(19)
(11)EP 2 901 067 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.12.2020 Bulletin 2020/50

(21)Application number: 13856339.0

(22)Date of filing:  13.09.2013
(51)Int. Cl.: 
F16M 13/00  (2006.01)
F01D 21/04  (2006.01)
F02C 7/32  (2006.01)
(86)International application number:
PCT/US2013/059746
(87)International publication number:
WO 2014/081500 (30.05.2014 Gazette  2014/22)

(54)

AUXILIARY COMPONENT MOUNTS

HILFSKOMPONENTENTRÄGER

SUPPORTS DE COMPOSANTS AUXILIAIRES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 28.09.2012 US 201261706848 P

(43)Date of publication of application:
05.08.2015 Bulletin 2015/32

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventors:
  • ROBERTSON, Thomas, J.
    Glastonbury, CT 06033 (US)
  • CLARKSON, Steven
    Cheshire, CT 06410 (US)
  • COSTA, Mark, W.
    Storrs, CT 06268 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A2- 1 010 878
EP-A2- 1 473 441
US-A1- 2012 148 392
US-B1- 6 402 469
US-B1- 6 447 248
US-B2- 7 360 986
US-B2- 8 104 736
EP-A2- 1 382 805
US-A1- 2004 006 967
US-B1- 6 398 259
US-B1- 6 447 248
US-B2- 6 715 746
US-B2- 8 104 736
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the Disclosure



    [0001] The present disclosure relates generally to gas turbine engines and, more particularly, to an auxiliary component mount for a gas turbine engine.

    Background of the Disclosure



    [0002] Gas turbine engines typically utilize a turbine fan to draw ambient air into the engine for compression and combustion by the engine. The turbine fan is shrouded by an engine casing. Various auxiliary components, such as electrical boxes, engine oil tanks, gearboxes, valves, control systems for regulating the engine's operations, and other components, are mounted to the engine casing. Various mounting systems mount the auxiliary components to the engine casing.

    [0003] Conventional mounting systems may become subjected to a high degree of shock loading not experienced during normal engine operating conditions. For example, a high shock load may result from a fan-blade out event, which occurs when a fan-blade breaks off of an engine rotor body. A fan-blade out event may also result in an imbalance in the engine rotor body which may cause outward deflection and a rotor body shaft imbalance. The mounting system may not be able to withstand the high shock load of a fan-blade out event, causing separation of the auxiliary components from the engine casing. Or, the mounting system may transfer the high shock load to the auxiliary components, causing damage to the auxiliary components.

    [0004] Accordingly, there exists a need to provide a mounting system for a gas turbine engine auxiliary component that can effectively and reliably withstand a shock load from a fan-blade out event.

    [0005] US 6 447 248 B1 discloses a prior art mount.

    [0006] EP 1 382 805 A2 discloses a prior art frangible coupling.

    [0007] EP 1 010 878 A2 discloses a prior art variable stiffness positioning link for a gearbox.

    [0008] EP 1 473 441 A2 discloses a prior art apparatus for mounting a gas turbine engine.

    [0009] US 2012/0148392 A1 discloses a mount for mounting a component to a gas turbine engine.

    Summary of the Disclosure



    [0010] According to the present invention, there is provided a mount for mounting a component to a gas turbine engine as set forth in claim 1.

    [0011] In a refinement, the fusible region may be of a reduced thickness than a thickness of a rest of the flange.

    [0012] In another refinement, the fusible region may be a continuous region around an entire perimeter of the flange.

    [0013] In another refinement, the flange may include disconnected fusible regions around a perimeter of the flange.

    [0014] In another refinement, the predetermined load may be between an inclusive range of twenty (20) to one hundred (100) times the weight of the component.

    [0015] In another refinement, the fusible region may have a reduced stiffness than a rest of the flange.

    [0016] In another refinement, the two retention flanges may be generally "L"-shaped.

    [0017] In another refinement, the central portion may be centrally located within the mount and include pins for receiving bolts.

    [0018] In yet another refinement, the flange may extend around a perimeter of the central portion from an upper section of the central portion to an outer surface of a casing of the gas turbine engine.

    [0019] In another refinement, a gas turbine engine is disclosed. The gas turbine engine may comprise a fan section, a compressor section downstream of the fan section, a combustor section downstream of the compressor section, a turbine section downstream of the combustor section, and a casing enclosing the fan section, the compressor section, the combustor section, and the turbine section. The mount may be disposed on an outer surface of the casing and attached to a component. The fusible region may break at a predetermined load to isolate the component from the predetermined load.

    [0020] In a refinement, the mount may be located on the casing in a fan containment zone enclosing the fan section.

    [0021] In another refinement, the mount may be integral to the engine casing.

    [0022] In another refinement, the mount may include a central portion for attachement to the component, and a flange integrally extending from an outer surface of the engine casing to the central portion, the fusible region located on the flange.

    [0023] In another refinement, the mount may be bonded to the engine casing.

    [0024] In yet another refinement, the mount may include a central portion for attachment to the component, and a flange including the fusible region and extending from the central portion to an outer surface of the engine casing, the flange having a surface bonded to an outer surface of the engine casing.

    Brief Description of the Drawings



    [0025] 

    FIG. 1 is a schematic cross-sectional view of a gas turbine engine according to one embodiment of the present disclosure;

    FIG. 2 is a cross-sectional view of part of a fan case of the gas turbine engine of FIG. 1;

    FIG. 3 is a perspective view of a component mounted to a fan case of the gas turbine engine of FIG. 1;

    FIG. 4 is a perspective view of a mount used to mount the component to the fan case of FIG. 3;

    FIG. 5 is a cross-sectional view of a mount arrangement outside of the wording of the claims;

    FIG. 6 is a cross-sectional view of a mount according to another arrangement outside of the wording of the claims;

    FIG. 7 is a perspective view of a mount according to another embodiment of the present disclosure;

    FIG. 8 is a cross-sectional view of a mount according to another embodiment of the present disclosure;

    FIG. 9 is a cross-sectional view of a retention element of the mount of FIG. 8;

    FIG. 10 is a perspective view of a retention element according to another arrangement outside of the wording of the claims;



    [0026] FIG. 11 is a flowchart illustrating an exemplary process for protecting a component mounted to a gas turbine engine, according to yet another embodiment of the present disclosure.

    [0027] While the present disclosure is susceptible to various modifications and alternative constructions, certain illustrative embodiments thereof, will be shown and described below in detail. The invention is not limited to the specific embodiments disclosed, and includes all modifications, alternative constructions, and equivalents thereof.

    Detailed Description



    [0028] Referring now to the drawings, and with specific reference to FIG. 1, in accordance with the teachings of the disclosure, an exemplary gas turbine engine 20 is shown. The gas turbine engine 20 may generally comprise a fan section 22 which draws ambient air into the engine 20, a compressor section 24 where the air is pressurized, a combustion section 26 which mixes and ignites the compressed air with fuel generating hot combustion gases, and a turbine section 28 for extracting power from the hot combustion gases. The compressor and turbine sections 24, 28 may each contain one or more stages of a compressor and a turbine which rotate about an engine longitudinal axis 30. The fan section 22, compressor section 24, combustion section 26, and turbine section 28 of the gas turbine engine 20 may be circumscribed by a generally cylindrical engine casing 32. The engine casing 32 may serve as a main structural support for the gas turbine engine 20.

    [0029] The engine casing 32 may include a fan casing 34 which may enclose the fan section 22. As shown best in FIG. 2, the fan casing 34 may have a fan containment zone 36. In the event a fan blade 38, or a portion of the fan blade 38, becomes separated from the engine rotor body (not shown), the fan blade 38 is expected to strike the fan casing 34 at a location in the fan containment zone 36.

    [0030] Referring now to FIGS. 3-6, at least one mount 40 may be used for mounting one or more auxiliary or external components 42 to the engine casing 32, such as to the fan casing 34 in the fan containment zone 36. Mounts 40 may certainly be used in other locations of the engine casing 32 as well. Mounts 40 may be used for mounting components 42, such as electrical boxes, engine oil tanks, gearboxes, valves, control systems for regulating the engine's operations, or other components. The components 42 may be directly attached to the mount 40, or via a bracket 44. More specifically, the components 42 may have or be attached to the bracket 44, which are then attached to the mount 40.

    [0031] The mount 40 may be integral to the fan casing 34, as shown best in FIG. 5. For example, the mount 40 may be machined when the fan casing 34 is initially forged. Alternatively, as shown best in FIG. 6, the mount 40 may be manufactured separately and subsequently bonded to an outer surface 46 of the fan casing 34.

    [0032] The mount 40 may comprise a central portion 50 and at least one flange 54. The central portion 50 may be configured to attach the component 42 or bracket 44 onto the mount 40. For example, the central portion 50 may have pins 51 for receiving bolts 52, or other suitable means of attachment. The central portion 50 may be centrally located within the mount 40 and may have a generally rectangular solid shape, although other configurations are certainly possible. The central portion 50 is not bonded, attached, or integral to the outer surface 46 of the fan casing 34.

    [0033] The flange 54 may comprise a generally planar segment circumscribing the central portion 50. From an upper section 55 of the central portion 50, the flange 54 extends down to the outer surface 46 of the fan casing 34. The flange 54 may surround a perimeter of the central portion 50 or mount 40, although other configurations are certainly possible. The flange 54 may facilitate attachment of the mount 40 to the fan casing 34.

    [0034] For example, in the embodiment of FIG. 5, wherein the mount 40 is integral to the fan casing 34, the flange 54 may integrally extend from the outer surface 46 of the fan casing 34 to the central portion 50. Alternatively, in the embodiment of FIG. 6, wherein the mount 40 is separately manufactured, the flange 54 may be configured to attach the mount 40 to the outer surface 46 of the fan casing 34. For example, the flange 54 may have a surface 48 for bonding to the outer surface 46 of the fan casing 34. An adhesive (e.g., epoxy) or other suitable bonding agent may be applied to the surface 48 of the flange 54 for attaching the mount 40 to the outer surface 46 of the fan casing 34. Other means of attachment than bonding, such as, without limitation, bolting, welding, or the like, may also be used to attach the flange 54 to the fan casing 34.

    [0035] The flange 54 includes at least one fusible region 56 configured to break when the mount 40 is subject to a predetermined load, force, acceleration, energy or impact. For example, the predetermined load of the fusible region 56 may be greater than a maximum maneuver load of the gas turbine engine 20, such as, but not included to, twenty (20) times the weight of the component 42 (or 20G multiplied by the mass of the component 42), thereby allowing for the mount 40 to withstand maximum engine maneuver load conditions. The predetermined load may also be less than an impact load of a fan-blade out event, such as, for example, one hundred (100) times the weight of the component 42 (or 100G multiplied by the mass of the component 42). Thus, as an example, the predetermined load may be between an inclusive range of twenty (20) to one hundred (100) times the weight of the component 42. The predetermined load may certainly be less than twenty (20) times the weight of the component 42 or greater than one hundred (100) times the weight of the component 42, as well.

    [0036] When the mount 40 experiences a load greater than the maximum engine maneuver load and less than or equal to the impact load of a fan-blade out event, the fusible region 56 of the mount 40 breaks. When the fusible region 56 breaks the flange 54, the central portion 50 of the mount 40 detaches from the fan casing 34, thereby stopping a transfer of the impact load to the component 42. Thus, the fusible region 56 of the flange 54 discontinues a transfer of the predetermined load from the fan casing 34 to the component 42. In so doing, the mount 40 prevents damage to the component 42 during the fan-blade out event. Other values than twenty (20) times the weight of the component 42 for the maximum engine maneuver load are certainly possible. In addition, other values than one hundred (100) times the weight of the component 42 for the impact load are certainly possible.

    [0037] The fusible region 56 may be comprised of frangible or deformable material having a variable stiffness as a rest 57 of the flange 54. For example, as shown best in FIGS. 5 & 6, the fusible region 56 may be comprised of a same material as the flange 54 and may have a reduced thickness than a thickness of the rest 57 of the flange 54. The fusible region 56 may be one-half (1/2) to two-thirds (2/3) of the thickness of the rest 57 of the flange 54 adjacent to the fusible region 56, although other thicknesses are certainly possible. As an example, the thickness of the rest 57 of the flange 54 may be 3.0 mm, while the reduced thickness of the fusible region 56 may be between 1.5 mm to 2.0 mm. In other embodiments, the fusible region 56 may be composed of a different material and a same thickness as the rest of the flange 54, such as, a material composition having reduced durability, resilience, or strength than a composition of the rest of the flange 54. At the predetermined load, the fusible region 56 breaks, while the rest of the flange 54 does not.

    [0038] The fusible region 56 may comprise a continuous region around an entire length or at least part of a perimeter of the flange 54, as shown best in FIG. 4. Alternatively, as shown best in FIG. 7, the flange 54 may have disconnected fusible regions 56 around the perimeter of the flange 54. Other configurations than that depicted in FIGS. 4 & 7 are certainly possible.

    [0039] Referring now to FIGS. 8 & 9, the mount 40 has a retention element 58 configured to retain the component 42 to the fan casing 34 after the fusible region 56 breaks. With the retention element 58, the mount 40 may restrict free motion of the component 42, while still preventing energy transmission from the fan casing 34 to the component 42. The fusible region 56 comprises a fusible link 60. The retention element 58 comprises two retention flanges 62, and the fusible link 60 is positioned between the two retention flanges 62. Configured to break at the predetermined load, the fusible link 60 may be of reduced thickness than the rest of the flange 54, or may be composed of weaker material than the rest of the flange. Formed as part of the flange 54, retention flanges 62 may be configured to engage with each other after the fusible link 60 breaks. For example, retention flanges 62 may be generally "L"-shaped. Retention flanges 62 may maintain a connection of the central portion 50 to a section 64 of the flange 54 that is integral to the fan casing 34 or has a surface 48 bonded to the fan casing 34. It will be understood that the retention element 58 may comprise other designs, such as retention flanges having a hooking arrangement, without departing from the scope of the present disclosure. Furthermore, in arrangements outside of the wording of the claims, the retention element 58 may be external to the mount 40. For example, as shown in FIG. 10, the retention element 58 may comprise a strap 66, such as a lanyard attachment or other suitable material, positioned over the component 42 and around a circumference of the fan casing 34 or engine casing 32. When the fusible region 56 of the mount 40 breaks during a fan-blade out event, the strap 66 holds the component 42 to the fan casing 34, thereby restricting free motion of the component 42.

    [0040] Referring now to the flowchart of FIG. 11, with continued reference to FIGS. 1-10, an exemplary process 70 for protecting a component 42 mounted to a gas turbine engine 20 is shown. At block 72, the mount 40 is attached to the casing 32 of the gas turbine engine 20, the mount 40 including a fusible region 56 that breaks at a predetermined load. The component 42 is attached to the mount 40 at block 74. At block 76, the fusible region 56 breaks when the mount 40 experiences the predetermined load, thereby detaching the component 42 from the casing 32 of the gas turbine engine 20. It is to be understood that blocks 72-76 may be performed in a different order than that shown in FIG. 11. For example, the component 42 may be attached to the mount 40 before the mount 40 is attached to the casing 32 of the gas turbine engine 20.

    Industrial Applicability



    [0041] From the foregoing, it can be seen that the teachings of this disclosure can find industrial application in any number of different situations, including but not limited to, gas turbine engines. Such engines may be used, for example, on aircraft for generating thrust, or in land, marine, or aircraft applications for generating power.

    [0042] The described disclosure provides an effective and reliable mount for a gas turbine engine auxiliary component that can withstand a shock load from a fan-blade out event. By providing the mount with a fusible region, the shock load is not transferred to the component, thereby isolating the component from damage. Furthermore, by providing a controlled or predetermined break point of the fusible region, the mounting member can safely react to all engine maneuver loads and maintain structural capability, while preventing the transfer of a predetermined load that may cause damage to the auxiliary component. Moreover, the retention element of the present disclosure prevents excessive deflection of the auxiliary component after the fusible region breaks.


    Claims

    1. A mount (40) for mounting a component to a gas turbine engine (20), comprising:

    a central portion (50) configured to attach to the component (42); and

    a flange (54) circumscribing the central portion (50) and configured to extend to the gas turbine engine (20), the flange (54) including a fusible region (56) that breaks at a predetermined load;

    wherein:

    the mount (40) further comprises a retention element (58) for retaining the component (42) to the gas turbine engine (20); and

    the fusible region (56) is a fusible link (60), wherein the retention element (58) includes two retention flanges (62) configured to engage with each other when the fusible link (60) breaks, the fusible link (60) positioned between the two retention flanges (62).


     
    2. The mount (40) of claim 1, wherein the fusible region (56) is of a reduced thickness than a thickness of a rest of the flange (54).
     
    3. The mount (40) of claim 1 or 2, wherein the fusible region (56) is a continuous region around an entire perimeter of the flange (54).
     
    4. The mount (40) of claim 1 or 2, wherein the flange (54) includes disconnected fusible regions (56) around a perimeter of the flange (54).
     
    5. The mount (40) of any preceding claim, wherein the predetermined load is between an inclusive range of twenty (20) to one hundred (100) times the weight of the component (42).
     
    6. The mount (40) of any preceding claim, wherein the fusible region (56) has a reduced stiffness than a rest of the flange (54).
     
    7. The mount (40) of any preceding claim, wherein the two retention flanges (62) are generally "L"-shaped.
     
    8. The mount (40) of any preceding claim, wherein the central portion (50) is centrally located within the mount (40) and includes pins (51) for receiving bolts (52).
     
    9. The mount (40) of any preceding claim, wherein the flange (54) extends around a perimeter of the central portion (50) from an upper section (55) of the central portion (50) to an outer surface (46) of a casing (32) of the gas turbine engine (20).
     
    10. A gas turbine engine (20), comprising:

    a fan section (22);

    a compressor section (24) downstream of the fan section (22);

    a combustor section (26) downstream of the compressor section (24);

    a turbine section (28) downstream of the combustor section (26); and

    a casing (32, 34) enclosing the fan section (22), the compressor section (24), the combustor section (26), and the turbine section (28), the casing (32, 34) including
    a mount (40) of any preceding claim, disposed on an outer surface (46) of the casing (32, 34) and attached to a component (42), wherein the fusible region (56) that breaks at a predetermined load to isolate the component (42) from the predetermined load.


     
    11. The gas turbine engine (20) of claim 10, wherein the mount (40) is located on the casing (34) in a fan containment zone enclosing the fan section (22).
     
    12. The gas turbine engine (20) of claim 10 or 11, wherein the mount (40) is integral to the engine casing (32).
     
    13. The gas turbine engine (20) of claim 12, wherein the flange (54) integrally extends from an outer surface (46) of the engine casing (34) to the central portion (50), the fusible region (56) located on the flange (54).
     
    14. The gas turbine engine (20) of claim 10, wherein the mount (40) is bonded to the engine casing (32).
     
    15. The gas turbine engine (20) of claim 14, wherein the flange (54) extends from the central portion (50) to an outer surface (46) of the engine casing (32), the flange (54) having a surface bonded to an outer surface (46) of the engine casing (32).
     


    Ansprüche

    1. Träger (40) zum Tragen einer Komponente eines Gasturbinentriebwerks (20), umfassend:

    einen Mittelabschnitt (50), der konfiguriert ist, um an der Komponente (42) angebracht zu werden; und

    einen Flansch (54), der den Mittelabschnitt (50) umgibt und konfiguriert ist, um sich zu dem Gasturbinentriebwerk (20) zu erstreckt, wobei der Flansch (54) eine schmelzbare Region (56) beinhaltet, die bei einer vorbestimmten Last bricht;

    wobei:

    der Träger (40) ferner ein Rückhalteelement (58) zum Zurückhalten der Komponente (42) an dem Gasturbinentriebwerk (20) umfasst; und

    die schmelzbare Region (56) eine Schmelzverbindung (60) ist, wobei das Rückhalteelement (58) zwei Rückhalteflansche (62) beinhaltet, die konfiguriert sind, um ineinander einzugreifen, wenn die Schmelzverbindung (60) bricht, wobei die Schmelzverbindung (60) zwischen den zwei Rückhalteflanschen (62) positioniert ist.


     
    2. Träger (40) nach Anspruch 1, wobei die schmelzbare Region (56) eine geringere Dicke als eine Dicke des Restes des Flansches (54) aufweist.
     
    3. Träger (40) nach Anspruch 1 oder 2, wobei die Schmelzregion (56) eine durchgehende Region um einen gesamten Umfang des Flansches (54) ist.
     
    4. Träger (40) nach Anspruch 1 oder 2, wobei der Flansch (54) getrennte Schmelzregionen (56) um einen Umfang des Flansches (54) beinhaltet.
     
    5. Träger (40) nach einem der vorangehenden Ansprüche, wobei die vorbestimmte Last zwischen einem einschließlichen Bereich von zwanzig (20) bis hundert (100) Mal dem Gewicht der Komponente (42) liegt.
     
    6. Träger (40) nach einem der vorangehenden Ansprüche, wobei die Schmelzregion (56) eine geringere Steifigkeit als ein Rest des Flansches (54) aufweist.
     
    7. Träger (40) nach einem der vorangehenden Ansprüche, wobei die zwei Rückhalteflansche (62) im Allgemeinen "L"-förmig sind.
     
    8. Träger nach einem der vorangehenden Ansprüche, wobei der Mittelabschnitt (50) mittig in dem Träger (40) angeordnet ist und Stifte (51) zum Aufnehmen von Bolzen (52) beinhaltet.
     
    9. Träger (40) nach einem der vorangehenden Ansprüche, wobei sich der Flansch (54) um einen Umfang des Mittelabschnitts (50) von einem oberen Teil (55) des Mittelabschnitts (50) zu einer Außenfläche (46) eines Gehäuses (32) des Gasturbinentriebwerks (20) erstreckt.
     
    10. Gasturbinentriebwerk (20), umfassend:

    einen Gebläseteil (22);

    einen Verdichterteil (24) stromabwärts des Gebläseteils (22);

    einen Brennkammerteil (26) stromabwärts des Verdichterteils (24) ;

    einen Turbinenteil (28) stromabwärts des Brennkammerteils (26);

    und

    ein Gehäuse (32, 34), das den Gebläseteil (22), den Verdichterteil (24), den Brennkammerteil (26) und den Turbinenteil (28) umschließt, wobei das Gehäuse (32, 34) einen Träger (40) eines der vorangehenden Ansprüche beinhaltet, der auf einer Außenfläche (46) des Gehäuses (32, 34) angeordnet und an einer Komponente (42) angebracht ist, wobei die Schmelzregion (56), die bei einer vorbestimmten Last bricht, um die Komponente (42) von der vorbestimmten Last zu isolieren.


     
    11. Gasturbinentriebwerk (20) nach Anspruch 10, wobei der Träger (40) an dem Gehäuse (34) in einer Gebläserückhaltezone angeordnet ist, die den Gebläseteil (22) umgibt.
     
    12. Gasturbinentriebwerk (20) nach Anspruch 10 oder 11, wobei der Träger (40) einstückig mit dem Triebwerksgehäuse (32) ist.
     
    13. Gasturbinentriebwerk (20) nach Anspruch 12, wobei sich der Flansch (54) einstückig von der Außenfläche (46) des Triebwerksgehäuses (34) zu dem Mittelabschnitt (50) erstreckt, wobei die Schmelzregion (56) an dem Flansch angeordnet ist.
     
    14. Gasturbinentriebwerk (20) nach Anspruch 10, wobei der Träger (40) an das Triebwerksgehäuse (32) gebunden ist.
     
    15. Gasturbinentriebwerk (20) nach Anspruch 14, wobei sich der Flansch (54) von dem Mittelabschnitt (50) zu einer Außenfläche (46) des Triebwerksgehäuses (32) erstreckt, wobei der Flansch (54) eine Oberfläche aufweist, die an eine Außenfläche (46) des Triebwerksgehäuses (32) gebunden ist.
     


    Revendications

    1. Support (40) pour monter un composant sur un moteur à turbine à gaz (20), comprenant :

    une partie centrale (50) configurée pour se fixer au composant (42) ; et

    une bride (54) circonscrivant la partie centrale (50) et configurée pour s'étendre jusqu'au moteur à turbine à gaz (20), la bride (54) comportant une zone fusible (56) qui se rompt à une charge prédéterminée ;

    dans lequel :

    le support (40) comprend en outre un élément de retenue (58) pour retenir le composant (42) sur le moteur à turbine à gaz (20) ; et

    la zone fusible (56) est une liaison fusible (60), dans lequel l'élément de retenue (58) comporte deux brides de retenue (62) configurées pour venir en prise l'une avec l'autre lorsque la liaison fusible (60) se rompt, la liaison fusible (60) étant positionnée entre les deux brides de retenue (62).


     
    2. Support (40) selon la revendication 1, dans lequel la zone fusible (56) est d'une épaisseur réduite par rapport à une épaisseur d'un reste de la bride (54).
     
    3. Support (40) selon la revendication 1 ou 2, dans lequel la zone fusible (56) est une zone continue autour d'un périmètre entier de la bride (54).
     
    4. Support (40) selon la revendication 1 ou 2, dans lequel la bride (54) comporte des zones fusibles (56) déconnectées autour d'un périmètre de la bride (54).
     
    5. Support (40) selon une quelconque revendication précédente, dans lequel la charge prédéterminée est comprise entre une plage inclusive de vingt (20) à cent (100) fois le poids du composant (42) .
     
    6. Support (40) selon une quelconque revendication précédente, dans lequel la zone fusible (56) a une rigidité réduite par rapport à un reste de la bride (54).
     
    7. Support (40) selon une quelconque revendication précédente, dans lequel les deux brides de retenue (62) sont généralement en forme de « L ».
     
    8. Support (40) selon une quelconque revendication précédente, dans lequel la partie centrale (50) est située au centre à l'intérieur du support (40) et comporte des broches (51) pour recevoir des boulons (52).
     
    9. Support (40) selon une quelconque revendication précédente, dans lequel la bride (54) s'étend autour d'un périmètre de la partie centrale (50) d'une section supérieure (55) de la partie centrale (50) jusqu'à une surface externe (46) d'un carter (32) du moteur à turbine à gaz (20).
     
    10. Moteur à turbine à gaz (20), comprenant :

    une section de soufflante (22) ;

    une section de compresseur (24) en aval de la section de soufflante (22) ;

    une section de chambre de combustion (26) en aval de la section de compresseur (24) ;

    une section de turbine (28) en aval de la section de chambre de combustion (26) ; et

    un carter (32, 34) renfermant la section de soufflante (22), la section de compresseur (24), la section de chambre de combustion (26) et la section de turbine (28), le carter (32, 34) comportant un support (40) selon une quelconque revendication précédente, disposé sur une surface externe (46) du carter (32, 34) et fixé à un composant (42), dans lequel la zone fusible (56) se rompt à une charge prédéterminée pour isoler le composant (42) de la charge prédéterminée.


     
    11. Moteur à turbine à gaz (20) selon la revendication 10, dans lequel le support (40) est situé sur le carter (34) dans une zone de confinement de soufflante renfermant la section de soufflante (22).
     
    12. Moteur à turbine à gaz (20) selon la revendication 10 ou 11, dans lequel le support (40) fait partie intégrante du carter de moteur (32).
     
    13. Moteur à turbine à gaz (20) selon la revendication 12, dans lequel la bride (54) s'étend intégralement d'une surface externe (46) du carter de moteur (34) jusqu'à la partie centrale (50), la zone fusible (56) étant située sur la bride (54).
     
    14. Moteur à turbine à gaz (20) selon la revendication 10, dans lequel le support (40) est lié au carter de moteur (32).
     
    15. Moteur à turbine à gaz (20) selon la revendication 14, dans lequel la bride (54) s'étend de la partie centrale (50) jusqu'à une surface externe (46) du carter de moteur (32), la bride (54) ayant une surface liée à une surface externe (46) du carter de moteur (32).
     




    Drawing

































    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description