(19)
(11)EP 2 893 650 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
25.03.2020 Bulletin 2020/13

(21)Application number: 13844135.7

(22)Date of filing:  04.10.2013
(51)International Patent Classification (IPC): 
H04B 10/07(2013.01)
H04J 14/02(2006.01)
H04Q 11/00(2006.01)
G02B 6/12(2006.01)
H04B 10/079(2013.01)
(86)International application number:
PCT/US2013/063497
(87)International publication number:
WO 2014/055889 (10.04.2014 Gazette  2014/15)

(54)

PROVIDING CHANNEL HEALTH FOR A WDM SYSTEM

SICHERSTELLUNG DER KANALINTAKTHEIT FÜR EIN WDM-SYSTEM

PROCÉDÉ ET DISPOSITIF POUR FOURNIR UNE SANTÉ DE CANAL POUR UN SYSTÈME WDM


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 04.10.2012 US 201261709367 P

(43)Date of publication of application:
15.07.2015 Bulletin 2015/29

(73)Proprietor: AFL Telecommunications LLC
Duncan SC 29334 (US)

(72)Inventors:
  • ADAM, Sean Patrick
    Wrentham, Massachusetts 02093 (US)
  • HARDING, Jeffrey Alexander
    Meredith, New Hampshire 03253 (US)
  • PRESCOTT, Scott
    Belmont, New Hampshire 03220 (US)

(74)Representative: Driver, Virginia Rozanne 
Page White & Farrer Bedford House John Street
London WC1N 2BF
London WC1N 2BF (GB)


(56)References cited: : 
EP-A2- 1 685 663
US-A1- 2003 152 385
US-A1- 2005 078 957
US-A1- 2003 151 801
US-A1- 2003 161 630
US-A1- 2010 266 275
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    CROSS-REFERENCE TO RELATED APPLICATIONS



    [0001] This application is based upon and claims the benefit of priority from United States Provisional Application No. 61/709,367, filed October 4, 2012, in the United States Patent and Trademark Office.

    BACKGROUND


    1. Field



    [0002] The disclosure is related to a method of and device for providing channel health of a channel in a wavelength divisional multiplex system.

    2. Related Art



    [0003] The background information provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.

    [0004] As network carriers look to provide greater amounts of capacity, they must find ways to provide greater bandwidth in their existing systems. Wavelength Division Multiplexing multiplexes different wavelengths of light onto a single fiber to transmit data in defined channels. To get increasing amounts of data through the fiber, data rates are increasing from 10G to 40G to 100G or higher and channel spacing is compressing from 200GHz to 100GHz to 50GHz and lower.

    [0005] This ever increasing data greatly increases the burden on the integrity of the distribution system, which includes the fiber and the components. To determine if a network is able to support the data transmission without corruption, carriers must be able to test their system and determine quickly if the performance is sufficient to reliably transmit data.

    [0006] There are many different characteristics which define the performance of a given network. Carriers must have skilled test personnel capable of not only performing the measurements but also analyzing the different characteristics and determine if the network is capable of reliably transmitting data.

    [0007] This drives up cost of test by (1) requiring higher level of skilled labor to be dispatched to determine network problems and (2) requiring those technicians to spend time reviewing and analyzing the signal characteristics in detail to determine if they meet the required specifications (center frequency, Optical Signal to Noise Ratio, channel power, channel crosstalk [also known as adjacent channel power], etc.)

    [0008] Existing solutions allow a user to take measurements on WDM systems and provides the signal level and characteristics across the complete spectrum. Existing solutions can provide measurement of given characteristics on that signal but do not provide the user a quick and simple understanding of whether an issue exists, which may impact overall reliability.

    [0009] Using existing solutions, a user would be required to carry out calculations on their own to determine if the channel will operate without potential problems. Typically, the user would review a Channel Power and a Center Frequency/Center Wavelength/Channel Number independently and pass or fail a network based on one or the other independently. Identifying a characteristic independently may indicate a good channel as bad or a bad channel as good.
    US 2003/161630 describes a method and an optical network management system for monitoring an optical transmission system.
    US 2003/151801 describes a method and an optical network management system for monitoring an optical transmission system, including detecting an error condition in an electrical domain of the optical transmission system, and collecting data associated with optical performance of one or more optical network elements in response to the detected electrical degradation.

    SUMMARY



    [0010] Exemplary implementations of the present invention address at least the above problems and/or disadvantages and other disadvantages not described above. Also, the present invention is not required to overcome the disadvantages described above, and an exemplary implementation of the present invention may not overcome any of the problems listed above.
    According to a first aspect of the invention, there is a method as set forth in claim 1.
    According to a second aspect of the invention, there is as an apparatus as set forth in claim 8.
    According to a third aspect of the invention, there is a computer readable medium storing a program for causing a processor to measure characteristics of a wavelength division multiplexing system as set forth in claim 13.
    Further aspects according to some embodiments of the invention are set forth in the dependent claims.

    BRIEF DESCRIPTION OF THE DRAWING



    [0011] 

    Figure 1 is an exemplary embodiment of a flowchart 1 of a general process of assessing the health of a channel.

    Figure 2 shows an exemplary embodiment of possible combinations of analyzing characteristics for determining the health of a system.

    Figure 3 shows an exemplary embodiment of a chart analyzing the health of a system.

    Figure 4 is an exemplary embodiment of a Channel Health Meter 20 displaying the Channel Health of channels

    Figure 5 is an exemplary embodiment of a Channel Health Meter 20 displaying a channel with a "Failing Health."

    Figure 6 is an exemplary embodiment of a Channel Health Meter 20 displaying settings of the display.

    Figure 7 is an exemplary embodiment of a Channel Display Options 50 which shows settings of the health display 60.

    Figure 8 is an exemplary embodiment of a Channel Display Options 50 which shows settings of the internal system 70.

    Figure 9 is an exemplary embodiment of a Channel Display Options 50 which shows information 80 of a device.

    Figure 10 is an exemplary embodiment of a Channel Display Options 50 which shows display information 90 of a device.

    Figure 11 is an exemplary embodiment of a front view of a display device 100 for displaying the Channel Health of the channel.

    Figure 12 is an exemplary embodiment of a display device 100 connected to a cable 110 by a connector 112.

    Figure 13 shows an exemplary functional block diagram of the channel measurement apparatus.


    DETAILED DESCRIPTION



    [0012] The following detailed description is provided to assist the reader in gaining a comprehensive understanding of the methods, apparatuses and/or systems described herein. Various changes, modifications, and equivalents of the systems, apparatuses and/or methods described herein will suggest themselves to those of ordinary skill in the art. Descriptions of well-known functions and structures are omitted to enhance clarity and conciseness.

    [0013] The terms used in the description are intended to describe embodiments only, and shall by no means be restrictive. Unless clearly used otherwise, expressions in a singular from include a meaning of a plural form. In the present description, an expression such as "comprising" or "including" is intended to designate a characteristic, a number, a step, an operation, an element, a part or combinations thereof, and shall not be construed to preclude any presence or possibility of one or more other characteristics, numbers, steps, operations, elements, parts or combinations thereof.

    [0014] In an exemplary embodiment, benefits and advantages of the invention include, but are not limited to the following. This solution helps the carriers by (1) enabling less skilled technicians to be dispatched for service calls as the Health Meter quickly makes a less skilled user equivalent to more expensive and highly trained counterparts and (2) decreases test time as a user is given a timely view of "health" across the entire band for all channels instantly without any need to perform a channel-by-channel analysis or review channel-by-channel tabular data as in competitive systems.

    [0015] Referring to the drawings, FIG. 1 is a flowchart 1 of the general process of assessing the health of a channel. In an exemplary embodiment, the first step 3 is to obtain channel characteristics of a channel. In an exemplary embodiment, the channel characteristics may include optical signal to noise ratio (OSNR), Channel Power, Center Frequency, etc.

    [0016] In an exemplary embodiment, the second step 5 is to use a device to calculate a health of the channel using an equation and the obtained channel characteristics. In an exemplary embodiment, the equation is a Health Equation, which combines characteristics of a channel together and factors in interactions between the characteristics, as well as the design parameters of networks, to determine a level of "health" for the channel.

    [0017] For example, Channel Power and Center Frequency alone are not sufficient to decide if a channel will have a problem reliably transmitting data. When a channel has a Center Frequency that has shifted from what is expected by a Receiver (i.e. shifted from the defined ITU grid), the characteristics of the channel may not be correctly received by the Receiver. However, if a power level of the channel is high enough, then there is a greater probability of the Receiver correctly receiving the signal without issue.

    [0018] In an exemplary embodiment, the Health Equation takes into account Channel Power, Center Frequency, Center Frequency Shift, Optical Signal to Noise Ratio and adjacent channel relationships, and evaluates these based on standard receiver input filter characteristics to determine if a given channel will operate without potential problems.

    [0019] In an exemplary embodiment, the Health Equation may take into account an Adjacent Channel Power factor of the channel. In an exemplary embodiment, if the optical power in a channel is significantly greater than its adjacent channel(s), it will affect the performance of the lower power channels. In an exemplary embodiment, a user will use this characteristic to adjust the gain flatness of the WDM system.

    [0020] In an exemplary embodiment, the Health equation may take into account a data rate, modulation type and forward error correction type of the channel. In an exemplary embodiment, these parameters determine channel health by associating a bit error rate to an OSNR of the channel. In an exemplary embodiment, users can select WDM equipment type and threshold settings based on data supplied by WDM Optical Network Equipment.

    [0021] In a first exemplary embodiment, a health of the channel is determined by the following equation:



    [0022] wherein f(OSNR) is the function of the OSNR, and kOSNR is the weighting content number of the OSNR, wherein f(ChannelPower, CenterFreq) is the function of the channel power and center frequency, and kchPwr is the weighting content number of the channel power and center frequency, wherein f(CenterFrequency) is the function of the center frequency, and kfreq is the weighting content number of the center frequency.

    [0023] In a second exemplary embodiment, a health of a channel may be determined by the following method, which utilizes an OSNR, Channel Power, and Center Frequency Shift of a channel. In an exemplary embodiment, the OSNR of a channel is compared to an OSNR marginal threshold and an OSNR fail threshold. In an exemplary embodiment, if the OSNR is less than the fail threshold, then an OSNRHealth is assigned a failing value. In an exemplary embodiment, if the OSNR is less than the an OSNR marginal threshold, then the OSNRHealth is assigned a marginal value. In an exemplary embodiment, if the OSNR is greater than or equal to the OSNR marginal threshold, then the OSNRHealth is assigned a passing value. In an exemplary embodiment, an OSNR marginal threshold is 20dB, an OSNR Fail Threshold is 18 dB, a failing value is 33, a marginal value is 50 and a passing value is 100.

    [0024] In an exemplary embodiment, the Channel Power of a channel is compared to an Power marginal threshold and an Power fail threshold. In an exemplary embodiment, if the Channel Power minus a Frequency Shift Loss of the channel is less than the Power fail threshold, then a PowerHealth is determined to be a failing value. In an exemplary embodiment, if the Channel Power minus a Frequency Shift Loss of the channel is less than the Power marginal threshold, then a PowerHealth is determined to be a marginal value. In an exemplary embodiment, if the Channel Power minus a Frequency Shift Loss of the channel is greater than or equal to the Power marginal threshold, then PowerHealth is determined to be a passing value. In an exemplary embodiment, a Power marginal threshold is -22 dBm, and a Power Fail Threshold is -25 dBm.

    [0025] In an exemplary embodiment, the Center Frequency Shift of a channel is compared to an Frequency marginal threshold and an Frequency fail threshold. In an exemplary embodiment, if the Center Frequency Shift of the channel is greater than the Frequency fail threshold, then a FreqHealth is determined to be a failing value. In an exemplary embodiment, if the Center Frequency Shift of the channel is greater than the Frequency marginal threshold, then a FreqHealth is determined to be a marginal value. In an exemplary embodiment, if the Center Frequency Shift of the channel is less than or equal to the Frequency marginal threshold, then FreqHealth is determined to be a passing value. In an exemplary embodiment, a Frequency marginal threshold is 0.12625 nm or 15.5 GHz, and a Frequency Shift Fail Threshold is 0.19375 nm or 23.5 GHz.

    [0026] In an exemplary embodiment, using the OSNRHealth, PowerHealth, and FreqHealth, a health may be determined by the following equation:

    In an exemplary embodiment, the FreqHealthWeighting is 0.30, the PowerHealthWeighting is 0.30, and the OSNRHealthWeighting is 0.40.

    [0027] In an exemplary embodiment, each of the OSNR, Channel Power, and Center Frequency Shift may be compared to a threshold corresponding to each characteristic for determining a health of the channel. In an exemplary embodiment, if the OSNR is greater than or equal to an OSNR Marginal Threshold, the Channel Power is greater than or equal to a power marginal threshold, and the Center Frequency Shift is less than or equal to a Frequency Marginal Threshold, than the Health of the channel is determined to be good. In an exemplary embodiment, if the OSNR is less than an OSNR Fail Threshold, the Channel Power minus the Frequency Shift Loss is less than Power Fail Threshold, or the Center Frequency Shift is less than the Frequency Fail Threshold, then the health of a channel is determined to be bad. In an exemplary embodiment, the Power Fail Threshold is -25 dBm, the Power Marginal Threshold is -22 dB, the OSNR Fail Threshold is 18 dB, the OSNR Marginal Threshold is 20 dB, the Frequency Shift Fail Threshold (½ of 3 dB bandwidth) = 0.19375 nm (23.5 GHz), and the Frequency Shift Marginal Threshold (½ of 1 dB bandwidth) = 0.12625 nm (15.5 GHz).

    [0028] FIG. 2 shows an exemplary embodiment of possible combinations of analyzing characteristics for determining the health of a system. In an exemplary embodiment, a good health has a value of 100, and marginal health has a value of 50, and a bad health has a value of 33.

    [0029] In an exemplary embodiment, the third step 7 is to compare the health to a threshold to determine a Health Factor of the channel. In an exemplary embodiment, a Health Factor is an identification of the health of a channel. In an exemplary embodiment, the Health Equation allows extensibility in what defines "healthiness" of a network by abstracting health through a Health Factor. In an exemplary embodiment, additional components can be added to the Health Equation to provide greater accuracy of the "healthiness" of a channel. For an end user in an exemplary embodiment, the "healthiness" is exposed not as additional components to understand but instead as a single Health Factor allowing them to quickly determine "Good", "Bad", and "Marginal" health.

    [0030] In an exemplary embodiment, the thresholds are a "Fail Threshold" and a "Marginal Threshold." In an exemplary embodiment, if the Health is a lower value than the Fail Threshold, then the Health Factor of the channel is determined to be a "Failing Health." In an exemplary embodiment, if the Health is a higher value than the Fail Threshold, but a lower value than the Marginal Threshold, then the Health Factor of the channel is determined to be a "Marginal Health." In an exemplary embodiment, if the Health is a higher value than the Marginal Threshold, then the Health Factor of the channel is determined to be a "Passing Health." In an exemplary embodiment, if the Health is a higher value than the Good Threshold, then the Health Factor of the channel is determined to be a "Good Health." In an exemplary embodiment, a good threshold is 100, a marginal threshold is 50, and a failing threshold is 33.

    [0031] In an exemplary embodiment, the thresholds are a "Pass Threshold" and a "Fail Threshold." In an exemplary embodiment, if the Health is a lower value than the Fail Threshold, then the Health Factor of the channel is determined to be at "0% Health." In an exemplary embodiment, if the Health is a higher value than the Pass Threshold, then the Health Factor of the channel is determined to be at "100% Health." In an exemplary embodiment, if the Health is a higher value than the Fail Threshold, but a lower value than the Marginal Threshold, then the Health Factor of the channel is determined to be at "xx% Health," where the number xx is determined from interpolation.

    [0032] FIG. 3 shows an exemplary embodiment of a chart analyzing the health of a system. In an exemplary embodiment, the vertical axis shows the health, and horizontal axis shows the power in dB. In an exemplary embodiment, the thresholds are a "Pass Threshold" and a "Fail Threshold." In an exemplary embodiment, if the Health is a lower value than the Fail Threshold, then the Health Factor of the channel is determined to be at "0% Health." In an exemplary embodiment, if the Health is a higher value than the Pass Threshold, then the Health Factor of the channel is determined to be at "100% Health." In an exemplary embodiment, if the Health is a higher value than the Fail Threshold, but a lower value than the Marginal Threshold, then the Health Factor of the channel is determined to be at "xx% Health," where the number xx is determined from interpolation. In an exemplary embodiment, the graph shows a health of a channel where the "Fail Threshold" is 60%, and the "Pass Threshold" is 100%.

    [0033] In an exemplary embodiment, the fourth step 11 is to display the Health Factor of the channel and the characteristics of the channel on a display device. In an exemplary embodiment, the device which calculates the health and a device which compares health to a threshold may also be the same device as the display device. In an exemplary embodiment, the steps of the flowchart 1 may be utilized on any number of channels simultaneously. In an exemplary embodiment, Health Factors and characteristics of any number of channels may be displayed as in the fourth step 11.

    [0034] FIG. 4 is an exemplary embodiment of a Channel Health Meter 20 displaying the Channel Health of channels. An exemplary embodiment of the invention has a Channel Health Meter, which utilizes a method by which a quick statement of "health" is provided on a channel-by-channel basis across an entire band of channels. In an exemplary embodiment, the Channel Health Meter uses a Health Equation, which identifies "Good" Channels, "Bad" Channels, and "Marginal" Channels. In an exemplary embodiment, a number of channels are shown on the display 20. In an exemplary embodiment, the vertical axis 21 shows the health of a channel, and the horizontal axis shows channels in order of their respective wavelengths (in nanometers). In an exemplary embodiment, the horizontal axis may be changed to show the frequency spectrum in Terahertz, or channel numbers corresponding to each channel. In an exemplary embodiment, a channel with a "Failing Health" is distinguishable from a channel with a "Passing Health," or a good channel 25, and a channel with "Marginal Health," or a marginal channel 24. In an exemplary embodiment, failing channels 23 are distinguished by providing a color of the channels that is not the same color as the marginal channels 24 or the good channels 25. In an exemplary embodiment, the failing channel 23 may be further distinguished by providing a number of the channel above the failing channel 23, increasing the width of the failing channels compared to the marginal channels 24 and the good channels 25, or producing arrows where the tips of the arrows point to the failing channels 23.

    [0035] In an exemplary embodiment, the Channel Health Meter 20 shows other characteristics of the system, including the number of channels 26, the channel spacing 27, the Test Point Power Ratio (TAP) 28, the total power 29 across all of the channels, and the number of unhealthy channels 30. In an exemplary embodiment, the Channel Health Meter 20 may have buttons for interacting with the display. In an exemplary embodiment, the icons may be used to toggle an options menu in the Channel Health Meter 20, generate test reports 34 from previous scans, view records 36 of previous tests performed, capture 38 a picture of the current display, pause and start a scan 39, etc. In an exemplary embodiment, the Channel Health Meter allows a user to examine characteristics of the channel data to see values of each of the discrete components and why their combination generated the resultant Health Factor.

    [0036] FIG. 5 is an exemplary embodiment of a Channel Health Details 40 displaying a channel, labeled as "Channel 57," with a "Failing Health." In an exemplary embodiment, the vertical axis 21 of the display shows the power in dBm and the horizontal axis 22 shows the frequency in THz. In an exemplary embodiment, the failing channel 41 is distinguished by presenting the channel with a color that is different from the color of the marginal channels and the passing channels. In an exemplary embodiment, an OSNR indicator 42 shows the range at which the OSNR is being measured, and a resultant OSNR value 44 is shown next to the failing channel. In an exemplary embodiment, other characteristics of the channel may be shown on the display, such as the total power and the peak power of the channel. In an exemplary embodiment, the user may switch between the channels that have "Failing Health" by activating an arrow icon 49.

    [0037] In an exemplary embodiment, the Channel Health Details 40 may have icons for interacting with the display, including a health meter icon 46, a spectrum thumbnail 47 which provides an indication of where the displayed channel is located in the C-Band, and a TAG icon 48 for entering a TAG sub-menu, where the user may tag the test results with keywords for ease of identification. In an exemplary embodiment, the Channel Health Details 40 shows other characteristics of the system, including the number of channels, the channel spacing, the TAP, the total power across all of the channels, and the number of unhealthy channels.

    [0038] FIG. 6 is an exemplary embodiment of a Channel Display Options 50 which shows settings of the graph display 51. In an exemplary embodiment, the horizontal axis options 52 allows the user to change the display of the horizontal axis between displaying channel numbers A and displaying spectral units B. In an exemplary embodiment, the spectral units option 53 allows a user to change the displayed spectral units between wavelength C and frequency D.

    [0039] In an exemplary embodiment, the Spectral Range Display option 54 allows a user to adjust the range on the horizontal axis displayed on the Channel Health Meter 20. In an exemplary embodiment, the change options E allow for a user to change the start channel and end channel, and allow for a user to switch to limiting the horizontal axis in the spectral range, such as wavelength or frequency. In an exemplary embodiment, the channel mapping option 56 allows the user to choose a default ITU channel numbering plan or define a custom channel numbering plan. In an exemplary embodiment, buttons allow a user to reset the options to default options 57 and calibrate the screen 58.

    [0040] FIG. 7 is an exemplary embodiment of a Channel Display Options 50 which shows settings of the health display 60. In an exemplary embodiment, a minimum channel power option 62 allows a user to set a minimum channel power (in dBm) for determining the health of a channel. In an exemplary embodiment, a minimum channel OSNR option 63 allows a user to set a minimum channel OSNR (in dB) for determining the health of a channel. In an exemplary embodiment, a total power warning option allows a user to set a total minimum high power 65 and a total maximum low power 68 (in dBm) which determines a safe range for the channel to operate.

    [0041] FIG. 8 is an exemplary embodiment of a Channel Display Options 50 which shows settings of the internal system 70. In an exemplary embodiment, the settings of the internal system comprise a date, a time, and a time zone which may be set by a user. In an exemplary embodiment, an option to calibrate the touch screen 62 is provided so a user may adjust the calibration of a touch screen feature.

    [0042] FIG. 9 is an exemplary embodiment of a Channel Display Options 50 which shows information 80 of a device. In an exemplary embodiment, the information 80 may comprise a model, serial number, calibration date of the device, operating system version, technical support contact information, etc.

    [0043] FIG. 10 is an exemplary embodiment of a Channel Display Options 50 which shows display information 90 of a device. In an exemplary embodiment, the display information shows details that allow a user to change a color of a channel or other display (eg. Channel Maker, OSNR region, etc.) displayed in the health display 60. In an exemplary embodiment in FIG. 8, the healthy channel setting is set to "green" and the unhealthy channel setting is set to "red." In an exemplary embodiment, a drop-down menu 92 may be used to select a color of a channel or other display.

    [0044] FIG. 11 is an exemplary embodiment of a front view of a display device 100 for displaying the Channel Health of the channel. In an exemplary embodiment, the display device 100 is a WDM900 Lightwave Test Set, where the display device acquires the channel characteristics of a channel, calculates a Health and Health Factor, and displays the results of the calculation. In an exemplary embodiment, the display device comprises a display screen 101 which displays the results of the calculation and the icons 102, buttons 104 which allow a user to interact with the display device, and icon buttons 105, which interact with the icons 102 on the screen. In an exemplary embodiment, the buttons 104 may be used to power on and off the display device, zooming into and out of the display on the display screen 101, scrolling horizontally through menus, capturing the image on the display screen 101 , and moving a cursor and selecting with a cursor on the display of the display screen 101.

    [0045] FIG. 12 is an exemplary embodiment of a display device 100 connected to a cable 110 by a connector 112. In an exemplary embodiment, the connector 112 connects the display device 100 to a Tap coupler 114 of the cable 110.

    [0046] FIG. 13 shows an exemplary functional block diagram of the channel measurement apparatus. It includes a processor, memory, display and input port. An example of a processor is an Marvell ARM PXA320 processor. An example of a memory is a 1Gbytes of NAND flash memory. An example of a display is a 6.5 inch TFT VGA panel. The processor, under the control of the operating software, controls the operation of the apparatus, including displaying images on the display. The memory stores the operating software and images that are captured on the display. The operating software can also be stored on a non-transitory computer readable medium. In addition, the processor is capable of receiving and analyzing characteristics of a channel via an input port, and producing and outputting reports via an output port (not shown).

    [0047] Next, exemplary operation of the channel measurement apparatus will be described. The operation assumes the input port is configured with the appropriate connector installed, the touchscreen display is powered up, and the connector is connected to the apparatus.

    [0048] If testing an optical fiber connector, the connector is slid into the Tap coupler of the optical fiber, using caution not to contaminate the end-face of the connector. An indicator will determine if the connector has been properly connected to the Tap coupler.

    [0049] Next, the characteristics of the channels of an optical fiber are obtained, sent to the memory, and analyzed by the processor. The processor analyzes the characteristics and determines a health factor of the channel. The health factor and characteristics are sent to the display, and the display shows the characteristics and health factor of the channel

    [0050] As mentioned above, although the exemplary embodiments described above are various apparatuses methods for inspecting channels, they are merely exemplary and the general inventive concept should not be limited thereto, and it could also apply to other types of apparatuses for inspecting optical fibers.


    Claims

    1. A method of measuring characteristics of a WDM system comprising:

    obtaining channel characteristics of a channel; wherein the channel characteristics comprise an optical signal to noise ratio, OSNR, of a channel of the wavelength division multiplexing system, a channel power of the channel and a center frequency shift of the channel;

    comparing the OSNR of the channel to one or more OSNR thresholds to determine an OSNR health of the channel;

    comparing the channel power to one or more power thresholds to determine a power health of the channel;

    comparing the center frequency shift of the channel to one or more frequency thresholds to determine a frequency health of the channel;

    determining a health of the channel based on a health equation which combines at least the OSNR health, the power health and the frequency health together, and;

    displaying the health of the channel on a display device (20).


     
    2. The method of claim 1, wherein determining the health of the channel based at least in part on the OSNR health, the power health and the frequency health comprises determining the health of the channel based at least in part on the OSNR health, the power health and the frequency health, and further based at least in part on a channel crosstalk factor, a data rate, a modulation type, and a forward error correction type.
     
    3. The method of claim 1, wherein the displaying the health of the channel comprises displaying a textual description of the health of the channel, the textual description comprising one of a Failing Health, Marginal Health, and Passing Health.
     
    4. The method of claim 1, further comprising displaying on the display device (20) the OSNR, the channel power, the center frequency, a number of channels analyzed, and a channel spacing.
     
    5. The method of claim 1, wherein displaying the health of the channel on the display device (20) comprises causing the display device (20) to display a graphical representation that depicts the health of the plurality of channels on a channel-by-channel basis, wherein the horizontal axis (22) of the graphical representation shows the plurality of channels in order of respective wavelengths, respective frequencies, or respective channel numbers, and wherein the vertical axis (21) of the graphical representation shows the health of each respective channel.
     
    6. The method of claim 5, wherein causing the display device (20) to display the graphical representation causes the display device (20) to display the graphical representation that indicates that the respective health of one or more of the plurality of channels is considered to be failing by at least one of:

    displaying channels that are considered to be failing in a first color while displaying channels that are not considered to be failing in a second color that is different than the first color;

    displaying the corresponding channel number of each channel that is considered to be failing;

    displaying channels that are considered to be failing in a first width while displaying channels that are not considered to be failing in a second width that is less than the first width; and

    displaying a respective arrow above each channel that is considered to be failing.


     
    7. The method of claim 5, further comprising:
    providing, by one or more computing devices, an interactive menu that enables a user to adjust at least one of a range and a unit of the horizontal axis (22) of the graphical representation.
     
    8. An apparatus (20) which displays indications of channel health in a wavelength division multiplexing system, the apparatus comprising:

    an input port configured to obtain channel characteristics of a channel of the wavelength division multiplexing system; wherein the channel characteristics comprise an optical signal to noise ratio, OSNR, of a channel of the wavelength division multiplexing system, a channel power and a center frequency shift of the channel;

    a processor configured to

    compare the OSNR of the channel to one or more OSNR thresholds to determine an OSNR health of the channel;

    compare the channel power to one or more power thresholds to determine a power health of the channel;

    compare the center frequency shift of the channel to one or more frequency thresholds to determine a frequency health of the channel;

    determine a health of the channel based on a Health Equation which combines at least the OSNR health, the power health and the frequency health together;

    and a display (20) configured to display the health of the channel and the characteristics of the channel.


     
    9. The apparatus of claim 8, wherein the Health Equation also takes into account at least one of a channel crosstalk factor, a data rate, a modulation type, and a forward error correction type.
     
    10. The apparatus of claim 9, wherein:

    the health of the channel comprises a numerical health value;

    the processor is configured to compare the numerical health value to one or more thresholds to determine a single Health Factor for the channel, wherein the one or more thresholds comprise one or more of a Fail Threshold and a Marginal Threshold;

    and to display the health of the channel, the display is configured to display the single Health Factor of the channel.


     
    11. The apparatus of claim 8, wherein the Health Factor comprises a textual description comprising one of a Failing Health, a Marginal Health, and a Passing Health depending on a result of the comparison of the numerical health value to one or more of the Fail Threshold and the Marginal Threshold.
     
    12. The apparatus of claim 8, wherein the display is further configured to display the OSNR, the channel power, the center frequency, a number of channels analyzed, and a channel spacing.
     
    13. A computer readable medium storing a program for causing a processor to measure characteristics of a wavelength division multiplexing system comprising:

    obtaining channel characteristics of a channel; wherein the channel characteristics comprise an optical signal to noise ratio, OSNR, of a channel of the wavelength division multiplexing system, a channel power of the channel and a center frequency shift of the channel;

    comparing the OSNR of the channel to one or more OSNR thresholds to determine an OSNR health of the channel;

    comparing the channel power to one or more power thresholds to determine a power health of the channel;

    comparing the center frequency shift of the channel to one or more frequency thresholds to determine a frequency health of the channel;

    determining a health of the channel based on a Health Equation which combines at least the OSNR health, the power health and the frequency health together; and

    displaying the health of the channel on a display device (20).


     
    14. The computer readable medium of claim 13, wherein the program further causes the display device (20) to display channel characteristics that comprise the OSNR, the channel power, and a center frequency of the channel of the wavelength division multiplexing system.
     
    15. The computer readable medium of claim 14, wherein the program further causes the display device (20) to display channel characteristics that further comprise a channel crosstalk factor, a data rate, a modulation type, and a forward error correction type.
     
    16. The computer readable medium of claim 13, wherein;
    the one or more OSNR thresholds comprise a failing OSNR threshold and a marginal OSNR threshold such that the OSNR health is determined to be one of failing, marginal or passing;
    the one or more power thresholds comprise a failing power threshold and a marginal power threshold such that the power health is determined to be one of failing, marginal or passing; and
    the one or more frequency thresholds comprise a failing frequency threshold and a marginal frequency threshold such that the frequency health is determined to be one of failing, marginal or passing.
     
    17. The computer readable medium of claim 13, wherein the health of the channel is indicated by a textual description comprising one of a Failing Health, a Marginal Health and a Passing Health.
     
    18. The computer readable medium of claim 16, further comprising displaying on the display the OSNR, the channel power, the center frequency, a number of channels analyzed, and a channel spacing.
     


    Ansprüche

    1. Verfahren zur Messung von Kennlinien eines WDM-Systems, umfassend:

    Erlangen von Kanalkennlinien eines Kanals; wobei die Kanalkennlinien ein optisches Signal-Rausch-Verhältnis, OSNR, eines Kanals des Wellenlängen-Multiplex-Systems, eine Kanalleistung des Kanals und eine Mittelfrequenzverschiebung des Kanals umfassen;

    Vergleichen des OSNR des Kanals mit einem oder mehreren OSNR-Schwellenwerten, um eine OSNR-Kanalintaktheit zu ermitteln;

    Vergleichen der Kanalleistung mit einem oder mehreren Leistungsschwellenwerten, um eine Leistungsintaktheit des Kanals zu ermitteln;

    Vergleichen der Mittelfrequenzverschiebung des Kanals mit einem oder mehreren Frequenzschwellenwerten, um Frequenzintaktheit des Kanals zu ermitteln;

    Ermitteln einer Kanalintaktheit auf Basis einer Intaktheits-Gleichung, die zumindest die OSNR-Intaktheit, die Leistungs-Intaktheit und die Frequenz-Intaktheit miteinander kombiniert, und;

    Anzeigen der Kanalintaktheit auf einem Anzeigegerät (20).


     
    2. Verfahren nach Anspruch 1, wobei das Ermitteln der Kanalintaktheit, das zumindest teilweise auf der OSNR-Intaktheit, der Leistungs-Intaktheit und der Frequenz-Intaktheit basiert, das Ermitteln der Kanalintaktheit, das zumindest teilweise auf der OSNR-Intaktheit, der Leistungsintaktheit und der Frequenzintaktheit basiert, umfasst und ferner zumindest teilweise auf einem Kanal-Nebensprechfaktor, einer Datenrate, einem Modulationstyp und einem Vorwärtsfehlerkorrekturtyp basiert.
     
    3. Verfahren nach Anspruch 1, wobei das Anzeigen der Kanalintaktheit das Anzeigen einer textlichen Beschreibung der Kanalintaktheit umfasst, wobei die textliche Beschreibung eine von einer "Failing"-Intaktheit, "Marginal"-Intaktheit und einer "Passing"-Intaktheit umfasst.
     
    4. Verfahren nach Anspruch 1, das ferner das Anzeigen des OSNR, der Kanalleistung, der Mittelfrequenz, einer Zahl analysierter Kanäle und einen Kanalabstand auf dem Anzeigegerät (20) umfasst.
     
    5. Verfahren nach Anspruch 1, wobei das Anzeigen der Kanalintaktheit auf dem Anzeigegerät (20) umfasst, dass das Anzeigegerät (20) veranlasst wird, eine grafische Darstellung zu zeigen, welche die Intaktheit der Vielzahl von Kanälen auf einer Kanal-um-Kanal-Basis abbildet, wobei die horizontale Achse (22) der grafischen Darstellung die Vielzahl von Kanälen in der Reihenfolge jeweiliger Wellenlängen, jeweiliger Frequenzen oder jeweiliger Kanalnummern zeigt, und wobei die vertikale Achse (21) der grafischen Darstellung die Intaktheit jedes jeweiligen Kanals zeigt.
     
    6. Verfahren nach Anspruch 5, wobei das Bewirken, dass das Anzeigegerät (20) die grafische Darstellung anzeigt, bewirkt, dass das Anzeigegerät (20) die grafische Darstellung anzeigt, die andeutet, dass die jeweilige Intaktheit eines oder mehrerer der Vielzahl von Kanälen erachtet wird, um zumindest eine der Folgenden zu versagen:

    Anzeigen von Kanälen, die zu versagen erachtet werden, in einer ersten Farbe, während Kanäle, die nicht zu versagen erachtet werden, in einer zweiten Farbe angezeigt werden, die anders als die erste Farbe ist;

    Anzeigen der entsprechenden Kanalnummer jedes Kanals, der zu versagen erachtet wird;

    Anzeigen von Kanälen, die zu versagen erachtet werden, in einer ersten Breite, während Kanäle, die nicht zu versagen erachtet werden, in einer zweiten Breite angezeigt werden, die geringer als die erste Breite ist; und

    Anzeigen eines jeweiligen Pfeils über jedem Kanal, der erachtet wird zu versagen.


     
    7. Verfahren nach Anspruch 5, ferner umfassend:
    Bereitstellen durch ein oder mehrere Computergeräte eines interaktiven Menüs, das einem Benutzer ermöglicht, zumindest eins von einem Bereich und einer Einheit der horizontalen Achse (22) der grafischen Darstellung einzustellen.
     
    8. Vorrichtung (20), die Hinweise von Kanalintaktheit in einem Wellenlängen-Multiplex-System anzeigt, wobei die Vorrichtung umfasst:

    Einen Eingabe-Port, der konfiguriert ist, Kanalkennlinien eines Kanals des Wellenlängen-Multiplex-Systems zu erlangen, wobei die Kanalkennlinien ein optisches Signal-Rausch-Verhältnis, OSNR, eines Kanals des Wellenlängen-Multiplex-Systems, eine Kanalleistung und eine Mittelfrequenzverschiebung des Kanals umfassen;

    einen Prozessor, der konfiguriert ist, das OSNR des Kanals mit einem oder mehreren OSNR-Schwellenwerten zu vergleichen, um eine OSNR-Kanalintaktheit zu ermitteln;

    Vergleichen der Kanalleistung mit einem oder mehreren Leistungsschwellenwerten, um eine Leistungsintaktheit des Kanals zu ermitteln;

    Vergleichen der Mittelfrequenzverschiebung des Kanals mit einem oder mehreren Frequenzschwellenwerten, um Frequenzintaktheit des Kanals zu ermitteln;

    Ermitteln einer Kanalintaktheit auf Basis einer Intaktheitsgleichung, die zumindest die OSNR-Intaktheit, die Leistungsintaktheit und die Frequenzintaktheit miteinander kombiniert;

    und eine Anzeige (20), die konfiguriert ist, die Kanalintaktheit und die Kennlinien des Kanals anzuzeigen.


     
    9. Vorrichtung nach Anspruch 8, wobei die Intaktheitsgleichung außerdem zumindest einen Kanal-Nebensprechfaktor, eine Datenrate, einen Modulationstyp und einen Vorwärtsfehlerkorrekturtyp in Betracht zieht.
     
    10. Vorrichtung nach Anspruch 9, wobei:

    Die Kanalintaktheit einen numerischen Intaktheitswert umfasst;

    Der Prozessor konfiguriert ist, den numerischen Intaktheitswert mit einem oder mehreren Schwellenwerten zu vergleichen, um einen einzelnen Intaktheitsfaktor für den Kanal zu ermitteln, wobei der eine oder die mehreren Schwellenwerte einen oder mehrere eines "Fail"-Schwellenwerts und eines "Marginal"-Schwellenwerts umfasst;

    und Anzeigen der Kanalintaktheit, wobei die Anzeige konfiguriert ist, den einzelnen Intaktheitsfaktor des Kanals anzuzeigen.


     
    11. Vorrichtung nach Anspruch 8, wobei der Intaktheitsfaktor eine textliche Beschreibung umfasst, die eine von einer "Failing"-Intaktheit, einer "Marginal"-Intaktheit und einer "Passing"-Intaktheit abhängig von einem Ergebnis des Vergleichs des numerischen Intaktheitswerts mit einem oder mehreren des "Fail"-Schwellenwerts und des "Marginal"-Schwellenwerts umfasst.
     
    12. Vorrichtung nach Anspruch 8, wobei die Anzeige ferner konfiguriert ist, das OSNR, die Kanalleistung, die Mittelfrequenz, eine Zahl von analysierten Kanälen und einen Kanalabstand anzuzeigen.
     
    13. Computerlesbares Medium, das ein Programm speichert, um einen Prozessor zu veranlassen, Kennlinien eines Wellenlängen-Multiplex-Systems zu messen, umfassend:

    Erlangen von Kanalkennlinien eines Kanals; wobei die Kanalkennlinien ein optisches Signal-Rausch-Verhältnis, OSNR, eines Kanals des Wellenlängen-Multiplex-Systems, eine Kanalleistung des Kanals und eine Mittelfrequenzverschiebung des Kanals umfassen;

    Vergleichen des OSNR des Kanals mit einem oder mehreren OSNR-Schwellenwerten, um eine OSNR-Intaktheit des Kanals zu ermitteln;

    Vergleichen der Kanalleistung mit einem oder mehreren Leistungsschwellenwerten, um eine Leistungsintaktheit des Kanals zu ermitteln;

    Vergleichen der Mittelfrequenzverschiebung des Kanals mit einem oder mehreren Frequenzschwellenwerten, um Frequenzintaktheit des Kanals zu ermitteln;

    Ermitteln einer Kanalintaktheit auf Basis einer Intaktheitsgleichung, die zumindest die OSNR-Intaktheit, die Leistungsintaktheit und die Frequenzintaktheit miteinander kombiniert, und

    Anzeigen der Kanalintaktheit auf einem Anzeigegerät (20).


     
    14. Computerlesbares Medium nach Anspruch 13, wobei das Programm ferner die Anzeigevorrichtung (20) veranlasst, Kanalkennlinien anzuzeigen, die das OSNR, die Kanalleistung und eine Mittelfrequenz des Kanals des Wellenlängen-Multiplex-Systems umfassen.
     
    15. Computerlesbares Medium nach Anspruch 14, wobei das Programm ferner die Anzeigevorrichtung (20) veranlasst, Kanalkennlinien anzuzeigen, die ferner einen Kanal-Nebensprechfaktor, eine Datenrate, einen Modulationstyp und einen Vorwärtsfehlerkorrekturtyp umfassen.
     
    16. Computerlesbares Medium nach Anspruch 13, wobei;
    der eine oder mehrere OSNR-Schwellenwerte einen versagenden OSNR-Schwellenwert und einen marginalen OSNR-Schwellenwert umfassen, derartig, dass die OSNR-Intaktheit als eine versagende, marginale oder passierende ermittelt wird;
    der eine oder die mehreren Leistungsschwellenwerte einen versagenden Leistungsschwellenwert und einen marginalen Leistungsschwellenwert umfassen, derartig, dass die Leistungsintaktheit als eine versagende, marginale oder passierende ermittelt wird; und
    der eine oder die mehreren Frequenzschwellenwerte einen versagenden Frequenzschwellenwert und einen marginalen Frequenzschwellenwert umfassen, derartig, dass die Frequenzintaktheit als eine versagende, marginale oder passierende ermittelt wird.
     
    17. Computerlesbares Medium nach Anspruch 13, wobei die Kanalintaktheit durch eine textliche Beschreibung angezeigt wird, die eine von einer "Failing"-Intaktheit, einer "Marginal"-Intaktheit und einer "Passing"-Intaktheit umfasst.
     
    18. Computerlesbares Medium nach Anspruch 16, das auf der Anzeige ferner das OSNR, die Kanalleistung, die Mittelfrequenz, eine Zahl analysierter Kanäle und einen Kanalabstand anzeigt.
     


    Revendications

    1. Procédé permettant de mesurer des caractéristiques d'un système WDM (wavelength divisional multiplex system - système à multiplexage par répartition en longueur d'onde) comportant les étapes consistant à :

    obtenir des caractéristiques de canal d'un canal ; dans lequel les caractéristiques de canal comportent un rapport OSNR (optical signal to noise ratio - rapport signal sur bruit optique) d'un canal du système à multiplexage par répartition en longueur d'onde, une puissance de canal du canal et un déplacement de fréquence centrale du canal ;

    comparer le rapport OSNR du canal par rapport à un ou plusieurs seuils de rapport OSNR pour déterminer un bon fonctionnement en termes de rapport OSNR du canal ;

    comparer la puissance de canal par rapport à un ou plusieurs seuils de puissance pour déterminer un bon fonctionnement en termes de puissance du canal ;

    comparer le déplacement de fréquence centrale du canal par rapport à un ou plusieurs seuils de fréquence pour déterminer un bon fonctionnement en termes de fréquence du canal ;

    déterminer un bon fonctionnement du canal en se basant sur une équation de bon fonctionnement qui combine au moins le bon fonctionnement en termes de rapport OSNR, le bon fonctionnement en termes de puissance et le bon fonctionnement en termes de fréquence ensemble, et ;

    afficher le bon fonctionnement du canal sur un dispositif d'affichage (20).


     
    2. Procédé selon la revendication 1, dans lequel l'étape consistant à déterminer le bon fonctionnement du canal en se basant au moins en partie sur le bon fonctionnement en termes de rapport OSNR, le bon fonctionnement en termes de puissance et le bon fonctionnement en termes de fréquence comporte l'étape consistant à déterminer le bon fonctionnement du canal en se basant au moins en partie sur le bon fonctionnement en termes de rapport OSNR, le bon fonctionnement en termes de puissance et le bon fonctionnement en termes de fréquence, et par ailleurs en se basant au moins en partie sur un facteur de diaphonie de canal, un débit binaire, un type de modulation, et un type de correction d'erreurs sans voie de retour.
     
    3. Procédé selon la revendication 1, dans lequel l'étape consistant à afficher le bon fonctionnement du canal comporte l'étape consistant à afficher une description textuelle du bon fonctionnement du canal, la description textuelle comportant l'un parmi un bon fonctionnement défaillant, un bon fonctionnement marginal, et un bon fonctionnement accepté.
     
    4. Procédé selon la revendication 1, comportant par ailleurs l'étape consistant à afficher sur le dispositif d'affichage (20) le rapport OSNR, la puissance de canal, la fréquence centrale, un nombre de canaux analysés, et un espacement entre les canaux.
     
    5. Procédé selon la revendication 1, dans lequel l'étape consistant à afficher le bon fonctionnement du canal sur le dispositif d'affichage (20) comporte l'étape consistant à amener le dispositif d'affichage (20) à afficher une représentation graphique qui représente le bon fonctionnement de la pluralité de canaux canal par canal, dans lequel l'axe horizontal (22) de la représentation graphique montre la pluralité de canaux par ordre de longueurs d'onde respectives, de fréquences respectives, ou de nombres de canaux respectifs, et dans lequel l'axe vertical (21) de la représentation graphique montre le bon fonctionnement de chaque canal respectif.
     
    6. Procédé selon la revendication 5, dans lequel l'étape consistant à amener le dispositif d'affichage (20) à afficher la représentation graphique amène le dispositif d'affichage (20) à afficher la représentation graphique qui indique que le bon fonctionnement respectif d'un ou de plusieurs parmi la pluralité de canaux est considéré comme étant défaillant par au moins l'une des actions suivantes :

    afficher des canaux qui sont considérés comme étant défaillants dans une première couleur tout en affichant des canaux qui ne sont pas considérés comme étant défaillants dans une deuxième couleur qui est différente de la première couleur ;

    afficher le nombre de canaux correspondants de chaque canal qui est considéré comme étant défaillant ;

    afficher des canaux qui sont considérés comme étant défaillants dans une première largeur tout en affichant des canaux qui ne sont pas considérés comme étant défaillants dans une deuxième largeur qui est inférieure à la première largeur ; et

    afficher une flèche respective au-dessus de chaque canal qui est considéré comme étant défaillant.


     
    7. Procédé selon la revendication 5, comportant par ailleurs :
    l'étape consistant à fournir, par un ou plusieurs dispositifs informatiques, un menu interactif qui permet à un utilisateur d'ajuster au moins l'une parmi une plage et une unité de l'axe horizontal (22) de la représentation graphique.
     
    8. Appareil (20) qui affiche des indications se rapportant au bon fonctionnement d'un canal dans un système à multiplexage par répartition en longueur d'onde, l'appareil comportant :

    un port d'entrée configuré pour obtenir des caractéristiques de canal d'un canal du système à multiplexage par répartition en longueur d'onde ; dans lequel les caractéristiques de canal comportent un rapport OSNR (optical signal to noise ratio - rapport signal sur bruit optique) d'un canal du système à multiplexage par répartition en longueur d'onde, une puissance de canal et un déplacement de fréquence centrale du canal ;

    un processeur configuré pour

    comparer le rapport OSNR du canal par rapport à un ou plusieurs seuils de rapport OSNR pour déterminer un bon fonctionnement en termes de rapport OSNR du canal ;

    comparer la puissance de canal par rapport à un ou plusieurs seuils de puissance pour déterminer un bon fonctionnement en termes de puissance du canal ;

    comparer le déplacement de fréquence centrale du canal par rapport à un ou plusieurs seuils de fréquence pour déterminer un bon fonctionnement en termes de fréquence du canal ;

    déterminer un bon fonctionnement du canal en se basant sur une équation de bon fonctionnement qui combine au moins le bon fonctionnement en termes de rapport OSNR, le bon fonctionnement en termes de puissance et le bon fonctionnement en termes de fréquence ensemble ;

    et un affichage (20) configuré pour afficher le bon fonctionnement du canal et les caractéristiques du canal.


     
    9. Appareil selon la revendication 8, dans lequel l'équation de bon fonctionnement tient également compte d'au moins un parmi un facteur de diaphonie de canal, un débit binaire, un type de modulation, et un type de correction d'erreurs sans voie de retour.
     
    10. Appareil selon la revendication 9, dans lequel :

    le bon fonctionnement du canal comporte une valeur numérique de bon fonctionnement ;

    le processeur est configuré pour comparer la valeur numérique de bon fonctionnement par rapport à un ou plusieurs seuils pour déterminer un seul facteur de bon fonctionnement pour le canal, dans lequel lesdits un ou plusieurs seuils comportent un ou plusieurs parmi un seuil de défaillance et un seuil marginal ;

    et pour afficher le bon fonctionnement du canal, l'affichage est configuré pour afficher le seul facteur de bon fonctionnement du canal.


     
    11. Appareil selon la revendication 8, dans lequel le facteur de bon fonctionnement comporte une description textuelle comportant l'un parmi un bon fonctionnement défaillant, un bon fonctionnement marginal, et un bon fonctionnement accepté en fonction d'un résultat de la comparaison de la valeur numérique de bon fonctionnement par rapport à l'un ou plusieurs parmi le seuil de défaillance et le seuil marginal.
     
    12. Appareil selon la revendication 8, dans lequel l'affichage est par ailleurs configuré pour afficher le rapport OSNR, la puissance de canal, la fréquence centrale, un nombre de canaux analysés, et un espacement entre les canaux.
     
    13. Support lisible par ordinateur stockant un programme servant à amener un processeur à mesurer des caractéristiques d'un système à multiplexage par répartition en longueur d'onde comportant les étapes consistant à :

    obtenir des caractéristiques de canal d'un canal ; dans lequel les caractéristiques de canal comportent un rapport OSNR (optical signal to noise ratio - rapport signal sur bruit optique) d'un canal du système à multiplexage par répartition en longueur d'onde, une puissance de canal du canal et un déplacement de fréquence centrale du canal ;

    comparer le rapport OSNR du canal par rapport à un ou plusieurs seuils de rapport OSNR pour déterminer un bon fonctionnement en termes de rapport OSNR du canal ;

    comparer la puissance de canal par rapport à un ou plusieurs seuils de puissance pour déterminer un bon fonctionnement en termes de puissance du canal ;

    comparer le déplacement de fréquence centrale du canal par rapport à un ou plusieurs seuils de fréquence pour déterminer un bon fonctionnement en termes de fréquence du canal ;

    déterminer un bon fonctionnement du canal en se basant sur une équation de bon fonctionnement qui combine au moins le bon fonctionnement en termes de rapport OSNR, le bon fonctionnement en termes de puissance et le bon fonctionnement en termes de fréquence ensemble ; et

    afficher le bon fonctionnement du canal sur un dispositif d'affichage (20).


     
    14. Support lisible par ordinateur selon la revendication 13, dans lequel le programme amène par ailleurs le dispositif d'affichage (20) à afficher des caractéristiques de canal qui comportent le rapport OSNR, la puissance de canal, et une fréquence centrale du canal du système à multiplexage par répartition en longueur d'onde.
     
    15. Support lisible par ordinateur selon la revendication 14, dans lequel le programme amène par ailleurs le dispositif d'affichage (20) à afficher des caractéristiques de canal qui comportent par ailleurs un facteur de diaphonie de canal, un débit binaire, un type de modulation, et un type de correction d'erreurs sans voie de retour.
     
    16. Support lisible par ordinateur selon la revendication 13, dans lequel :

    lesdits un ou plusieurs seuils de rapport OSNR comportent un seuil de rapport OSNR défaillant et un seuil de rapport OSNR marginal de telle sorte que le bon fonctionnement en termes de rapport OSNR est déterminé comme étant l'un parmi défaillant, marginal ou accepté ;

    lesdits un ou plusieurs seuils de puissance comportent un seuil de puissance défaillant et un seuil de puissance marginal de telle sorte que le bon fonctionnement en termes de puissance est déterminé comme étant l'un parmi défaillant, marginal ou accepté ; et

    lesdits un ou plusieurs seuils de fréquence comportent un seuil de fréquence défaillant et un seuil de fréquence marginal de telle sorte que le bon fonctionnement en termes de fréquence est déterminé comme étant l'un parmi défaillant, marginal ou accepté.


     
    17. Support lisible par ordinateur selon la revendication 13, dans lequel le bon fonctionnement du canal est indiqué par une description textuelle comportant l'un parmi un bon fonctionnement défaillant, un bon fonctionnement marginal, et un bon fonctionnement accepté.
     
    18. Support lisible par ordinateur selon la revendication 16, comportant par ailleurs l'étape consistant à afficher sur l'affichage le rapport OSNR, la puissance de canal, la fréquence centrale, un nombre de canaux analysés, et un espacement entre les canaux.
     




    Drawing















































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description