 208 is also pivotably coupled to the housing 102 via a second shoulder screw 213. A linkage 210 having a curved tip 212 is adjustably coupled to the second lever 208 to contact an upper surface 215 of the first lever 204 to enable the second lever 208 to move in response to the movement of the first lever 204. The second lever 208 also defines an elongated aperture 214. A fastener 216 (e.g., a bolt, knob, or any suitable fastener) is inserted through the aperture 214 to thread into the linkage 210 to secure the linkage 210 to the second lever 208. The linkage 210 may be moved along the aperture 214 to contact the first lever 204 at different positions along the first lever 204 to change the amount the second lever 208 moves in response to a given amount of movement of the first arm 204. Markings or graduations 218 are provided above the aperture 214 on a face 219 of the second lever 208 to provide a visual reference for the position of the linkage 210 along the aperture 214. As discussed in greater detail below, adjusting the position of the linkage 210 changes the sensitivity of the lever assembly 200 to the movement of the arm 104, thus affecting the liquid level at which the second lever 208 opens or closes the switch 202.

    [0022] The second lever 208 also includes a trigger 220 to open or close the switch 202. The trigger 220 is adjustably coupled to a lip 222 extending perpendicularly from the face 219 of the second lever 208. The trigger 220 includes a threaded rod 224 extending from a ferrous head 226. The lip 222 defines an aperture (not shown) to receive the threaded rod 224 of the trigger 220. A locknut 228 is threaded onto the threaded rod 224 and tightened against the lip 222 to secure the trigger 220 to the lip 222 such that the ferrous head 226 of the trigger 220 is disposed beneath the lip 222. The switch 202 (e.g., a TopWorx® GO Switch, which is a leverless limit switch, or a switch including an inductive proximity sensor) is disposed in the housing 102 beneath the head 226 of the trigger 220 in the orientation of FIG. 2. The trigger 220 may be moved toward or away from the switch 202 by adjusting the position of the locknut 228 on the threaded rod 224 of the trigger 220. The switch 202 provides a magnetic field, which creates attractive forces between the ferrous head 226 of the trigger 220 and the switch 202. As described in greater detail below, adjusting the distance between the head 226 of the trigger 220 and the switch 202 changes the liquid level differential needed to move the arm 104.

    [0023] Also shown in FIG. 2, the arm 104 is coupled to a spring 230 via a hook 232 extending from the coil of the spring 230. The hook 232 rests in a circumferential groove (not shown) on the arm 104, thereby biasing the arm 104 downward in the orientation of FIG. 2. The spring 230 does not contact the first lever 204. The spring 230 biases the arm 104 downward in the orientation of FIG. 2 to apply a force to the first lever 204 to oppose the attractive forces between the switch 202 and the head 226 of the trigger 220 and maintain a gap between the head 226 of the trigger 220 and the switch 202. The spring 230 is coupled to an adjustable spring seat 234 to adjust a preload of the spring 230. As described in greater detail below, the preload of the spring 230 also affects the liquid level differential needed to move the arm 104.

    [0024] A stop 236 is disposed above the second lever 208 to limit the upward movement of the second lever 208, and the shoulder screw 206 supporting the first lever 204 is disposed below the second lever 208 to limit the downward movement of the second lever 208. Thus, the positions of the stop 236 and the shoulder screw 206 affect the maximum and minimum size of the gap, respectively, between the head 226 of the trigger 220 and the switch 202 during the operation of the example liquid level detector 100. As described in greater detail below, the trigger 220 actuates the switch 202 without contacting the switch via a magnetic field when the head 226 of the trigger 220 moves closer to or farther away from the switch 202.

    [0025] Generally, in operation, the displacer 106 moves in response to a change in the liquid level and causes the arm 104 to move. The movement of the arm 104 causes the lever assembly 200 to open or close the switch 202 via a magnetic field when the liquid reaches a predetermined level. Thus, no physical contact between the lever assembly 200 and the switch 202 is needed to actuate the switch 202.

    [0026] More specifically, the geometry of the arm 104 and the lever assembly 200 amplify the movement of the displacer 106 and convey that movement to the trigger 220 to open or close the switch 202. For example, a rise in the liquid level increases the buoyant force on the displacer 106, which causes the end of the arm 104 disposed outside the housing 102 to move upward when the force on the arm 104 overcomes the attractive forces between the trigger 220 and the switch 202. As a result, the end of the arm 104 disposed inside the housing 102 moves downward in the orientation of FIG. 2. The downward movement of the end of the arm 104 disposed inside the housing 102 causes the first lever 204 to move in a counterclockwise direction in the view depicted in FIG. 2. The counterclockwise movement of the first lever 204 causes the second lever 208 to rotate in a clockwise direction. The position of the linkage 210 along the aperture 214 determines the amount of rotation of the second lever 208 relative to the amount of rotation of the first lever 204. In the orientation of FIG. 2, the trigger 220 moves away from the switch 202 as the second lever 208 rotates in a clockwise direction.

    [0027] In the example shown in FIG. 2, the switch 202 may be wired to be in a normally open position and to actuate to a closed position when the trigger 220 moves away from the switch 202. Thus, when the liquid reaches the predetermined upper level and the trigger 220 has moved a certain distance away from the switch 202, the attractive forces between the trigger 220 and the switch 202 cause the switch 202 to actuate to the closed position, thereby sending a signal to an actuator (not shown) to open a dump valve (not shown) to lower the liquid level. Once the switch 202 is in the closed position, the magnetic field provided by the switch 202 prevents the switch 202 from resetting until the liquid returns to a level below the predetermined upper level. If the liquid continues to rise beyond the predetermined upper level, the second lever 208 engages the stop 236, which limits the further movement of the second lever 208.

    [0028] The example liquid level detectors described herein do not use electrical power to actuate the switch 202. Also, the example liquid level detectors described herein do not utilize pneumatic power and, thus, are not affected by the quality of the natural gases extracted from the well sites. In addition, the example liquid level detectors described herein do not cause wasteful natural gas venting.

    [0029] The sensitivity of the lever assembly 200 to the movement of the arm 104 may be adjusted by moving the linkage 210 along the aperture 214 to contact the first lever 204 at different positions along the first lever 204. The position of the linkage 210 affects the movement of the trigger 220 relative to the amplification of the movement of the displacer 106 by determining the rotation of the second lever 208 relative to the rotation of the first lever 204. Consequently, the liquid level differential required to actuate the switch 202 can be increased by moving the linkage 210 towards the arm 104 and decreased by moving the linkage 210 away from the arm 104, thereby making the example liquid level detector 100 less sensitive or more sensitive, respectively, to changes in the liquid level and changing the predetermined level.

    [0030] The sensitivity of the arm 104 to changes in the liquid level is also adjustable. The magnitude of the movement of the arm 104 in response to a change in the liquid level is affected by two preoperative conditions: the preload of the spring 230 and the distance between the trigger 220 and the switch 202. First, the preload of the spring 230 may be adjusted by raising or lowering the adjustable spring seat 234. The force of the spring 208 on the arm 104 enables the arm 104 overcome the attractive forces between the trigger 220 and the switch 202. Thus, increasing the preload of the spring 230 lessens the liquid level differential needed to move the end of the arm 104 disposed outside the housing 102 upward in the orientation of FIG. 2.

    [0031] Second, the distance between the trigger 220 and the switch 202 may be adjusted by repositioning the locknut 228 on the threaded rod 224 of the trigger 220, thus moving the trigger 220 closer to or farther from the switch 202. When the trigger 220 is moved closer to the switch 202, the magnitude of the movement of the arm 104 in response to a change in the liquid level decreases because the arm 104 must overcome a greater attractive force between the trigger 220 and the switch 202 to cause the first lever 204 to move the second lever 208. Conversely, the magnitude of the movement of the arm 104 in response to a change in the liquid level will increase when the trigger 220 is moved farther away from the switch 202.

    [0032] Although certain example apparatus have been described herein, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers all apparatus fairly falling within the scope of the claims of this patent.


    Claims

    1. A liquid level detector (100), comprising:

    a housing (102);

    an arm (104) extending through the housing and coupled to a displacer (106) positioned outside the housing, wherein the arm (104) pivots when the displacer (106) moves in response to a change in liquid level such that the end of the arm disposed outside the housing moves in the direction of the change in liquid level and the end of the arm disposed inside the housing moves in the opposite direction to the direction of the change in liquid level; and

    a plurality of operatively coupled levers disposed in the housing, wherein a first one of the levers (204) is operatively coupled to the arm (104) and a second one of the levers (208) is operatively coupled to the first lever (204), and wherein movement of the arm (104) moves the first lever (204) to cause the second lever (208) to open or close a switch (202), characterised in that the second lever (208) is arranged to open or close the switch (202) without contacting the switch when a liquid reaches a predetermined level; and further comprising

    a linkage (210) adjustably coupled to the second lever (208), wherein the linkage (210) may be moved to different positions along the second lever to contact the first lever (204) at different positions along the first lever and the position of the linkage (210) affects the predetermined level.


     
    2. The liquid level detector of claim 1, wherein the first one of the levers (204) moves in a first rotational direction and the second one of the levers (208) moves in a second rotational direction opposite the first rotational direction.
     
    3. The liquid level detector as defined in any of the preceding claims, wherein the second lever (208) defines an elongated aperture (214) through which the linkage (210) is adjustably coupled, and wherein the linkage may be moved to different positions along the elongated aperture.
     
    4. The liquid level detector as defined in any of the preceding claims, further comprising a spring (230) biasing the arm (104).
     
    5. The liquid level detector of claim 4, wherein the spring (230) is coupled to an adjustable spring seat (234) to adjust a preload of the spring, and wherein the preload of the spring affects a magnitude of a movement of the arm (140) in response to a change in the liquid level.
     
    6. The liquid level detector as defined in any of the preceding claims, further comprising a stop (236) to limit movement of the second lever (208).
     
    7. The liquid level detector as defined in any of the preceding claims, wherein the second lever (208) includes a ferrous material to open or close the switch (202).
     
    8. The liquid level detector as defined in any of the preceding claims, wherein the switch (202) is a leverless limit switch.
     
    9. The liquid level detector as defined in any of the preceding claims, wherein the switch (202) comprises an inductive proximity sensor.
     
    10. The liquid level detector as defined in any of the preceding claims, wherein movement of the first lever (204) causes the second lever (204) to open or close the switch via a magnetic field when the liquid reaches the predetermined level.
     


    Ansprüche

    1. Flüssigkeitsstanddetektor (100), umfassend:

    - ein Gehäuse (102),

    - einen durch das Gehäuse verlaufenden und mit einem außerhalb des Gehäuses positionierten Verdränger (106) verbundenen Arm (104), wobei der Arm (104) geschwenkt wird, wenn der Verdränger (106) infolge einer Veränderung des Flüssigkeitsstands bewegt wird, sodass das außerhalb des Gehäuses angebrachte Ende des Arms sich in der Richtung der Veränderung des Flüssigkeitsstands bewegt und das sich im Gehäuse befindende Ende des Arms sich in entgegengesetzter Richtung zur Richtung der Änderung des Flüssigkeitsstands bewegt, und

    - eine Mehrzahl von betriebsfähig miteinander verbundenen Hebeln, die im Gehäuse angebracht sind, wobei ein erster der Hebel (204) betriebsfähig mit dem Arm (104) und ein zweiter der Hebel (208) betriebsfähig mit dem ersten Hebel (204) verbunden ist, und wobei eine Bewegung des Arms (104) den ersten Hebel (204) bewegt, wodurch der zweite Hebel (208) einen Schalter (202) öffnet oder schließt,

    - dadurch gekennzeichnet, dass der zweite Hebel (208) zum Öffnen oder Schließen des Schalters (202) eingerichtet ist, ohne den Schalter zu berühren, wenn eine Flüssigkeit einen vorgegebenen Stand erreicht, und

    - ferner ein mit dem zweiten Hebel (208) einstellbar verbundenes Verbindungselement (210) umfassend, wobei das Verbindungselement (210) längs des zweiten Hebels an unterschiedliche Positionen bewegt werden kann, um den ersten Hebel (204) an unterschiedlichen Stellen längs des ersten Hebels zu berühren und die Position des Verbindungselements (210) den vorgegebenen Flüssigkeitsstands beeinflusst.


     
    2. Flüssigkeitsstanddetektor nach Anspruch 1, wobei der erste der Hebel (204) sich in eine erste Drehrichtung und der zweite der Hebel (208) sich in eine zweite Drehrichtung entgegengesetzt zur ersten Drehrichtung bewegt.
     
    3. Flüssigkeitsstanddetektor nach einem der vorangehenden Ansprüche, wobei der zweite Hebel (208) eine längliche Öffnung (214) begrenzt, durch welche das Verbindungselement (210) einstellbar angeschlossen ist, und wobei das Verbindungselement an unterschiedliche Positionen längs der länglichen Öffnung bewegt werden kann.
     
    4. Flüssigkeitsstanddetektor nach einem der vorangehenden Ansprüche, ferner eine Feder (230) umfassend, welche den Arm (104) vorbelastet.
     
    5. Flüssigkeitsstanddetektor nach Anspruch 4, wobei die Feder (230) an einen einstellbaren Federsitz (234) gekoppelt ist, um die Vorbelastung der Feder einzustellen und wobei die Vorbelastung der Feder das Ausmaß der Bewegung des Arms (140) infolge einer Änderung des Flüssigkeitsstands beeinflusst.
     
    6. Flüssigkeitsstanddetektor nach einem der vorangehenden Ansprüche, ferner einen Anschlag (236) zur Begrenzung der Bewegung des zweiten Hebels (208) umfassend.
     
    7. Flüssigkeitsstanddetektor nach einem der vorangehenden Ansprüche, wobei der zweite Hebel (208) ein Eisenmetall zum Öffnen oder Schließen des Schalters (202) umfasst.
     
    8. Flüssigkeitsstanddetektor nach einem der vorangehenden Ansprüche, wobei der Schalter (202) ein hebelloser Grenzschalter ist.
     
    9. Flüssigkeitsstanddetektor nach einem der vorangehenden Ansprüche, wobei der Schalter (202) einen induktiven Näherungssensor umfasst.
     
    10. Flüssigkeitsstanddetektor nach einem der vorangehenden Ansprüche, wobei die Bewegung des ersten Hebels (204) bewirkt, dass der zweite Hebel (204) den Schalter mittels eines Magnetfelds öffnet oder schließt, wenn die Flüssigkeit den vorgegebenen Stand erreicht.
     


    Revendications

    1. Détecteur de niveau de liquide (100) comprenant :

    un boîtier (102),

    un bras (104) couplé, traversant le boîtier, un organe mobile (106) situé à l'extérieur du boîtier, le bras (104) pivotant lorsque l'organe mobile (106) se déplace en réponse à une variation niveau du liquide de sorte que l'extrémité du bras à l'extérieur du boîtier se déplace dans la direction de changement du niveau de liquide et l'extrémité du bras à l'intérieur du boîtier se déplace dans la direction opposée au sens de variation du niveau de liquide, et

    un ensemble de leviers couplés de façon à coopérer, ces leviers étant logés dans le boîtier, un premier levier (204) étant couplé au bras (104) et un second levier (208) étant couplé de façon à coopérer avec le premier levier (204) et le mouvement du bras (104) déplace le premier levier (204) pour que le second levier (208) ouvre ou ferme un commutateur (202),

    détecteur caractérisé que ce que

    le second levier (208) est prévu pour ouvrir ou fermer le commutateur (202) sans toucher le commutateur lorsque le liquide atteint un niveau prédéterminé, et il comprend en outre :
    une liaison (210) couplée de manière réglable au second levier (208), cette liaison (210) pouvant être déplacée dans différentes positions le long du second levier pour rencontrer le premier levier (204) dans différentes positions le long du premier levier et la position de la liaison (210) affectant le niveau prédéfini.


     
    2. Détecteur de niveau de liquide selon la revendication 1,
    dans lequel le premier levier (204) se déplace dans un premier sens de rotation et le second des leviers (208) se déplace dans un second sens de rotation, opposé au premier sens de rotation.
     
    3. Détecteur de niveau de liquide tel que défini dans l'une quelconque des revendications précédentes,
    dans lequel le second levier (208) définit une ouverture allongée (214) à travers laquelle la liaison (210) est couplée de manière réglable et la liaison peut être déplacée dans différentes positions le long de l'ouverture allongée.
     
    4. Détecteur de niveau de liquide tel que défini dans l'une quelconques des revendications précédentes,
    comprenant en outre un ressort (230) sollicitant le bras (104).
     
    5. Détecteur de niveau de liquide selon la revendication 4,
    dans lequel le ressort (230) est couplé pour régler un siège de ressort (234) pour régler la précontrainte du ressort et cette précontrainte du ressort affecte l'amplitude du mouvement du bras (140) en réponse à une variation du niveau liquide.
     
    6. Détecteur de niveau de liquide tel que défini dans l'une quelconques des revendications précédentes,
    comprenant en outre une butée (236) pour limiter le mouvement du second levier (208).
     
    7. Détecteur de niveau de liquide tel que défini dans l'une quelconques des revendications précédentes,
    dans lequel le second levier (208) comporte une matière ferreuse pour ouvrir ou fermer le commutateur (202).
     
    8. Détecteur de niveau de liquide tel que défini dans l'une quelconques des revendications précédentes,
    dans lequel le commutateur (202) est un commutateur de fin de course sans levier.
     
    9. Détecteur de niveau de liquide tel que défini dans l'une quelconques des revendications précédentes,
    dans lequel le commutateur (202) comporte un capteur inductif de proximité.
     
    10. Détecteur de niveau de liquide tel que défini dans l'une quelconques des revendications précédentes,
    dans lequel le mouvement du premier levier (204) fait que le second levier (204) ouvre ou ferme le commutateur par l'intermédiaire d'un champ magnétique lorsque le liquide atteint le niveau prédéfini.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description