(11)EP 2 891 282 B1


(45)Mention of the grant of the patent:
09.10.2019 Bulletin 2019/41

(21)Application number: 13751050.9

(22)Date of filing:  13.08.2013
(51)Int. Cl.: 
H04L 12/715  (2013.01)
H04L 12/721  (2013.01)
H04L 12/931  (2013.01)
(86)International application number:
(87)International publication number:
WO 2014/035665 (06.03.2014 Gazette  2014/10)





(84)Designated Contracting States:

(30)Priority: 28.08.2012 US 201261693996 P
15.03.2013 US 201313841162

(43)Date of publication of application:
08.07.2015 Bulletin 2015/28

(73)Proprietor: Alcatel Lucent
91620 Nozay (FR)

  • BALUS, Florin, S.
    Mountain View, CA 94043-5219 (US)
  • BODDAPATI, Suresh
    Mountain View, CA 94043-5219 (US)
  • KHANDEKAR, Sunil, S.
    Mountain View, CA 94043-5219 (US)
  • STILIADIS, Dimitrios
    Mountain View, CA 94043-5219 (US)

(74)Representative: Louis Pöhlau Lohrentz 
Patentanwälte Postfach 30 55
90014 Nürnberg
90014 Nürnberg (DE)

(56)References cited: : 
US-A1- 2010 046 531
US-A1- 2011 261 828
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).



    [0001] The invention relates to the field of communication networks and secure data centers connected thereby.


    [0002] Data Center (DC) architecture generally consists of a large number of compute and storage resources that are interconnected through a scalable Layer-2 or Layer-3 infrastructure. In addition to this networking infrastructure running on hardware devices the DC network includes software networking components (vswitches) running on general purpose compute, and dedicated hardware appliances that supply specific network services such as load balancers, ADCs, firewalls, IPS/IDS systems etc. The DC infrastructure can be owned by an Enterprise or by a service provider (referred as Cloud Service Provider or CSP), and shared by a number of tenants. Compute and storage infrastructure are virtualized in order to allow different tenants to share the same resources. Each tenant can dynamically add/remove resources from the global pool to/from its individual service.

    [0003] DC network must be able to dynamically assign resources to each tenant while maintaining strict performance isolation between different tenants (e.g., different companies). Furthermore, tenants can be sub-divided into subtenants (e.g., different corporate departments) with strict isolation between them as well. For example, an enterprise requires resources in a CSP DC that are partitioned between different departments.

    [0004] Data Center (DC) network infrastructure is designed to provide connectivity service between the outside world and different compute and storage resources, such as IP hosts (e.g. VMs on server blades or bare metal servers), associated storage and service appliances (FW, LB, NAT). From a basic connectivity perspective this is usually implemented using a set of VLANs (L2) interconnected via IP routers (L3). As Cloud Providers are trying to increase their revenues by expanding their scope to address more and more customers, there is a need to move away from basic VLANs and shared IP routing context to a more scalable architecture. US 2010/0046531 represents a relevant document in the art.


    [0005] Various deficiencies in the prior art are addressed by systems, methods, architectures and/or apparatus for providing a distributed Virtual Routing and Switching (dVRS) solution at a data center (DC) by logically representing the networking resources of the data center as a plurality virtual nodes, each virtual node comprising an IP infrastructure based on a physical network node and a plurality of virtual switches, each virtual switch including a VRS instance linked to one or more VRS instances at other virtual switches via a VLAN to provide thereby a virtual service, wherein the physical network node performs control plane processing and provides to each virtual switch the specific routing information associated with the local services of that virtual switch. Thus, from a data plane perspective the virtual switches route and/or switch traffic directly to tunnels pointing to remote VRS instances without involving the Controller in the forwarding of the packets.

    [0006] For example, a method according to claim 1 for providing virtualized services at a data center (DC) is disclosed.


    [0007] The teachings herein can be readily understood by considering the following detailed description in conjunction with the accompanying drawings, in which:

    FIG. 1 depicts a high-level block diagram of a system benefiting from various embodiments;

    FIG. 2 depicts a high-level block diagram of an embodiment of virtual routing and switching (VRS) and a virtual node;

    FIG. 3 graphically depicts an exemplary mapping of a Tenant L2 and L3 service topology to a dVRS connected to an IP VPN service on DC GW PEs according to an embodiment;

    FIG. 4 graphically depicts dVRS forwarding and tunneling details for a VRS instance according to an embodiment;

    FIG. 5 graphically depicts a high level network view of the dVRS forwarding and tunneling of FIG. 4;

    FIG. 6 depicts a flow diagram of a method for enabling dVRS solution according to an embodiment;

    FIG. 7 depicts a high-level block diagram of a computing device suitable for use in performing the functions described herein.

    [0008] To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures.


    [0009] The invention will be discussed within the context of systems, methods, architectures and/or apparatus providing distributed Virtual Routing and Switching (dVRS) with L2/L3 multi-tenancy and generic tunneling. However, it will be appreciated by those skilled in the art that the invention has broader applicability than described herein with respect to the various embodiments.

    [0010] In addition, while the various embodiments are discussed within the context of specific equipment configurations, protocols, mechanisms and the like, more and different equipment configurations, protocols, mechanisms and the like are also contemplated by the inventors as being applicable for use within the various embodiments. For example, various embodiments will be described within the context of a data center (DC) equipment rack comprising a centralized controller running on a VM or in the ToR control plane module and one or more physical servers or server elements.

    [0011] Generally speaking, each of the physical servers or server elements comprises a host machine upon which virtual services utilizing compute/storage resources are instantiated by a hypervisor or virtual machine monitor (VMM) running on, or associated with, the server. The hypervisor comprises a software, hardware or combination of software and hardware adapted to instantiate, terminate and otherwise control one or more virtualized service on a server. In various embodiments, the server associated with a single rack are collectively operative to support the instantiation of, illustratively, 40 virtual switches (VSWs). It will be appreciated that more or fewer servers, instantiated switches and the like may be provided within a particular equipment rack or cluster within the DC. As such, the specification figures at times indicates that 40 communication paths are being utilized for a particular function. As will be readily appreciated, more or fewer than 40 communication paths may be used, more or fewer VSWs be used and so on.

    [0012] Virtualized services as discussed herein generally described any type of virtualized compute and/or storage resources capable of being provided to a tenant. Moreover, virtualized services also include access to non-virtual appliances or other devices using virtualized compute/storage resources, data center network infrastructure and so on.

    [0013] FIG. 1 depicts a high-level block diagram of a system benefiting from various embodiments. Specifically, FIG. 1 depicts a system 100 comprising a plurality of data centers (DC) 101-1 through 101-X (collectively data centers 101) operative to provide compute and storage resources to numerous customers having application requirements at residential and/or enterprise sites 105 via one or more networks 102.

    [0014] The customers having application requirements at residential and/or enterprise sites 105 interact with the network 102 via any standard wireless or wireline access networks to enable local client devices (e.g., computers, mobile devices, set-top boxes (STB's), storage area network components, Customer Edge (CE) routers, access points and the like) to access virtualized compute and storage resources at one or more of the data centers 101.

    [0015] The networks 102 may comprise any of a plurality of available access network and/or core network topologies and protocols, alone or in any combination, such as Virtual Private Networks (VPNs), Long Term Evolution (LTE), Border Network Gateway (BNG), Internet networks and the like.

    [0016] The various embodiments will generally be described within the context of Multi-Protocol Label Switching (MPLS) networks implementing either IP VPN or VPLS (Virtual Private LAN Services) wherein various Layer 3 or Layer 2 services are emulated over an MPLS backbone by encapsulating the Protocol Data Units (PDU) and transmitting them over secure tunnel between provider edge (PE) nodes 108. Each of the PE nodes 108 may support multiple data centers 101. That is, the two PE nodes 108-1 and 108-2 depicted in FIG. 1 as communicating between networks 102 and DC 101-X may also be used to support a plurality of other data centers 101.

    [0017] The data center 101 (illustratively DC 101-X) is depicted as comprising a plurality of core switches 110, a plurality of service appliances 120, a first resource cluster 130, a second resource cluster 140, and a third resource cluster 150.

    [0018] Each of, illustratively, two PE nodes 108-1 and 108-2 is connected to each of the illustratively, two core switches 110-1 and 110-2. More or fewer PE nodes 108 and/or core switches 110 may be used; redundant or backup capability is typically desired. The PE routers 108 interconnect the DC 101 with the networks 102 and, thereby, other DCs 101 and end-users 105. The DC 101 is generally organized in cells, where each cell can support thousands of servers and virtual machines.

    [0019] Each of the core switches 110-1 and 110-2 is associated with a respective (optional) service appliance 120-1 and 120-2. The service appliances 120 are used to provide higher layer networking functions such as providing firewalls, performing load balancing tasks and so on.

    [0020] The resource clusters 130-150 are depicted as compute and/or storage resources organized as racks of servers implemented either by multi-server blade chassis or individual servers. Each rack holds a number of servers (depending on the architecture), and each server can support a number of processors. A set of Ethernet connections connect the servers with either a Top-of-Rack (ToR) or End-of-Rack (EoR) switch. While only three resource clusters 130-150 are shown herein, hundreds or thousands of resource clusters may be used. Moreover, the configuration of the depicted resource clusters is for illustrative purposes only; many more and varied resource cluster configurations are known to those skilled in the art. In addition, specific (i.e., non-clustered) resources may also be used to provide compute and/or storage resources within the context of DC 101.

    [0021] Exemplary resource cluster 130 is depicted as including a ToR switch 131 in communication with a mass storage device(s) or storage area network (SAN) 133, as well as a plurality of server blades 135 adapted to support, illustratively, virtual machines (VMs). Exemplary resource cluster 140 is depicted as including a EoR switch 141 in communication with a plurality of discrete servers 145. Exemplary resource cluster 150 is depicted as including a ToR switch 151 in communication with a plurality of virtual switches 155 adapted to support, illustratively, the VM-based appliances.

    [0022] In various embodiments, the ToR/EoR switches are connected directly to the PE routers 108. In various embodiments, the core or aggregation switches 120 are used to connect the ToR/EoR switches to the PE routers 108. In various embodiments, the core or aggregation switches 120 are used to interconnect the ToR/EoR switches. In various embodiments, direct connections may be made between some or all of the ToR/EoR switches.

    [0023] Thus, a rack having 41 network elements (ToR switch plus 40 virtual switches) is represented as a single network element; namely, the ToR switch. As will be discussed in more detail below, a VirtualSwitch Control Module (VCM) running in the ToR switch gathers connectivity, routing, reachability and other control plane information from other routers and network elements inside and outside the DC. The VCM may run also on a VM located in a regular server. The VCM then programs each of the virtual switches with the specific routing information relevant to the virtual machines (VMs) associated with that virtual switch. This programming may be performed by updating L2 and/or L3 forwarding tables or other data structures within the virtual switches. In this manner, traffic received at a virtual switch is propagated from a virtual switch toward an appropriate next hop over a tunnel between the source hypervisor and destination hypervisor using an IP tunnel. The ToR switch performs just tunnel forwarding without being aware of the service addressing.

    [0024] Generally speaking, the "end-users/customer edge equivalents" for the internal DC network comprise either VM or server blade hosts, service appliances and storage areas. Similarly, the data center gateway devices (e.g., PE servers 108) offer connectivity to the outside world; namely, Internet, VPNs (IP VPNs/VPLS/VPWS), other DC locations, Enterprise private network or (residential) subscriber deployments (BNG, Wireless (LTE etc), Cable) and so on.

    Distributed Virtual Routing and Switching (dVRS)

    [0025] Various embodiments operate to implement a distributed Virtual Routing and Switching (dVRS) solution adapted to improving data center management and service delivery capabilities. Briefly, the dVRS solution provides one or more of the following benefits or features: (1) Simplified service delivery; namely, a single solution for L2, L3 and/or L4 multi-tenancy; (2) Optimized solution for intra-DC traffic, such as by VXLAN or NVGRE service encapsulation over IP tunneling and for inter-DC traffic, such as by VPN service encapsulation; (3) Interoperable with Internet/IP VPN gateways, such as DC GWs from ALU (e.g., Alcatel-Lucent's 7750 Service Router), Cisco, Juniper etc.; (4) May use standard IP (GRE) or MPLS tunneling, standard BGP and IGP control plane; (5) Scalable Multi-tenancy supporting 100K+ tenants; (6) Intra-DC (East-West) traffic may avoid transit of DC GW routers/PEs; (7) Avoids traffic tromboning and triangular routing by providing to every Vswitch 5-tuple flow information required to perform optimized traffic steering; and (8) Provides a reliable solution for VM Mobility: scalable auto-move of service connectivity tracking the VM events for Intra-DC and Inter-DC moves.

    [0026] Generally speaking, a dVRS solution according to the various embodiments comprises a collection of Virtual Routing and Switching (VRS) instances running in each of a plurality of participating virtual nodes. The VRS instances may perform either L2 and/or L3 forwarding. They are used to handle intra-DC traffic or to send external traffic directly to the DC GWs, such as DC GWs using VPN Routing and Forwarding (VRF) tables.

    [0027] Each virtual node may be formed using a controller (implementing the control and management plane functions) and various vSwitches implementing the forwarding function which interconnects compute resources (VMs) between themselves and with the external domains; these and other embodiments may be modified to utilize other forwarding elements (ToR GW instead of Vswitches) and attached devices (for example service appliance, bare metal servers instead of VMs).

    Virtual Nodes

    [0028] FIG. 2 depicts a high-level block diagram of an embodiment of a virtual routing and switching (VRS) element. In particular, FIG. 2 depicts a plurality of virtual nodes 201 in communication with one or more data center gateway devices (DC GWs) 108 via a data center IP backbone (e.g., IGP, MP-BGP) supported by various core nodes, routers and the like (e.g., core switches, ToR/EoR switches and the like).

    [0029] A virtual node is formed utilizing the physical resources associated with one or more resource clusters such as described above with respect to FIG. 1.

    [0030] Virtual Node (VN) 201 comprises an IP infrastructure implemented on DC device such as a ToR (or EoR) 210 in communication with a plurality of virtual switches (VSWs) 220-1 through 220-n, instantiated on one or more server elements, such as discrete servers, server blades and the like.

    [0031] The ToR comprises a physical device providing, illustratively, a high-density 10G/40G/100G Ethernet aggregation solution. The ToR includes a Control Plane Interaction Module (CPIM) 212 and a VirtualSwitch Control Module (VCM) 214. The same modules may run in a centralized Controller running on a VM in a server. All the description for the ToR based modules applies also to the VM case.

    [0032] The CPIM 212 uses, illustratively, multiprotocol BGP (MP-BGP) to provide control plane interaction between the ToR and other switches, routers, network elements and the like within the DC and/or outside of the DC to gather thereby routing information, reachability information, connectivity information and other control plane information associated with the virtualized services supported by the VSWs 220.

    [0033] The virtual switches (VSWs) 220 are implemented via a hypervisor function executed at one or more physical host servers (not shown), such as when virtualized networking is deployed. Each VSW 220 is associated with a v-switch agent (VAg) that may be executed within the same hypervisor as the VSW 220 or via application programming interfaces (APIs) provided by the hypervisor.

    [0034] The VCM 214 controls all of the virtual switches (VSWs) 220 attached to the ToR 210. The VCM 214 may provide an interface that allows network administrators to monitor and modify the behavior of the corresponding VSWs 220. The VCM 214 also includes all necessary protocol capabilities that will enable the VSWs 220 and ToR 210 to operate as a virtual node.

    [0035] For example, the VSWs 220 perform the VRS tunnel encapsulation and handle the forwarding for every VRS instance related to that Vswitch. The forwarding is based on FIB entries downloaded via a communication path between the VCM 214 and the VAg 220 of the VSW 220.

    [0036] As depicted in FIG. 2, a CPIM 212 is using BGP to exchange route, reachability and other control plane information with other CPIM modules or with DC GW PEs. and learns about local information from VCM 214. The CPIM 212 module generates then a Routing Information Base and per tenant FIBs. VCM 214 uses then Open Flow to download forwarding tables (forwarding information bases) entries in the VSWs 220 for virtual services.

    [0037] A dVRS data plane VRS 221 is running in each participating VSW 220 (i.e., 220-1, 220-3...220-n) while the ToR 210 is performing only IP forwarding using the outer IP tunnel header.

    [0038] Every VRS instance performs IP and/or MAC lookup as the frames are arriving from the Vswitch uplink or from a local VM. If the lookup results in a next hop pointing to a core tunnel, various embodiments support multiple tunnel encapsulations to accommodate Intra-DC optimizations and DC gateway interoperability.

    [0039] FIG. 3 graphically depicts an exemplary virtualization supporting resource allocations to a tenant according to an embodiment. In operation, each tenant requires one or a combination of virtualized L2 (ELAN) and/or L3/IP (VRF) services.

    [0040] Referring to FIG. 3, a "Tenant 1" requires DC resources for two applications; namely, a business logic application B and a web application W. Each of the applications (B and W) is assigned to a VM group interconnected using, illustratively, a L2 segment or VLAN Specifically, the business logic application B is assigned to a first VLAN (VLAN 11), while the web application W is assigned to a second VLAN (VLAN 12).

    [0041] As depicted in FIG. 3, an IP address of is associated with Tenant 1, an IP address of is associated with the Tenant 1 Router GW 211, and an IP address of is associated with the Tenant 1 web server.

    [0042] As further depicted in FIG. 3, and as described above, each of the VLANs (VLAN 11, VLAN 12) and the router 211 are emulated using a respective dVRS (VRS) data plane 221 running participating VSWs 220 of the virtual nodes 201. Every VRS instance performs IP and/or MAC lookup as the frames are arriving from the core or access side of the VLAN and performs routing functions accordingly. The VRS instance will create tunnels directly between the hypervisors and based on the lookup (IP or MAC), it will encapsulate the packet in a corresponding tunnel and forward it directly to the destination hypervisor.

    [0043] To achieve this, the VRS instance requires routing information. This is retrieved by utilizing a routing protocol between the different VRS instances. In order for the VRS instance to communicate with the public Internet, it learns that for specific routes it must forward the traffic to the VRF (108-1) and it will encapsulate the packets into a tunnel with destination the corresponding VRF and forward the packets to this VRF over the IP core network.

    [0044] It is noted that the logical representation of service connectivity is provided by L2 and/or L3 per-tenant instances that may be distributed in a number of Vswitches.

    [0045] FIG. 4 graphically depicts a VRS forwarding and tunneling mechanism according to an embodiment. Specifically, FIG. 4 depicts a dVRS forwarding and tunneling mechanism applied to, illustratively, the Tenant 1 requirements discussed above with respect to FIG. 3. It is noted that VMs denoted as "W" run Web applications, while VMs denoted as "B" run Business Logic applications

    [0046] Referring to FIG. 4, a VSI (Virtual Switch Interface) represents the interface of the VRS where a given Virtual Machine is attached to. The VRS interconnects virtual machines local or located in other Vswitches between themselves and with the outside world. For Intra-DC destinations it provides forwarding using, illustratively, Virtual eXtensible LAN (VXLAN) service encapsulation and IP tunneling 450, and for forwarding to external DC destinations through the DC GWs using, illustratively, MPLS over Generic Routing Encapsulation (GRE) 460 . Specifically, it can be seen that various tunneling endpoints 410 (T) are found at the VSWs 220 and DC GWs 108. Further, the IP routing context 420 (R) running in TORs 210 and core nodes 110 provides the tunnel forwardin required to transport the packets between different service termination points.

    Use Cases

    [0047] There are a number of use cases addressed by the above-described dVRS solutions, such as (1) Optimal handling of inter-subnet East-West traffic; (2) Addressing traffic tromboning issues; (3) Interoperability with existing VPN solutions for L2/L3 services; and (4) generic VM Mobility at L2/L3.

    [0048] FIG. 6 depicts a flow diagram of a method according to an embodiment. Specifically, FIG. 6 depicts a flow diagram of a method 600 for providing virtualized services at a data center (DC).

    [0049] As previously noted, each virtual service provided to a DC tenant is implemented via VRS formed using multiple instances residing in different Vswitches..

    [0050] At step 610, a plurality of virtual nodes (VNs) is established, each VN comprising a controller associated with a plurality of virtual switches (VSWs) residing in one or more server racks or resource clusters interconnected by an IP infrastructure. Referring to box 615, in each VN the controller may run in the ToR/Eor or in a centralized VM; the VSWs are instantiated in hypervisors running in servers. An IP infrastructure running in the DC network components (ToRs, EoRs, Core devices) is used as a Virtual Node fabric.

    [0051] At step 620, virtual routing and switching (VRS) instances are automatically established or removed at one or more of the VSWs as soon as the controller learns of VM events. VM events may comprise VM instantiation, deletion, migration and the like. Though not strictly virtual in nature, the VM events mechanisms depicted herein may also address appliance attachment, detachment and the like, as well as other compute/storage service delivery.

    [0052] At step 630, each controllers uses the information about its locally attached VMs and the information from exchanges with remote controllers or DC GWs to create a Routing Information Base and related FIB entries. Referring to box 635, MP-BGP control plane is used to feed the service manager with reachability information for remote VNs. For example, VM event tracking & profile discovery is provided using MP-BGP exchanges between the controller and PE devices, while per tenant FIB is managed by a service manager.

    [0053] At step 640, Virtual Agents in the Vswitches program the forwarding plane to ensure that active VRS flows are handled properly. Referring to box 645, OpenFlow may be used to download FIBs (and other information) from the controller to the Virtual Agents such that the Vswitches are programmed with the necessary forwarding table data to properly route active flows.

    [0054] FIG. 7 depicts a high-level block diagram of a computing device such as a processor in a telecom or data center network element, suitable for use in performing functions described herein. Specifically, the computing device 700 described herein is well adapted for implementing the various functions described above with respect to the various data center (DC) elements, network elements, nodes, routers, management entities and the like, as well as the methods/mechanisms described with respect to the various figures.

    [0055] As depicted in FIG. 7, computing device 700 includes a processor element 703 (e.g., a central processing unit (CPU) and/or other suitable processor(s)), a memory 704 (e.g., random access memory (RAM), read only memory (ROM), and the like), a cooperating module/process 705, and various input/output devices 706 (e.g., a user input device (such as a keyboard, a keypad, a mouse, and the like), a user output device (such as a display, a speaker, and the like), an input port, an output port, a receiver, a transmitter, and storage devices (e.g., a persistent solid state drive, a hard disk drive, a compact disk drive, and the like)).

    [0056] It will be appreciated that the functions depicted and described herein may be implemented in software and/or in a combination of software and hardware, e.g., using a general purpose computer, one or more application specific integrated circuits (ASIC), and/or any other hardware equivalents. In one embodiment, the cooperating process 705 can be loaded into memory 704 and executed by processor 703 to implement the functions as discussed herein. Thus, cooperating process 705 (including associated data structures) can be stored on a computer readable storage medium, e.g., RAM memory, magnetic or optical drive or diskette, and the like.

    [0057] It will be appreciated that computing device 700 depicted in FIG. 7 provides a general architecture and functionality suitable for implementing functional elements described herein or portions of the functional elements described herein.

    [0058] It is contemplated that some of the steps discussed herein as software methods may be implemented within hardware, for example, as circuitry that cooperates with the processor to perform various method steps. Portions of the functions/elements described herein may be implemented as a computer program product wherein computer instructions, when processed by a computing device, adapt the operation of the computing device such that the methods and/or techniques described herein are invoked or otherwise provided. Instructions for invoking the inventive methods may be stored in tangible and non-transitory computer readable medium such as fixed or removable media or memory, transmitted via a tangible or intangible data stream in a broadcast or other signal bearing medium, and/or stored within a memory within a computing device operating according to the instructions.

    [0059] Although various embodiments which incorporate the teachings of the present invention have been shown and described in detail herein, those skilled in the art can readily devise many other varied embodiments that still incorporate these teachings. As such, the appropriate scope of the invention is to be determined according to the claims.


    1. A method for providing virtualized services at a data center, DC, (101) comprising:

    establishing a plurality of virtual nodes, VNs, each VN (201) comprising a controller, an IP infrastructure and a plurality of virtual switches, VSWs, (220);

    each VSW (220) being programmed to support a Virtual Routing and Switching, VRS, instance (121) and for storing forwarding information therefore, wherein a virtualized service is provided via a collection of VRS instances (121) interconnected using IP tunnels and L2 or L3 service encapsulations;

    each controller being adapted to receive virtualized service route information from one or more DC gateways, DC GW, (108), other remote controllers and from local VSW (220), to process the required forwarding information base, FIB, and to download toward each VSW (220) a corresponding FIB portion, to use multiprotocol border network gateway, MP-BGP, to communicate with other VSW (220) controllers, DC GWs or external provider edge, PE, devices (108), and to use Openflow extensions to receive local virtual machine, VM, event information.

    2. The method of claim 1,
    wherein the controller uses PE Service Manager procedures to consolidate entries from both MP-BGP and Openflow to build per-tenant FIB tables.
    3. The method of claim 1,
    wherein said controller is adapted to communicate with DC gateway routers (108) without intermediate translation of a service encapsulation, or with an intermediate translation of a service encapsulation selected in accordance with requirements of a remote device.


    1. Verfahren zum Bereitstellen virtualisierter Dienste bei einem Datenzentrum, DC, (101), das Folgendes umfasst:

    Aufbauen mehrerer virtueller Knoten, VNs, wobei jeder VN (201) eine Steuereinheit, eine IP-Infrastruktur und mehrere virtuelle Switches, VSW, (220) umfasst; wobei

    jeder VSW (220) programmiert ist, eine virtuelle Routing- und Switching-Instanz, VRS-Instanz, (121) zu unterstützen und Weiterleitungsinformationen dafür zu speichern, wobei ein virtualisierter Dienst mittels einer Sammlung von VRS-Instanzen (121), die unter Verwendung von IP-Tunneln und L2- oder L3-Dienskapselungen verbunden sind, bereitgestellt ist; und

    jede Steuereinheit ausgelegt ist, virtualisierte Dienstrouteninformationen von einem oder mehreren DC-Gateways, DC-GW, (108), weiteren entfernten Steuereinheiten und von lokalen VSW (220) zu empfangen, die erforderliche Weiterleitungsinformationsbasis, FIB, zu verarbeiten, einen entsprechenden FIB-Abschnitt zu jedem VSW (220) herunterzuladen, ein Mehrfachprotokollgrenznetz-Gateway, MP-BGP, zu verwenden, um mit weiteren VSW-Steuereinheiten (220), DC-GW, oder externen Anbieterübergangseinrichtungen, PE-Einrichtungen, (108) zu kommunizieren und Openflow-Erweiterungen zu verwenden, um Ereignisinformationen einer lokalen virtuellen Maschine, VM, zu empfangen.

    2. Verfahren nach Anspruch 1, wobei
    die Steuereinheit PE-Dienstmanagerprozeduren verwendet, um Einträge sowohl von MP-BGP als auch Openflow zu konsolidieren, um entsprechende FIB-Tabellen aufzubauen.
    3. Verfahren nach Anspruch 1, wobei
    die Steuereinheit ausgelegt ist, mit DC-Gateway-Routern (108) ohne Zwischenübersetzung einer Dienstkapselung oder mit einer Zwischenübersetzung einer Dienstkapselung, die gemäß Anforderungen einer entfernten Einrichtung gewählt ist, zu kommunizieren.


    1. Procédé de fourniture de services virtualisés au niveau d'un centre de données, DC, (101), comprenant :

    l'établissement d'une pluralité de noeuds virtuels, VN, chaque VN (201) comprenant un contrôleur, une infrastructure IP et une pluralité de commutateurs virtuels, VSW (220) ;

    chaque VSW (220) étant programmé pour prendre en charge une instance de routage et de commutation virtuels, VRS (121) et pour mémoriser des informations d'acheminement de celle-ci, dans lequel un service virtualisé est fourni par l'intermédiaire d'une collection d'instances VRS (121) interconnectées à l'aide de tunnels IP et d'encapsulations de service L2 ou L3;

    chaque contrôleur étant adapté pour recevoir des informations de route de service virtualisée depuis une ou plusieurs passerelles DC, DC GW, (108), d'autres contrôleurs distants et depuis un VSW local (220), pour traiter la base d'informations d'acheminement, FIB, requise et pour télécharger vers chaque VSW (220) une partie de FIB correspondante, pour utiliser une passerelle de réseau limitrophe multiprotocole, MP-BGP, pour communiquer avec d'autres contrôleurs VSW (220), DC GW ou dispositifs limitrophes de fournisseur, PE, externes (108), et utiliser des extensions OpenFlow pour recevoir des informations d'événements de machines virtuelles, VM, locales.

    2. Procédé selon la revendication 1,
    dans lequel le contrôleur utilise des procédures de gestionnaire de services PE pour consolider des entrées provenant à la fois de MP-BGP et d'OpenFlow pour construire des tables FIB pertinentes.
    3. Procédé selon la revendication 1,
    dans lequel ledit contrôleur est adapté pour communiquer avec des routeurs de passerelle DC (108) sans traduction intermédiaire d'une encapsulation de service, ou avec une traduction intermédiaire d'une encapsulation de service sélectionnée conformément à des exigences d'un dispositif distant.



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description