(19)
(11)EP 2 900 957 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
20.11.2019 Bulletin 2019/47

(21)Application number: 13842277.9

(22)Date of filing:  24.09.2013
(51)International Patent Classification (IPC): 
F02C 7/04(2006.01)
F02K 3/06(2006.01)
(86)International application number:
PCT/US2013/061367
(87)International publication number:
WO 2014/052297 (03.04.2014 Gazette  2014/14)

(54)

NACELLE ANTI-ICE VALVE UTILIZED AS COMPRESSOR STABILITY BLEED VALVE DURING STARTING

ALS KOMPRESSORSTABILITÄTS-ENTLÜFTUNGSVENTIL WÄHREND DES STARTENS VERWENDETES GONDELENTEISUNGSVENTIL

VANNE D'ANTIGIVRAGE DE NACELLE SERVANT DE VANNE DE PRÉLÈVEMENT DE STABILITÉ DE COMPRESSEUR PENDANT UN DÉMARRAGE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 27.09.2012 US 201261706367 P
31.12.2012 US 201213731133

(43)Date of publication of application:
05.08.2015 Bulletin 2015/32

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventors:
  • MERCIER, Claude
    South Windsor, Connecticut 06074 (US)
  • COLLOPY, Gary
    Vernon, Connecticut 06066 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A2- 2 492 199
US-A1- 2010 001 138
US-A1- 2012 073 263
US-B2- 7 874 137
US-I5- B 535 928
US-A- 4 831 819
US-A1- 2010 281 880
US-A1- 2012 124 964
US-I5- B 535 928
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION



    [0001] This application relates to a gas turbine engine wherein a nacelle anti-ice valve provides a startup bleed valve function.

    [0002] Gas turbine engines are known, and typically include a fan delivering air into a bypass duct defined within a nacelle, and also into a core engine. The air in the core engine flow passes through a compressor section, and then into a combustion section. In the combustion section the air is mixed with fuel and ignited, and products of this combustion pass downstream over turbine rotors.

    [0003] There are many challenges in the design of a gas turbine engine. One challenge occurs at startup. There is typically a large load on the compressor as it begins rotating at startup. Thus, it is known to have a bleed valve in place that opens to allow the partially compressed air to be dumped out of the compressor section. In many engines, there are a plurality of these bleed valves.

    [0004] It is also known to provide a nacelle anti-icing system. The nacelle anti-icing system typically will tap hot air from the compressor section, and selectively deliver it to the lip of the nacelle to provide anti-icing at the lip of the nacelle. This anti-icing function is performed selectively, and is not necessary during much of the operation of a gas turbine engine on an aircraft. However, when conditions indicate that there may be icing at the lip of the nacelle, the valve may be opened to deliver the hot air to that location.

    [0005] In the prior art, the use of plural compressor stability bleed valves increases the complexity of the system. Further, should one of these bleed valves fail, air would be continuously bled from the compressor section. This would be undesirable, as the efficiency of the engine would be reduced and the hot air could damage other components positioned in the core.

    [0006] US 2010/281880 discloses a gas turbine engine according to the preamble of claim 1. Further gas turbine engines of the prior art are disclosed in US 2012/124964 and US 535928.

    SUMMARY OF THE INVENTION



    [0007] In accordance with the invention, there is provided a gas turbine engine as set forth in claim 1.

    [0008] In an embodiment, the anti-ice valve is left open at startup and the control is operable to close the anti-ice valve when conditions do not warrant the tapping of hot air for anti-icing function.

    [0009] In another embodiment according to any of the previous embodiments, the anti-ice system includes a nozzle positioned adjacent an upstream lip of the nacelle.

    [0010] In another embodiment according to any of the previous embodiments, a compressor stability bleed valve is positioned in the inner housing for selectively dumping air that has been at least partially compressed. The control is also configured to open said bleed valve is at startup.

    [0011] In another embodiment according to any of the previous embodiments, a fan is included in the gas turbine engine, and delivers air into a bypass duct inwardly of the nacelle, and also into the compressor section.

    [0012] In another embodiment according to any of the previous embodiments, a bypass ratio can be described as the volume of air passing into the bypass duct compared to the volume of air passing into the compressor. The bypass ratio is greater than 6.

    [0013] In another embodiment according to any of the previous embodiments, the bypass ratio is greater than 10.

    [0014] In another embodiment according to any of the previous embodiments, the fan is driven by a turbine that is included in the gas turbine engine. A gear reduction is positioned between the fan and turbine.

    [0015] In another embodiment according to any of the previous embodiments, a gear ratio of the gear reduction is greater than 2.3.

    [0016] In another embodiment according to any of the previous embodiments, the gear reduction is greater than 2.5.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0017] 

    Figure 1 schematically shows a gas turbine engine.

    Figure 2 is a cross-section through a high pressure compressor section.

    Figure 3 shows details of a gas turbine engine.


    DETAILED DESCRIPTION



    [0018] Figure 1 schematically illustrates a gas turbine engine 20. The gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engines might include an augmentor section (not shown) among other systems or features. The fan section 22 drives air along a bypass flowpath B in a bypass duct inwardly of a nacelle 80. The compressor section 24 receives air along a core flowpath C for compression and communication into the combustor section 26 then expansion through the turbine section 28. Although depicted as a turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with turbofans as the teachings may be applied to other types of turbine engines including three-spool architectures.

    [0019] The engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided.

    [0020] The low pressure spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor 44 and a low pressure turbine 46. The inner shaft 40 is connected to the fan 42, directly or through a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30. The high pressure spool 32 includes an outer shaft 50 that interconnects a high pressure compressor 52 and high pressure turbine 54. A combustor 56 is arranged between the high pressure compressor 52 and the high pressure turbine 54. A mid-turbine frame 57 of the engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46. The mid-turbine frame 57 further supports bearing systems 38 in the turbine section 28. The inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axes.

    [0021] The core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46. The mid-turbine frame 57 includes airfoils 59 which are in the core airflow path. The turbines 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion.

    [0022] The engine 20 in one example is a high-bypass geared aircraft engine. In a further example, the engine 20 bypass ratio is greater than six (6), with an example embodiment being greater than ten (10), the geared architecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than 2.3 and the low pressure turbine 46 has a pressure ratio that is greater than 5. In one disclosed embodiment, the engine 20 bypass ratio is greater than ten (10:1), the fan diameter is significantly larger than that of the low pressure compressor 44, and the low pressure turbine 46 has a pressure ratio that is greater than 5:1. Low pressure turbine 46 pressure ratio is pressure measured prior to inlet of low pressure turbine 46 as related to the pressure at the outlet of the low pressure turbine 46 prior to an exhaust nozzle. The geared architecture 48 may be an epicycle gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than 2.5:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans.

    [0023] A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 22 of the engine 20 is designed for a particular flight condition -- typically cruise at about 0.8 Mach and about 35,000 feet (10668 m). The flight condition of 0.8 Mach and 35,000 ft (10668 m), with the engine at its best fuel consumption - also known as "bucket cruise Thrust Specific Fuel Consumption ('TSFC')" - is the industry standard parameter of lbm of fuel being burned divided by lbf of thrust the engine produces at that minimum point. "Low fan pressure ratio" is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane ("FEGV") system. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than 1.45. "Low corrected fan tip speed" is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tram °R) / (518.7 °R)]0.5. The "Low corrected fan tip speed" as disclosed herein according to one non-limiting embodiment is less than about 1150 ft / second (350 m/second).

    [0024] Figure 2 shows the compressor section 52 having an inner wall 81, and an outer wall 82. These features may be part of a gas turbine engine generally as disclosed in Figure 1.

    [0025] The compressor section is provided with a compressor stability bleed valve 94. This valve is under the control of a control 196 which selectively opens the bleed valve 94 during engine startup such that compressed air is dumped outwardly of the compressor section 52 into a chamber 96. This reduces the load on the compressor rotors as they begin to rotate. As can be appreciated, the compressor stability bleed valve 94 dumps air into the chamber 96, and thus, components 200, shown schematically, within the space 96 are exposed to this hot air.

    [0026] The control 196 also controls an anti-ice valve 88. The anti-ice valve 88 also includes a tap 86 for tapping compressed air. As would be understood by someone who works in this art, this compressed air would be hot.

    [0027] As shown in Figure 3, the tap 86 passes through the anti-ice valve 88, into a conduit 84, and then to a nozzle 90 associated with a lip 92 at an upstream end of the nacelle 80.

    [0028] The nozzle 90 would shoot air in opposed circumferential directions such that the lip 92 is provided with this hot air, should conditions indicate that there may be icing. Typically, the anti-ice valve 88 would not be left open at all times, as that would reduce the efficiency of the compressor.

    [0029] In the prior art, the anti-ice valve 88 is normally closed, however, a control will open the valve when conditions indicate icing. In general, the anti-ice valve 88 has remained closed at startup, when the compressor stability bleed valves might open. In some cases, an anti-ice valve may have been opened at startup, but only if ambient conditions dictated the use. The present control algorithm would ensure the anti-ice valve is opened at startup, without consideration of ambient conditions. Further, while the specific embodiment does include both a bleed valve 94, and the anti-ice valve 88, it is possible the anti-ice valve 88 could be utilized on its own within the scope of this disclosure.

    [0030] In the present application, the control 196 may open the anti-ice valve 88 at startup. Alternatively, the anti-ice valve 88 may be designed such that it is normally opened, and is left open at startup. In such an arrangement, the control 196 would be operable to close the valve 88 when conditions do not warrant the tapping of hot air for an anti-icing function.

    [0031] Thus, the present invention utilizes the anti-ice valve 88 to perform not only the anti-ice function, but also to provide a compressor stability bleed valve. This thus eliminates the need for plural bleed valves. Further, should the valve 88 fail, it is directing hot air to a less sensitive area than does bleed valve 94.

    [0032] Although an embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the scope of this invention.


    Claims

    1. A gas turbine engine (20) comprising:

    a compressor section (52) received within an inner housing (81), and there being an outer housing (82) spaced radially outwardly of said inner housing (81), a nacelle (80);

    a nacelle anti-icing system configured to tap compressed air from said compressor section (52) through an anti-ice valve (88) and to said nacelle (80); and

    a control (196);

    characterised in that said control (196) is configured to ensure said anti-ice valve (88) is opened at startup of the gas turbine engine (20) without consideration of ambient conditions for the purpose of compressor stability assistance.


     
    2. The gas turbine engine as set forth in claim 1, wherein said anti-ice valve (88) is left open at startup and the control (196) is operable to close the anti-ice valve (88) when conditions do not warrant the tapping of hot air for anti-icing function.
     
    3. The gas turbine engine as set forth in claim 1 or 2, wherein said anti-ice system includes a nozzle (90) positioned adjacent an upstream lip (92) of said nacelle (80).
     
    4. The gas turbine engine as set forth in any preceding claim, wherein a compressor stability bleed valve (94) is positioned in said inner housing (81) for selectively dumping air which has been at least partially compressed and wherein said control (196) is also configured to open said bleed valve (94) during startup.
     
    5. The gas turbine engine as set forth in any preceding claim, wherein a fan (22) is included in the gas turbine engine (20), and said fan (22) delivering air into a bypass duct inwardly of said nacelle (80), and also delivering air into said compressor section (52).
     
    6. The gas turbine engine as set forth in claim 5, wherein a bypass ratio can be described as the volume of air passing into said bypass duct compared to the volume of air passing into said compressor section (52), and said bypass ratio being greater than 6.
     
    7. The gas turbine engine as set forth in claim 6, wherein said bypass ratio is greater than 10.
     
    8. The gas turbine engine as set forth in any of claims 5, 6 or 7, wherein said fan (22) is driven by a turbine (28) that is included in said gas turbine engine (20), and a gear reduction is positioned between said fan (22) and said turbine (28).
     
    9. The gas turbine engine as set forth in claim 8, wherein a gear ratio of said gear reduction is greater than 2.3.
     
    10. The gas turbine engine as set forth in claim 9, wherein said gear reduction is greater than 2.5.
     


    Ansprüche

    1. Gasturbinenmotor (20), umfassend:

    einen Kompressorabschnitt (52), der innerhalb eines Innengehäuses (81) aufgenommen ist, und wobei es ein Außengehäuse (82) gibt, das radial auswärts des Innengehäuses (81) beabstandet ist, eine Gondel (80);

    ein Gondelenteisungssystem, das konfiguriert ist, um komprimierte Luft aus dem Kompressorabschnitt (52) durch ein Enteisungsventil (88) und zu der Gondel (80) anzuzapfen; und

    eine Steuerung (196);

    dadurch gekennzeichnet, dass die Steuerung (196) konfiguriert ist, um sicherzustellen, dass das Enteisungsventil (88) beim Starten des Gasturbinenmotors (20) geöffnet wird, ohne Berücksichtigung von Umgebungsbedingungen zum Zwecke der Unterstützung der Kompressorstabilität.


     
    2. Gasturbinenmotor nach Anspruch 1, wobei das Enteisungsventil (88) beim Starten offen gelassen wird und die Steuerung (196) bedienbar ist, um das Enteisungsventil (88) zu schließen, wenn Bedingungen das Anzapfen von heißer Luft für die Enteisungsfunktion nicht rechtfertigen.
     
    3. Gasturbinenmotor nach Anspruch 1 oder 2, wobei das Enteisungssystem eine Düse (90) beinhaltet, die benachbart zu einem stromaufwärtigen Rand (92) der Gondel (80) positioniert ist.
     
    4. Gasturbinenmotor nach einem vorhergehenden Anspruch, wobei ein Kompressorstabilitätsentlüftungsventil (94) in dem Innengehäuse (81) positioniert ist, um selektiv Luft abzuladen, die zumindest teilweise komprimiert worden ist, und wobei die Steuerung (196) auch konfiguriert ist, um das Entlüftungsventil (94) während des Startens zu öffnen.
     
    5. Gasturbinenmotor nach einem vorhergehenden Anspruch, wobei in dem Gasturbinenmotor (20) ein Gebläse (22) enthalten ist, und wobei das Gebläse (22) Luft in einen Umgehungskanal einwärts der Gondel (80) liefert und auch Luft in den Kompressorabschnitt (52) liefert.
     
    6. Gasturbinenmotor nach Anspruch 5, wobei ein Umgehungsverhältnis als das Volumen von Luft, das in den Umgehungskanal verläuft, verglichen mit dem Volumen von Luft, das in den Kompressorabschnitt (52) verläuft, beschrieben werden kann, und das Umgehungsverhältnis größer als 6 ist.
     
    7. Gasturbinenmotor nach Anspruch 6, wobei das Umgehungsverhältnis größer als 10 ist.
     
    8. Gasturbinenmotor nach einem der Ansprüche 5, 6 oder 7, wobei das Gebläse (22) durch eine Turbine (28) angetrieben wird, die in dem Gasturbinenmotor (20) enthalten ist, und ein Untersetzungsgetriebe zwischen dem Gebläse (22) und der Turbine (28) positioniert ist.
     
    9. Gasturbinenmotor nach Anspruch 8, wobei ein Getriebeverhältnis des Untersetzungsgetriebes größer als 2,3 ist.
     
    10. Gasturbinenmotor nach Anspruch 9, wobei das Untersetzungsgetriebe größer als 2,5 ist.
     


    Revendications

    1. Moteur à turbine à gaz (20) comprenant :

    une section de compresseur (52) reçue à l'intérieur d'un logement interne (81), et il est prévu un logement externe (82) espacé radialement vers l'extérieur dudit logement interne (81), une nacelle (80) ;

    un système d'antigivrage de nacelle conçu pour exploiter l'air comprimé provenant de ladite section de compresseur (52) à travers une vanne d'antigivrage (88) et jusqu'à ladite nacelle (80) ; et

    une commande (196) ;

    caractérisé en ce que ladite commande (196) est conçue pour veiller à ce que ladite vanne d'antigivrage (88) est ouverte au démarrage du moteur à turbine à gaz (20) sans égard aux conditions environnementales pour les besoins de l'assistance de stabilité de compresseur.


     
    2. Moteur à turbine à gaz selon la revendication 1, dans lequel ladite vanne d'antigivrage (88) est laissée ouverte au démarrage et la commande (196) peut être utilisée pour fermer la vanne d'antigivrage (88) lorsque les conditions ne garantissent pas l'exploitation de l'air chaud pour la fonction d'antigivrage.
     
    3. Moteur à turbine à gaz selon la revendication 1 ou 2, dans lequel ledit système d'antigivrage comprend une buse (90) positionnée de manière adjacente à un bord amont (92) de ladite nacelle (80).
     
    4. Moteur à turbine à gaz selon une quelconque revendication précédente, dans lequel une vanne de prélèvement de stabilité de compresseur (94) est positionnée dans ledit logement intérieur (81) pour vider de manière sélective l'air qui a été au moins partiellement compressé et dans lequel ladite commande (196) est également conçue pour ouvrir ladite vanne de prélèvement (94) pendant un démarrage.
     
    5. Moteur à turbine à gaz selon une quelconque revendication précédente, dans lequel une soufflante (22) est incluse dans le moteur à turbine à gaz (20), et ladite soufflante (22) fournissant de l'air dans une conduite de dérivation à l'intérieur de ladite nacelle (80), et fournissant également de l'air dans ladite section de compresseur (52).
     
    6. Moteur à turbine à gaz selon la revendication 5, dans lequel un taux de dilution peut être décrit comme le volume d'air passant dans ladite conduite de dérivation par rapport au volume d'air passant dans ladite section de compresseur (52), et ledit taux de dilution étant supérieur à 6.
     
    7. Moteur à turbine à gaz selon la revendication 6, dans lequel ledit taux de dilution est supérieur à 10.
     
    8. Moteur à turbine à gaz selon l'une quelconque des revendications 5, 6 ou 7, dans lequel ladite soufflante (22) est commandée par une turbine (28) qui est incluse dans ledit moteur à turbine à gaz (20), et une démultiplication est positionnée entre ladite soufflante (22) et ladite turbine (28).
     
    9. Moteur à turbine à gaz selon la revendication 8, dans lequel un rapport d'engrenage de ladite démultiplication est supérieur à 2,3.
     
    10. Moteur à turbine à gaz selon la revendication 9, dans lequel ladite démultiplication est supérieure à 2,5.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description