(19)
(11)EP 2 903 940 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
01.04.2020 Bulletin 2020/14

(21)Application number: 13843970.8

(22)Date of filing:  05.09.2013
(51)International Patent Classification (IPC): 
C03B 5/225(2006.01)
C03B 5/20(2006.01)
B01F 11/02(2006.01)
F23C 99/00(2006.01)
C03B 5/235(2006.01)
C03B 3/00(2006.01)
F23C 15/00(2006.01)
(86)International application number:
PCT/US2013/058295
(87)International publication number:
WO 2014/055200 (10.04.2014 Gazette  2014/15)

(54)

METHODS AND SYSTEMS FOR DESTABILIZING FOAM IN EQUIPMENT DOWNSTREAM OF A SUBMERGED COMBUSTION MELTER

VERFAHREN UND SYSTEME ZUR SCHAUMDESTABILISIERUNG EINER TAUCHBRENNERGLASSCHMELZANLAGE

PROCÉDÉS ET SYSTÈMES DE DÉSTABILISATION DE MOUSSE DANS UN ÉQUIPEMENT EN AVAL D'UN POT DE FUSION À COMBUSTION IMMERGÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 03.10.2012 US 201213644104

(43)Date of publication of application:
12.08.2015 Bulletin 2015/33

(73)Proprietor: Johns Manville
Denver, CO 80202 (US)

(72)Inventors:
  • CHARBONNEAU, Mark, William
    Lakewood, CO 80226 (US)
  • HUBER, Aaron, Morgan
    Castle Rock, CO 80108 (US)

(74)Representative: Dörr, Klaus 
Dörr IP Nordring 29
65719 Hofheim
65719 Hofheim (DE)


(56)References cited: : 
WO-A1-2012/125665
DE-B- 1 038 721
US-A- 3 499 743
US-A- 4 406 683
US-A- 4 539 034
US-A1- 2012 216 576
US-B1- 6 318 126
CH-A- 254 502
GB-A- 1 514 317
US-A- 4 205 966
US-A- 4 406 683
US-A1- 2003 015 000
US-A1- 2014 090 421
US-B1- 6 398 547
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND INFORMATION


    Technical Field



    [0001] The present disclosure relates generally to the field of combustion furnaces and methods of use to produce glass, and more specifically to methods and systems to destabilize foam in glass handling equipment downstream of a submerged combustion melter.

    Background Art



    [0002] A submerged combustion melter (SCM) may be employed to melt glass batch materials to produce molten glass by passing oxygen, oxygen-enriched mixtures, or air along with a liquid, gaseous fuel, or particulate fuel in the glass batch, directly into a molten pool of glass usually through burners submerged in a glass melt pool. The introduction of high flow rates of oxidant and fuel into the molten glass, and the expansion of the gases cause rapid melting of the glass batch and much turbulence, and possibly foaming. Certain SCMs and/or flow channels may employ one or more high momentum burners, for example, to impinge on portions of a foam layer. High momentum burners are disclosed in US2013086951 A1. "High momentum" combustion burners means burners configured to have a fuel velocity ranging from about 150 ft./second to about 1000 ft./second (about 46 meters/second to about 305 meters/second) and an oxidant velocity ranging from about 150 ft./second to about 1000 ft./second (about 46 meters/second to about 305 meters/second).

    [0003] Often it is a primary goal to melt batch or other feed materials in an SCM as quickly and with as small a footprint SCM as possible. Although this is still desired for the most part, one drawback to this strategy in known submerged combustion systems and methods of melting glass-forming materials using an SCM is the tendency of the foam formed in the SCM to be resistant to destruction or even reduction. This may cause one or more problems in equipment downstream of the SCM, for example, glass conditioning and transport may be hindered as the foam layer may serve as an insulator and may limit the amount of energy capable of being transferred to the molten glass to maintain its temperature. Foam found in (or on top of) glasses typically exists as stable tetrahedral bubbles which need an outside influence to de-stabilize them and therefore break the foam, allowing heat transfer into the glass from burners located above the glass line. In addition, the foam may be destructive of forehearth heating systems and construction materials. In extreme cases, the foam may cause systems to require shutdown, maintenance and may result in a process upset. Attempts to reduce the foam through process adjustments, summarized in "Glass Industry of the Future", U.S Dept. of Energy, Report 02-GA50113-03, September 30, 2008, such as use of helium and steam to scavenge and consolidate bubbles, sonic methods to consolidate bubbles, vacuum to increase bubble size, and centrifugal force have not met with complete success in reducing foam to an acceptable amount.
    GB1514317 A teaches a method for melting of glass, optionally by immersed combustion, using an appropriate apparatus. The fusion, refining and homogenization of the glass melt may be supported by mechanical action (i.e. vibration), such as by means of an ultrasonic generator.
    US2012216576 A1 describes an ultrasonic horn submerged from above in a glass melt for refining, which horn is therefore connected to the roof of the refining channel.
    Glass refining by dropping particles on the melt is disclosed in US3499743 A, including sulfur-containing compounds. Also in US6318126 B1 foam on a glass melt is de-stabilized by spraying from the top. In WO2012125665 A1 Na2SO4 is sprayed on the glass foam.
    In US6398547 B1 pulsed burners are used for de-stabilizing foam on a glass melt.
    US2014090421 A1 discloses de-stabilizing foam from a submerged combustion melter through influencing the atmosphere.
    CH254502 A teaches a method for refining glass, the method comprising inserting a vibrating electrode into the molten glass.
    DE1038721 B discloses the injection of liquids such as water into glass melts with the purpose of refining.
    In US4406683 A a screen-like mechanical device is employed for de-stabilizing foam.

    [0004] It would be an advance in the glass manufacturing art if foam produced during submerged combustion melting of glass-forming materials could be de-stabilized, reduced, or even completely destroyed in equipment downstream of the SCM.

    SUMMARY



    [0005] In accordance with the present disclosure, methods and systems are described which reduce or overcome one or more of the above problems.

    [0006] A first aspect of the disclosure is a method comprising:

    flowing a molten mass of glass and bubbles into an apparatus downstream of a submerged combustion melter, the downstream apparatus comprising a floor, a roof, and a wall connecting the floor and the roof, the downstream apparatus devoid of submerged combustion burners and other components that would increase turbulence of the molten mass, the molten mass having foam on at least a portion of a top surface of the molten mass; and

    imposing a de-stabilizing force directly to the foam or to the molten mass and foam, the force selected from the group consisting of a vibratory force, an acoustic wave force, a particulate-based force, and a non-particulate-based mechanical force.



    [0007] A second aspect of the disclosure is a system comprising:

    an apparatus configured to be fluidly connected downstream of a submerged combustion melter, the downstream apparatus comprising a floor, a roof, a wall structure connecting the floor and roof, the floor, roof, and wall structure defining an internal space configured to contain a flowing or non-flowing molten mass of glass and foam, the apparatus devoid of submerged combustion burners and other components that would increase turbulence of the molten mass, the molten mass having foam on at least a portion of a top surface of the molten mass; and

    one or more de-stabilization apparatus configured to impose a de-stabilizing force directly to the foam or to the molten mass and foam, the de-stabilization apparatus selected from the group consisting of a vibration apparatus, an acoustic wave force generating apparatus, a particulate-based force generating apparatus, and a non-particulate-based mechanical force generating apparatus.



    [0008] Methods and systems of this disclosure will become more apparent upon review of the brief description of the drawings, the detailed description of the disclosure, and the claims that follow.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0009] The manner in which the objectives of the disclosure and other desirable characteristics can be obtained is explained in the following description and attached drawings in which:

    FIGS. 1A, 1B, 1D, 1F, 1H, 1J, 2A, 2C, and 2E are schematic side elevation views, partially in cross-section, of various system embodiments in accordance with the present disclosure, and FIGS. 1C, 1E, 1G, 1I, 1K, 2D, and 2F are schematic transverse cross-sectional views of the system embodiments illustrated in FIGS. 1B, 1D, 1F, 1H, 1J, 2A, 2C, and 2E, respectfully;

    FIG. 2B is a schematic perspective view of a screen and associated equipment that may be useful in the system illustrated in FIG. 2A; and

    FIG. 3 is a logic diagram of one method embodiment of the present disclosure.



    [0010] It is to be noted, however, that the appended drawings are not to scale and illustrate only typical embodiments of this disclosure, and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.

    DETAILED DESCRIPTION



    [0011] In the event definitions of terms in the referenced patents and applications conflict with how those terms are defined in the present application, the definitions for those terms that are provided in the present application shall be deemed controlling.

    [0012] As explained briefly in the Background, one drawback to present submerged combustion melting systems and methods is that the foam formed in the SCM may cause one or more problems in equipment downstream of the SCM, for example, glass conditioning and transport may be hindered as the foam layer may serve as an insulator and may limit the amount of energy capable of being transferred to the molten glass to maintain its temperature. Foam found in (or on top of) glasses typically exists as stable tetrahedral bubbles which need an outside influence to de-stabilize them and therefore break the foam.

    [0013] Applicants have discovered certain methods and systems that may reduce or eliminate such shortcomings.

    [0014] Various terms are used throughout this disclosure. "Submerged" as used herein means that combustion gases emanate from a combustion burner exit that is under the level of the molten glass; and "non-submerged" means that combustion gases do not emanate from combustion burner exits under the level of molten glass. Both submerged and non-submerged burners may be roof-mounted, floor-mounted, wall-mounted, or any combination thereof (for example, two floor mounted burners and one wall mounted burner). "SC" as used herein means "submerged combustion" unless otherwise specifically noted, and "SCM" means submerged combustion melter unless otherwise specifically noted.

    [0015] The terms "foam" and "foamy" include froths, spume, suds, heads, fluffs, fizzes, lathers, effervesces, layer and the like. The term "bubble" means a thin, shaped, gas-filled film of molten glass. The shape may be spherical, hemispherical, rectangular, polyhedral, ovoid, and the like. The gas or "bubble atmosphere" in the gas-filled SC bubbles may comprise oxygen or other oxidants, nitrogen, combustion products (including but not limited to, carbon dioxide, carbon monoxide, NOx, SOx, H2S, and water), reaction products of glass-forming ingredients (for example, but not limited to, sand (primarily SiO2), clay, limestone (primarily CaCO3), burnt dolomitic lime, borax and boric acid, and the like. Bubbles may include solids particles, for example soot particles, either in the film, the gas inside the film, or both.

    [0016] As used herein the term "combustion" means deflagration-type combustion unless other types of combustion are specifically noted, such as detonation-type combustion. Deflagration is sub-sonic combustion that usually propagates through thermal conductivity; hot burning material heats the next layer of cold material and ignites it. Detonation is supersonic and primarily propagates through shock. As used herein the terms "combustion gases" and "combustion products" means substantially gaseous mixtures of combusted fuel, any excess oxidant, and combustion products, such as oxides of carbon (such as carbon monoxide, carbon dioxide), oxides of nitrogen, oxides of sulfur, and water, whether from deflagration, detonation, or combination thereof. Combustion products may include liquids and solids, for example soot and unburned or non-combusted fuels.

    [0017] "Oxidant" as used herein includes air and gases having the same molar concentration of oxygen as air, oxygen-enriched air (air having oxygen concentration greater than 21 mole percent), and "pure" oxygen, such as industrial grade oxygen, food grade oxygen, and cryogenic oxygen. Oxygen-enriched air may have 50 mole percent or more oxygen, and in certain embodiments may be 90 mole percent or more oxygen.

    [0018] The term "fuel", according to this disclosure, means a combustible composition comprising a major portion of, for example, methane, natural gas, liquefied natural gas, propane, hydrogen, steam-reformed natural gas, atomized hydrocarbon oil, combustible powders and other flowable solids (for example coal powders, carbon black, soot, and the like), and the like. Fuels useful in the disclosure may comprise minor amounts of non-fuels therein, including oxidants, for purposes such as premixing the fuel with the oxidant, or atomizing liquid or particulate fuels. As used herein the term "fuel" includes gaseous fuels, liquid fuels, flowable solids, such as powdered carbon or particulate material, waste materials, slurries, and mixtures or other combinations thereof.

    [0019] The sources of oxidant and fuel may be one or more conduits, pipelines, storage facility, cylinders, or, in embodiments where the oxidant is air, ambient air. Oxygen-enriched oxidants may be supplied from a pipeline, cylinder, storage facility, cryogenic air separation unit, membrane permeation separator, or adsorption unit such as a vacuum swing adsorption unit.

    [0020] The term "downstream apparatus" means a container, channel or conduit defined at least by a floor and a wall structure extending upwards from the floor to form a space in which molten glass may be present, whether flowing or not. In certain embodiments the downstream apparatus will include a roof and a wall structure connecting the floor and roof. The downstream apparatus may have any operable cross-sectional shape (for example, but not limited to, rectangular, oval, circular, trapezoidal, hexagonal, and the like) and any flow path shape (for example, but not limited to, straight, zigzag, curved, and combinations thereof). In certain systems and methods the downstream apparatus may be a flow channel selected from the group consisting of a conditioning channel, a distribution channel, and a forehearth.

    [0021] Conduits used in particle guns and other devices, such as hoppers used for delivery of particles, and mechanical structures such as screens, paddles, blades, and the like useful in systems and methods of the present disclosure may be comprised of metal, ceramic, ceramic-lined metal, or combination thereof. Suitable metals include stainless steels, for example, but not limited to, 306 and 316 steel, as well as titanium alloys, aluminum alloys, and the like. Suitable materials for the glass-contact refractory, which may be present in SC melters and flow channels, and refractory burner blocks (if used), include fused zirconia (ZrO2), fused cast AZS (alumina-zirconia-silica), rebonded AZS, or fused cast alumina (Al2O3). The particular system and method, downstream apparatus, burner geometry, foam de-stabilization apparatus, and type of glass to be produced may all dictate the choice of a particular material, among other parameters.

    [0022] Certain foam de-stabilization apparatus useful in systems and methods of this disclosure may be fluid-cooled.

    [0023] Certain systems of this disclosure may comprise one or more non-submerged detonation combustion burners, which may be used for heating and/or foam destruction purposes. Suitable non-submerged combustion burners may comprise a fuel inlet conduit having an exit nozzle, the conduit and nozzle inserted into a cavity of a ceramic burner block, the ceramic burner block in turn inserted into either the roof or the wall structure, or both the roof and wall structure of the downstream apparatus.

    [0024] In certain systems, one or more detonation and deflagration combustion burners may be adjustable with respect to direction of flow of the combustion products. Adjustment may be via automatic, semi-automatic, or manual control. Certain system embodiments may comprise a burner mount that mounts the burner in the wall structure, roof, or floor of the downstream apparatus comprising a refractory, or refractory-lined ball joint. Other burner mounts may comprise rails mounted in slots in the wall or roof. In yet other embodiments the burners may be mounted outside of the downstream apparatus, on supports that allow adjustment of the combustion products flow direction. Useable supports include those comprising ball joints, cradles, rails, and the like.

    [0025] In certain systems and methods of the present disclosure, the downstream apparatus may comprise a flow channel comprising a series of sections, and may comprise one or more skimmers and/or impingement (high momentum) burners, such as described in US2013086951 A1 and US2013327096 A1. Certain systems and methods of the present disclosure may utilize measurement and control schemes such as described in US2013327092 A1 and/or feed batch densification systems and methods as described in US2014007622 A1.

    [0026] Certain system and method embodiments of this disclosure may be controlled by one or more controllers. For example, detonation burner and/or pulsed detonation device combustion (flame) temperatures may be controlled by monitoring one or more parameters selected from velocity of the fuel, velocity of the primary oxidant, mass and/or volume flow rate of the fuel, mass and/or volume flow rate of the primary oxidant, energy content of the fuel, temperature of the fuel as it enters the burner, temperature of the primary oxidant as it enters the burner, temperature of the effluent, pressure of the primary oxidant entering the burner, humidity of the oxidant, burner geometry, combustion ratio, and combinations thereof. Certain systems and methods of this disclosure may also measure and/or monitor feed rate of batch or other feed materials, such as glass batch, cullet, mat or wound roving and treatment compositions, mass of feed, and use these measurements for control purposes. Exemplary systems and methods of the disclosure may comprise a controller which receives one or more input parameters selected from temperature of melt, composition of bubbles and/or foam, height of foam layer, and combinations thereof, and may employ a control algorithm to control combustion temperature, flow rate and/or composition of foam de-stabilization compositions, vibration or oscillation of components, movement of mechanical foam de-stabilization devices into and out of contact with foam, and other output parameters based on one or more of these input parameters.

    [0027] Specific non-limiting system and method embodiments in accordance with the present disclosure will now be presented in conjunction with the attached drawing figures. The same numerals are used for the same or similar features in the various figures. In the views illustrated in the drawing figures, it will be understood in each case that the figures are schematic in nature, and certain conventional features may not be illustrated in all embodiments in order to illustrate more clearly the key features of each embodiment. The geometry of forehearth 4 or other downstream apparatus is illustrated generally the same in the various embodiments, but that of course is not necessary.

    [0028] The system embodiments illustrated in FIGS. 1 and 2 present one or more de-stabilization apparatus configured to impose a de-stabilizing force directly to the foam or to the molten mass and foam. FIGS. 1A, 1B, 1D, 1F, 1H, 1J, 2A, 2C, and 2E are schematic side elevation views, partially in cross-section, of various system embodiments in accordance with the present disclosure, and FIGS. 1C, 1E, 1G, 1I, 1K, 2D, and 2F are schematic transverse cross-sectional views of the system embodiments illustrated in FIGS. 1B, 1D, 1F, 1H, 1J, 2A, 2C, and 2E, respectfully.

    [0029] FIG. 1A is a schematic side elevation view, partially in cross-section, of one system embodiment 100 in accordance with the present disclosure. In all of the drawing figures where an SCM is illustrated, such as at 2 in FIG. 1A, the SCM is illustrated in dashed lines, indicating that the SCM is not, strictly speaking, a part of every system and method of the present disclosure. However, certain systems and methods may be described as comprising an SCM and one or more downstream apparatus receiving flow of molten glass and foam from the SCM. Molten glass and foam produced in SCM 2 flow into a forehearth or other downstream apparatus 4 via a melter exit structure 6, also illustrated in dashed lines. Downstream apparatus 4 comprises in this embodiment a floor 8, a roof 10, and a sidewall structure 12 connecting floor 8 and roof 10, and these components define an internal space 14 that confines a flowing or non-flowing mass of molten glass 16 having a foam layer 18 generally on a top surface thereof. In certain embodiments, roof 10 may not be present. One or more apertures 20 (please see FIG. 1B) in roof 10 and/or wall structure 12 may be present as described herein.

    [0030] SC burners (not illustrated) in SCM 2 produce a turbulent melt comprising bubbles having a bubble atmosphere. In general the atmosphere of the bubbles is about the same from bubble to bubble, but that is not necessarily so. The bubbles form bubble layer 18. One or more burners in SCM 2 may be oxy/fuel burners. SCM 2 may receive numerous feeds through one or more inlet ports, and batch feeders maybe provided. Other feeds are possible, such as glass mat waste, wound roving, waste materials, and the like, such as disclosed in US2012077135 A1.

    [0031] In accordance with the present disclosure, de-stabilization apparatus may be selected from vibration apparatus, acoustic wave force generating apparatus, particulate-based force generating apparatus, and non-particulate-based mechanical force generating apparatus. Embodiment 100 illustrated schematically in FIG. 1A employs a vibration apparatus 104 connected to downstream apparatus 4 via one or more connecting members 106. Connecting member(s) 106 may be connected to one or more of floor 8, wall structure 12, and roof 10 of downstream apparatus 4. Vibration apparatus 104 may be selected from electric, hydraulic, and pneumatic vibration apparatus. Vibration apparatus 104 may be configured to impose a vibratory motion (indicated schematically by the plurality of dashes, 110) having a frequency and amplitude to the glass and foam sufficient to de-stabilize bubbles in one or more portions or locations of foam 18 and cause at least some, and in certain embodiments a majority, of the bubbles in foam 18 to break. The vibratory motion may be in one or more directions, for example horizontal vibration only, vertical vibration only, or motions having both horizontal and vertical portions. The vibratory motion may be substantially constant over a given time period, or may vary in frequency and/or amplitude over time. In certain exemplary systems and methods vibration apparatus 104 may be configured to vary the frequency and/or amplitude using a controller 108 to identify an optimal frequency for de-stabilizing the majority of the bubbles in foam 18 and cause at least a majority of the bubbles in foam 18 to break. Vibration apparatus 104 are commercially available from a number of sources, for example, products available from Deca Vibrator Industries, Inc., Mokena, Illinois (USA), which offers industrial vibrators powered by pneumatic, electric, or hydraulic drives, and are available in rotary or linear models with fixed and portable mounting systems. Stainless steel and explosion proof vibrators for hazardous environments are also available. Certain embodiments may comprise the entire downstream apparatus being placed on a vibratory table (not illustrated), in which systems vibration apparatus 104 would be mechanically coupled to the vibration table.

    [0032] Another class of de-stabilizing apparatus are acoustic wave force generating apparatus, one example including one or more pulsed, non-foam-impinging, non-submerged combustion burners as illustrated in embodiment 200 of FIGS. 1B and 1C. Embodiment 200 features multiple pulsed, non-foam-impinging, non-submerged combustion burners 112, 114, and 116, with each burner controlled via electronic communication with a controller 118, having access to a pulse frequency and/or pulse amplitude adjustment device 121, which may or may not be integral with controller 118. Electronic communication between controller 118 and burners 112, 114, and 116 may either be performed using wired or wireless communication. As illustrated in FIG. 1C, combustion products or flames "F" of pulsed burners 112, 114, and 116 do not directly impinge upon foam layer 18, but through their pulsed or oscillating nature, impose acoustic waves "AW" onto foam 18. Acoustic waves "AW" are illustrated emanating generally from flames "F" or combustion products. One or more burners 112, 114, 116 may be positionable, for example using a ball turret 115 made of high-temperature ceramic or other material.

    [0033] Valves 36, 38 and appropriate valve controls (not illustrated) may be provided to pulse or oscillate flow of fuel and/or oxidant flowing to burners 112, 114, and 116 through conduits 32, 34, respectively. Lines "P" indicate pulses of combustion products produced by pulsing or oscillating oxidant and/or fuel valves 36, 38. The pulsing may be random or non-random, and may provide certain benefits, such as reduced NOx emissions. The principle and the various methods of implementation are broadly described in U.S. Patent No. 4,846,665, U.S. Patent No. 5,302,111, U.S. Patent No. 5,522,721, and U.S. Publication No. 2006/0177785. The main idea is to pulse the flow of fuel and/or oxidant being supplied to at least one burner 112, 114, 116, to generate successive fuel-rich and fuel-lean zones in a flame. In certain embodiments, the flow rate of a main or primary oxidant may be controlled by a main oxidant flow rate control unit, and oscillating combustion may be generated by oscillating the fuel flow with an oscillating valve and combusting the oscillating fuel with the main oxidant adjacent the burner to produce combustion products. A post-combustion oxidant may also be injected into the combustion products, and the injection rate of the post-combustion oxidant may be controlled by a post-combustion oxidant flow rate control unit. The combustion products and the injected post-combustion oxidant may then be combusted. A rate of the fuel flow may be predetermined. A controller may be provided that may be operatively associated with the main oxidant flow rate control unit, the oscillating valve, and the post-combustion oxidant flow rate control unit. A value or values associated with one or more combustion parameters (including a rate of flow of the main oxidant, a rate of flow of the post-combustion oxidant, a frequency of the oscillating fuel flow, an amplitude of the oscillating fuel flow, a duty cycle of the oscillating fuel flow) nay be determined. The combustion parameter associated with the determined value or values may be adjusted. The determined value or values may be based upon the predetermined fuel flow rate. The determining step may be performed by the controller.

    [0034] In embodiment 200, burners 112, 114, and 116 may be high- or low-momentum detonation combustion burners, and the combustion products or flames do not directly impinge or touch foam layer 18 to de-stabilize the foam, but rely on acoustic wave forces as described.

    [0035] Another embodiment including one or more acoustic wave force generating apparatus is embodiment 300 illustrated schematically in FIGS. 1D and 1E, which may include one or more pulsed detonation engines (PDE) 123, 125, 127, 129, and 131 positioned in corresponding apertures 20 in wall 12 and/or roof 10 of downstream apparatus 4. FIG. 1D illustrates two PDEs 127a, 127b, spaced apart longitudinally along a central longitudinal axis of downstream apparatus 4. PDEs may have many constructions, but are essentially single-pipe burners having a source of fuel and a source of oxidant attached near a rear end of pipe or conduit, sometimes referred to as a barrel. As illustrated schematically in FIGS. 1D and 1E, PDEs may be positioned in multiple longitudinal and transverse positions in downstream apparatus 4, examples being the relative longitudinal positions of PDEs 127a, 127b illustrated schematically in FIG. 1D, and the relative transverse positions of PDEs 125, 127, and 129 illustrated schematically in FIG. 1E. As with other embodiments, a controller 118 and device 121 to modulate frequency and/or amplitude of acoustic waves emanating from the detonation combustion of the PDEs may be provided. As indicated schematically in FIG. 1E, PDEs due to their nature not only provide acoustic waves AW by virtue of the pulsed nature of the detonation combustion and flames F, they also provide an element of thrust "T" as indicated by the streamlines in each PDE flame F. The principle of the PDE process is quite simple, and discussed in an article by Babul et al., "Production of Coatings With Use of Gas Detonation Engine Parts Production and Regeneration Applications", Journal of KONES Powertrain and Transport, Vol. 18, No. 3 2011. A conduit, pipe (barrel), closed at one end, is filled with a combustible gas mixture generated in a mixing and detonation chamber. In certain embodiments propane-butane or acetylene may be mixed with oxygen. The mixture in the detonation chamber is then ignited. Initially, there is a deflagration and next there is deflagration to detonation transition and eventually the detonation wave propagates along the barrel. The velocity of the detonation products behind the detonation wave is of order of 1000 - 1400 m/s and temperature is of order of 3500 K. In certain embodiments, such as embodiment 600 discussed herein, a particulate material may be injected in a form of fine particles into the barrel. The particles of the material are accelerated and heated up by the detonation products and after flowing out from the barrel they hit the foam and, in accordance with the present disclosure, will tend to break up the foam. In embodiment 300 illustrated schematically in FIGS. 1D and 1E, merely the acoustic waves "AW" produced by the PDEs are employed to break up bubbles of foam.

    [0036] Yet another embodiment including one or more acoustic wave force generating apparatus is embodiment 400 illustrated schematically in FIGS. 1F and 1G, which includes one or more audio speaker drivers 133, 135, 137, 139, and 141 positioned in corresponding apertures 20 in wall 12 and roof 10 of downstream apparatus 4. In certain embodiments wires 143 may connect the drivers and speakers to a controller 118 having capability of varying frequency and/or amplitude of the speaker output using a separate device 121. Controller 118 may include an amplifier, or the amplifier may be present as a separate component. In certain embodiments the speaker drivers may be wirelessly electronically connected to controller 118 and/or device 121. As illustrated schematically in FIGS. 1F and 1G, speaker drivers may be positioned in multiple longitudinal and transverse positions in downstream apparatus 4, examples being the relative longitudinal positions of speaker drivers 133a and 133b, and the relative transverse positions of speaker drivers 133, 137, and 139. Speaker drivers include a diaphragm that moves back and forth to create pressure waves in the air column in front, and depending on the application, at some angle to the sides. The diaphragm is typically in the shape of a cone for low and mid frequencies or a dome for higher frequencies, or less commonly, a ribbon, and is usually made of coated or uncoated paper or polypropylene plastic. More exotic materials may be used on some drivers, such as woven fiberglass, carbon fiber, aluminum, titanium, and polymeric films as the cone, dome or radiator. In the present disclosure, due to the high temperatures present in glass manufacturing, one or more of the exotic materials may be preferred. In any case, all speaker drivers have a means of electrically inducing back-and-forth motion of the diaphragm. Typically there is a tightly wound coil of insulated wire (known as a voice coil) attached to the neck of the driver's cone. In a ribbon speaker the voice coil may be printed or bonded onto a sheet of very thin paper, aluminum, fiberglass or plastic. This cone, dome or other radiator is mounted to a rigid chassis that supports a permanent magnet in close proximity to the voice coil. For the sake of efficiency the relatively lightweight voice coil and cone are the moving parts of the driver, whereas the much heavier magnet remains stationary. Other typical components are a spider or damper, used as the rear suspension element, simple terminals or binding posts to connect the audio signal, and possibly a compliant gasket to seal the joint between the chassis and enclosure.

    [0037] In accordance with the present disclosure, speaker drivers may be mounted into a rigid enclosure of metal, ceramic material, or ceramic-coated metal, and mounted in roof 10 or wall 12 of downstream apparatus 4. The enclosures isolate the acoustic energy from the front of the cone from that of the back of the cone. A horn (not illustrated) may be employed to increase efficiency and directionality. A front grille or other acoustically neutral screen (not illustrated) may be provided to protect the driver from physical damage. In operation, a signal is delivered to the voice coil by means of electrical wires or wireless communication from an amplifier, then through flexible tinsel wire to the moving coil. The current creates a magnetic field that causes the diaphragm to be alternately attracted to, and repelled by, the fixed magnet as the electrical signal varies. The resulting back-and-forth motion drives the air in front of the diaphragm, resulting in pressure differentials that travel away as sound waves, indicated at "AW" in FIG. 1G. Speaker drivers may be designed to operate within a broad or narrow frequency range. Small diaphragms are not well suited to moving the large volume of air that is required for satisfying low frequency response. Conversely, large drivers may have heavy voice coils and cones that limit their ability to move at very high frequencies. Drivers pressed beyond their design limits may have high distortion, but this may not be a major concern in the present application.

    [0038] In certain embodiments, such as embodiment 400 illustrated in FIGS. 1F and 1G, where multiple speaker drivers are present, specialized drivers may be provided to produce specific frequency ranges, and a crossover may split the incoming signal. In embodiments according to the present disclosure, suitable frequencies may range from about 10Hz to about 80,000 Hz, or from about 2000 Hz to about 60,000 Hz, while suitable amplitudes may range from about 80 decibels (db) to about 130 db, or from about 90 db to about 125 db.

    [0039] Those skilled in this art will readily recognize after having read this disclosure that systems and methods comprising combinations of any two or more of the various embodiments described herein may be combined. For example, systems and methods where vibration, such as in embodiment 100, may also include one or more speaker drivers, as in embodiment 400.

    [0040] In order to determine which of the many foam de-stabilization apparatus and techniques may work best for any given situation may take a small amount of experimentation, but the degree of experimentation is not considered to be extensive or undue. Basically, the molten mass of glass and foam is allowed to enter the downstream apparatus, and one or more of the foam de-stabilization techniques begun soon thereafter, and tuned to achieve the greatest de-stabilization effect on the foam. If the foam for some reason is so stable as to not be affected at all by the particular de-stabilization apparatus or method, it may simply be discontinued.

    [0041] Another class or type of foam de-stabilization system and method is the use of a particulate-based force generating apparatus. Two embodiments, 500 and 600, are now discussed in relation to FIGS. 1H, 1I, 1J, and 1K. Embodiment 500 comprises one or more hoppers 151, 153, 155, and 157 containing one or more particles or particulate matter "PM" that may simply be dropped onto portions of foam 18 in downstream apparatus 4. One or more hoppers may route particles through roof 10, through sidewall 12, or through both as illustrated schematically in FIG. 1I, through apertures 20. As illustrated schematically in FIGS. 1H and 1I, hoppers may be positioned in multiple longitudinal and transverse positions in downstream apparatus 4, examples being the relative longitudinal positions of hoppers 151a and 151b, and the relative transverse positions of hoppers 151a, 155, and 157. In the case of hopper 153, a downward-slanting chute 158 may be provided. Each aperture 20 may have a corresponding hopper as illustrated in FIGS. 1H and 1I, or one hopper may feed several apertures 20. While it is contemplated that that particulate will flow merely by gravity from the hoppers, and the hoppers need not have a pressure above the solids level, certain embodiments may include a pressurized headspace above the solids in the hoppers. In embodiments such as embodiment 500, the teachings of assignee's co-pending application serial number 13/540704, filed July 3, 2012, describing various screw-feeder embodiments, and teaching of feed material compaction may be useful, although in the present methods and systems loss of batch or other feed material is not the primary concern. In fact, in terms of foam de-stabilization, uncompacted batch or other particulate matter may be preferred. One or more of the hoppers may include shakers or other apparatus common in industry to dislodge overly compacted solids and keep the particles flowing. Furthermore, each hopper may have a valve other apparatus to stop or adjust flow of particulate matter into downstream apparatus 4. These details are not illustrated for sake of brevity.

    [0042] FIGS. 1J and 1K illustrate schematically another embodiment 600 of particulate-based force generating apparatus. One or more particle guns 161, 163, 165, and 167 may be positioned in corresponding apertures in wall 12, roof 10, or both and configured to propel the plurality of particles "PM" onto at least a portion of the foam with sufficient momentum to break at least a portion of bubbles forming the foam. Each particle gun 161, 163, 165, and 167 may have its own hopper 175, or multiple particle guns may share a hopper. In any case, a source 171 of compressed gas, such as a source of compressed dry air, routes the compressed gas through a conduit 173 and control valve 177 to particle gun 163, which then routes the particles and some of the gas toward foam layer 18 and impinges directly thereon. (Only one arrangement of compressed gas source, feed conduit, and control valve is illustrated in FIG. 1K, it being understood that each particle gun includes a similar arrangement). The amount and pressure of compressed gas that will be required will depend on the type and composition of the particles, their density and degree of compaction, feed rate of particles to the individual particle guns, which in turn depends on the degree to which foam is to be de-stabilized. It is contemplated that the particle guns may be positionable using a ball turret or other device, such as illustrated in FIG. 1C with respect to the use of low momentum burners, but this is not necessarily so. In the case of carbon dioxide particles being used, a special type of particle gun, informally referred to as a snow horn 169, may be used. Snow horn 169 would be fed gaseous or liquid carbon dioxide from a storage tank 179 or other facility, such as a pipeline, and flow adjusted through a supply conduit and control valve 177. Snow horns are well understood by those skilled in the art and require little explanation. Reference may be made to the following U.S. Patent Nos. 3,492,829; 3,786,644; and 4,415,346. As an alternative, in certain embodiments, rather than directing carbon dioxide snow into the downstream apparatus and onto the foam layer 18, the snow (which may be rather fluffy and less dense than required to have a major impact on the foam) may be compacted into pellets (perhaps of a few millimeters dimension), and those pellets directed toward the foam using one of the particle guns.

    [0043] The particles used in embodiments 500 and 600 may have any composition suitable to break foam bubbles and not have a substantial deleterious effect on the molten glass being produced. The hoppers and particle guns may be configured to drop or shoot particles selected from sulfur-containing compounds, glass cullet, ground glass, particles comprising a chemistry compatible with and integratable into the molten glass (such as one or more of the ingredients listed in Table 1 for producing E-glass, or other glasses), frozen carbon dioxide, solid organic matter, and combinations and mixtures of any two or more of these. In certain embodiments the particles may "pop" or expand suddenly upon impacting the glass foam, providing a secondary foam de-stabilization or foam destruction mechanism. An example of this might be when using carbon dioxide snow or pellets, which through sublimation turn directly from solid to gas. Useful particulate materials may include certain nano-materials, for example but not limited to nanosilicon particles, nanoclays, carbon nanotubes, carbon spherical morphologies such as buckminsterfullerene (C60, C70, and the like), and diamond may act to impart one or more high-stress locations in a bubble film, forming one or more inclusions, and therefore reduce bubble stability. Certain of the above-mentioned nano-materials (such as nanoclays), in specified quantities, may increase stability of foams. Finally, it has been found that certain treatment compositions may function to both increase and decrease stability of bubbles in foam 18, depending on the quantity added. For example, sodium sulfate may act as both a stabilizing and a de-stabilizing agent depending on the quantity added. At low levels (about 1 wt. percent or lower, as a percentage of an aqueous treating composition) this compound may act as a surfactant and may improve stability of the bubbles. However at higher levels (about 5 wt. percent or above) the reduction in surface tension may overcome the stabilizing action of the surfactant and cause bubble collapse.

    [0044] Particle guns may be configured to propel the plurality of particles using processes selected from non-reactive compressed gas propulsion, propulsion based on gas expansion due to one or more chemical reactions, electromagnetic propulsion, and combinations thereof. It is contemplated that use of non-reactive compressed gas propulsion will be the least expensive method, however this may not be true in all embodiments, and may not produce the best results in terms of foam de-stabilization.

    [0045] Yet another type of foam de-stabilization of the present disclosure utilizes one or more non-particulate-based mechanical force generating apparatus in the downstream apparatus. Certain embodiments of this type of device comprise one or more screen-like foam-disturbing devices comprising a material resistant to the molten glass and foam in the downstream apparatus. Screen-like foam-disturbing devices may be selected from the group consisting of one or more screens, one or more nonwoven materials, and one or more woven materials. One system embodiment 700 of this type is illustrated schematically in FIGS. 2A and 2B, comprising a screen 481 configured to contact at least a portion of foam 18 in a continuous or intermittent fashion. Screen 481 may have any desirable mesh size, and those skilled in this art will be able to quickly determine the appropriate screen mesh to use without undue experimentation. Larger mesh size (smaller openings) may be more effective in de-stabilizing certain foams than smaller mesh sizes (larger screen openings) and vice versa. Screen 481 in this embodiment is connected to four connectors 483 at respective corners of the rectangular screen, which in turn are connected to respective actuators 485 able to move screen 481 into an out of contact with foam layer 18 as indicated by the double-headed arrows in FIG. 2A. Actuators 485 may be controlled individually using individual controllers, or all together by one or more controllers 487. It will be understood that suitable non-particulate-based mechanical force generating apparatus may have any number of shapes and sizes, and may be connected to more or less actuators than illustrated schematically in FIGS. 2A and 2B. Furthermore, all portions of the non-particulate-based mechanical force generating apparatus need not travel the same vertical or horizontal distance; for example, the downstream end of screen 481 may travel further downward than the upstream end, and/or the port side may travel further than the starboard side. Actuators 485 may be hydraulic, pneumatic, electric, or some combination thereof. Examples include hydraulic cylinders, air-driver cylinders, jackscrews, and the like. If desired, a vibratory device 489 may be employed to "shake" or otherwise gyrate screen 481.

    [0046] Another non-particulate-based mechanical force generating apparatus one or more non-screen-like, foam-disturbing devices comprising a material or materials resistant to the molten glass and foam in the downstream apparatus, and configured to contact at least a portion of the foam in a continuous or intermittent fashion. Certain embodiments of this type of foam de-stabilization device may comprise one or more moveable elongate members that are substantially parallel to a level of the molten glass in the downstream apparatus. Other embodiments of this type of foam de-stabilization device may comprise one or more moveable elongate members that are all substantially perpendicular to the level of the molten glass in the downstream apparatus. Yet other embodiments of this type of foam de-stabilization device may comprise one or more moveable relatively flat or curved plates, blades, paddles, or wings. Combinations of these embodiments may be employed as well, such as illustrated schematically in system embodiment 800 of FIGS. 2C and 2D, which comprises a one or more substantially vertical, rotatable elongate members 502 connected to a substantially vertical, rotatable shaft 504 and motor 506, and one or more substantially horizontal, rotatable elongate members 508 coupled to a shaft 512 and motor 514 through a gear box 510. Shafts 504, 512 may be actuated by other prime movers (for example combustion engines, steam engines, or turbines). Motors 506, 514 may be configured to be able to move the substantially vertical and horizontal shafts into and out of contact with foam layer 18, as indicated by the double-headed arrows in FIG. 2C. If desired, a vibratory device (not illustrated) may be employed to "shake" or otherwise gyrate the elongate members. Given the great variety of glass and foams, as well as types of non-screen-like, foam-disturbing devices that might be used, the rates of rotation are hard to quantify, but as with other embodiments described herein, optimal rates of rotation will be identified without substantial or undue experimentation. The rates of rotation of substantially vertical, rotatable elongate members 502 and substantially horizontal, rotatable elongate members 508 must not be so great so as to cause more foam to form, but the rates of rotation should be high enough so that at least some of the foam is impacted by a force sufficient to break some of the bubbles in foam layer 18. For a set of three elongate members 502 on a single shaft, rates of rotation may range from about 10 revolutions per minute (rpm) up to about 100 rpm, or from about 10 rpm up to about 50 rpm. Similar rates of rotation would be appropriate for elongated members 508. Foam-disturbing devices 502, 508 may be comprised of a material or materials resistant to the molten glass and foam in the downstream apparatus, and configured to contact at least a portion of the foam in a continuous or intermittent fashion.

    [0047] An embodiment 900 of foam de-stabilization device comprising one or more moveable relatively flat or curved plates, blades, paddles, or wings is illustrated schematically in FIGS. 2E and 2F. Embodiment 900 includes one or more moveable, fan blades 520 connected to a shaft 522, which is in turn connected to a motor 524 or other prime mover able to rotate shaft 522. An alternative embodiment includes one or more paddles 526 connected to a shaft 528 and motor 530 through a gear box 532. Motors 524, 530 may be configured to be able to move blades 520 and paddles 526 into and out of contact with foam layer 18, as indicated by the double-headed arrows in FIG. 2E. If desired, a vibratory device (not illustrated) may be employed to "shake" or otherwise gyrate shafts 522, 528 and/or blades 520 or paddles 526. The rates of rotation of blades 520 and paddles 526 must not be so great so as to cause more foam to form, but the rates of rotation should be high enough so that at least some of the foam is impacted by a force sufficient to break some of the bubbles in foam layer 18. Given the great variety of glass and foams, as well as types of non-screen-like, foam-disturbing devices that might be used, the rates of rotation are hard to quantify, but as with other embodiments described herein, optimal rates of rotation will be identified without substantial or undue experimentation. For a set of three fan blades 520 on a single shaft, rates of rotation may range from about 10 revolutions per minute (rpm) up to about 100 rpm, or from about 10 rpm up to about 50 rpm. Similar rates of rotation would be appropriate for paddles 526. Foam-disturbing devices 520, 526 may be comprised of a material or materials resistant to the molten glass and foam in the downstream apparatus, and configured to contact at least a portion of the foam in a continuous or intermittent fashion.

    [0048] Systems and methods of the present disclosure may be combined with other strategies for foam de-stabilization. Systems and methods of the present disclosure decrease bubble stability when used separately or in conjunction with one or more downstream methods. For example, adding nitrogen as a treating composition to the molten mass of glass and bubbles in the downstream apparatus may tend to make bubbles in foam 18 less stable when there is the presence of a high moisture atmosphere in the downstream apparatus. A high moisture atmosphere may exist in the downstream apparatus for example when one or more high momentum burners (whether oxy/fuel or not) are used as impingement burners in the downstream apparatus to impinge on foam 18. The use of one or more high momentum impingement burners (whether oxy/fuel or not) in a downstream flow channel is described in US2013327096 A1.

    [0049] Measuring effectiveness of the foam de-stabilization systems and methods described here may generally be made by taking samples of the molten mass of glass and counting bubbles and their size in the molten mass, or a solidified or partially solidified sample thereof, using the naked eye. Another naked eye measurement may simply be comparing an acceptable glass to a glass sample made using a system and method of the present disclosure, and making a naked eye comparison. Another method would be to simply observe the height of foam or bubbles within a channel or other downstream apparatus, using graduated marks on refractory materials to serve as a ruler, or use of known heights of construction materials for the sidewalls to access the height of the foam. More sophisticated methods and equipment may certainly be used, such as image analysis using computers to measure size, size distribution and quantity of bubbles (or other parameters) within a high-resolution photograph or micrograph of the material to be analyzed. For example, companies such as Glass Service market methods and equipment for such measurements. The glass melting method, as well as phenomena within the melt, may be continuously observed, recorded and evaluated using a high temperature observation furnace equipped with a special silica observation crucible. This equipment may be further coupled with image analysis equipment to provide easy manipulation of recorded data. For example, in a "melt test", the objective is to evaluate the fining characteristics of differing batch compositions. The area of the recorded images occupied by inhomogeneities (bubbles), bubble size distribution, bubble number, as well as bubble growth rates vs. melting time, may be evaluated to provide comparison between individual batches. The records of the melting course may be provided in the form of video files, which may be displayed on a personal computer, handheld computer, or other viewer. Bubble growth rate, or shrinkage rate, or rate of disappearance measurements may be based on direct observation and recording of bubble sizes depending on time. It is possible to keep bubbles suspended in the melt for hours by the developed "shuttle" method.

    [0050] In embodiments of the present disclosure, a reduction of 5 percent, or 10 percent, or 20 percent, or 30 percent or more of foam may be acceptable. In other embodiments, nothing short of complete or substantially complete foam or bubble removal will suffice, in other words 90 percent, or 95 percent, or 99 percent, or even 99.9 percent reduction in foam and bubbles.

    [0051] FIG. 3 is a logic diagram of one method embodiment 1000 of the present disclosure. Method embodiment 1000 includes flowing a molten mass of glass and bubbles into an apparatus downstream of a submerged combustion melter, the downstream apparatus comprising a floor, a roof, and a wall connecting the floor and the roof, the downstream apparatus devoid of submerged combustion burners and other components that would increase turbulence of the molten mass, the molten mass having foam on at least a portion of a top surface of the molten mass (box 1002). The method further comprises imposing a de-stabilizing force directly to the foam or to the molten mass and foam (box 1004), the force selected from the group consisting of a vibratory force (box 1006), an acoustic wave force (box 1008), a particulate-based force (box 1010), and a non-particulate-based mechanical force (box 1012).

    [0052] The downstream apparatus 4 may include one or more bushings (not illustrated) for example when producing glass fiber (not illustrated). Downstream apparatus for use in systems and methods of the present disclosure may comprise a roof, floor and sidewall structure comprised of an outer metal shell, non-glass-contact brick or other refractory wall, and glass-contact refractory for those portions expected to be in contact with molten glass. Downstream apparatus may include several sections arranged in series, each section having a roof, floor, and sidewall structure connecting its roof and floor, and defining a flow channel for conditioning molten glass flowing there through. The sections may be divided by a series of skimmers, each extending generally substantially vertically downward a portion of a distance between the roof and floor of the channel, with a final skimmer positioned between a last channel section and a forehearth. The number of sections and the number of skimmers may each be more or less than two. The downstream apparatus may be rectangular as illustrated in the various figures, or may be a shape such as a generally U-shaped or V-shaped channel or trough of refractory material supported by a metallic superstructure.

    [0053] The flow rate of the molten glass through downstream apparatus 4 (unless it is a holding container without flow) will depend on many factors, including the geometry and size of the SCM and downstream apparatus, temperature of the melt, viscosity of the melt, and like parameters, but in general the flow rate of molten glass may range from about 0.5 lb./min to about 5000 lbs./min or more (about 0.23 kg/min to about 2300 kg/min or more), or from about 10 lbs./min to about 500 lbs./min (from about 4.5 kg/min to about 227 kg/min), or from about 100 lbs./min to 300 lbs./min (from about 45 kg/min to about 136 kg/min).

    [0054] Low momentum detonation combustion burners useful in systems and methods of this disclosure may include some of the features of those disclosed in US2013086951 A1. For low momentum burners using natural gas as fuel, the burners may have a fuel firing rate ranging from about 0.4 to about 40 scfh (from about 11 L/hr. to about 1,120 L/hr.); an oxygen firing rate ranging from about 0.6 to about 100 scfh (from about 17 L/hr. to about 2,840 L/hr.); a combustion ratio ranging from about 1.5 to about 2.5; nozzle velocity ratio (ratio of velocity of fuel to oxygen at the fuel nozzle tip) ranging from about 0.5 to about 2.5; a fuel velocity ranging from about 6 ft./second to about 40 ft./second (about 2 meters/second to about 12 meters/second) and an oxidant velocity ranging from about 6 ft./second to about 40 ft./second (about 2 meters/second to about 12 meters/second).

    [0055] Those of skill in this art will readily understand the need for, and be able to construct suitable fuel supply conduits and oxidant supply conduits, as well as respective flow control valves, threaded fittings, quick connect/disconnect fittings, hose fittings, and the like.

    [0056] Submerged combustion melters may be fed a variety of feed materials. The initial raw material may include any material suitable for forming molten glass such as, for example, limestone, glass, sand, soda ash, feldspar and mixtures thereof. A glass composition for producing glass fibers known as "E-glass" typically includes 52-56% SiO2, 12-16% Al2O3, 0-0.8% Fe2O3, 16-25% CaO, 0-6% MgO, 0-10% B2O3, 0-2% Na2O+K2O, 0-1.5% TiO2 and 0-1% F2. Other glass compositions may be used, such as those described in assignee's U.S. Publication Nos. 2007/0220922 and 2008/0276652. The initial raw material to provide these glass compositions can be calculated in known manner from the desired concentrations of glass components, molar masses of glass components, chemical formulas of batch components, and the molar masses of the batch components. Typical E-glass batches include those reproduced in Table 1, borrowed from U.S. Publication No. 2007/0220922. Notice that during glass melting, carbon dioxide (from lime) and water (borax) evaporate. The initial raw material can be provided in any form such as, for example, relatively small particles.
    Table 1. A typical E-glass batch
    BATCH COMPOSITION (BY WEIGHT)
    Raw materialLimestone (Baseline)QuicklimeCa SilicateVolcanic GlassCa Silicate & Volcanic GlassQuartz-free #1Quartz-free #2Limestone SlagCa Silicate SlagQuartz-free #3Quartz and Clay FreeCa Silicate/Feldspar
    Quartz (flint) 31.3% 35.9% 15.2% 22.6% 8.5% 0% 0% 22.3% 5.7% 0% 0% 19.9%
    Kaolin Clay 28.1% 32.3% 32.0% 23.0% 28.2% 26.4% 0% 22.7% 26.0% 26.0% 0% 0%
    BD Lime 3.4% 4.3% 3.9% 3.3% 3.8% 3.7% 4.3% 2.8% 3.1% 3.1% 4.3% 4.4%
    Borax 4.7% 5.2% 5.2% 0% 1.5% 0% 0% 0% 0% 0% 1.1% 1.1%
    Boric Acid 3.2% 3.9% 3.6% 7.3% 6.9% 8.2% 8.6% 7.3% 8.2% 8.2% 7.7% 7.8%
    Salt Cake 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2%
    Limestone 29.1% 0% 0% 28.7% 0% 0% 0% 27.9% 0% 0% 0% 0%
    Quicklime 0% 18.3% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
    Calcium Silicate 0% 0% 39.9% 0% 39.1% 39.0% 27.6% 0% 37.9% 37.9% 26.5% 26.6%
    Volcanic Glass 0% 0% 0% 14.9% 11.8% 17.0% 4.2% 14.7% 16.8% 16.8% 0% 0%
    Diatomaceous Earth (DE)           5.5% 17.4% 0% 0% 5.7% 20.0% 0%
    Plagioclase Feldspar           0% 38.3% 0% 0% 0% 40.1% 40.1%
    Slag           0% 0% 2.0% 2.0% 2.0% 0% 0%
    Total 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
    Volume of CO2@ 1400C 1668 0 0 1647 0 0 0 1624 0 0 0 0


    [0057] SCMs may also be fed by one or more roll stands, which in turn supports one or more rolls of glass mat, as described in US2012077135 A1. In certain embodiments powered nip rolls may include cutting knives or other cutting components to cut or chop the mat (or roving, in those embodiments processing roving) into smaller length pieces prior to entering melter 602. Also provided in certain embodiments may be a glass batch feeder. Glass batch feeders are well-known in this art and require no further explanation.

    [0058] Downstream apparatus may include refractory fluid-cooled panels. Liquid-cooled panels may be used, having one or more conduits or tubing therein, supplied with liquid through one conduit, with another conduit discharging warmed liquid, routing heat transferred from inside the melter to the liquid away from the melter. Liquid-cooled panels may also include a thin refractory liner, which minimizes heat losses from the melter, but allows formation of a thin frozen glass shell to form on the surfaces and prevent any refractory wear and associated glass contamination. Other useful cooled panels include air-cooled panels, comprising a conduit that has a first, small diameter section, and a large diameter section. Warmed air transverses the conduits such that the conduit having the larger diameter accommodates expansion of the air as it is warmed. Air-cooled panels are described more fully in U.S. Patent No. 6,244,197. In certain embodiments, the refractory fluid cooled-panels are cooled by a heat transfer fluid selected from the group consisting of gaseous, liquid, or combinations of gaseous and liquid compositions that functions or is capable of being modified to function as a heat transfer fluid. Gaseous heat transfer fluids may be selected from air, including ambient air and treated air (for air treated to remove moisture), inert inorganic gases, such as nitrogen, argon, and helium, inert organic gases such as fluoro-, chloro- and chlorofluorocarbons, including perfluorinated versions, such as tetrafluoromethane, and hexafluoroethane, and tetrafluoroethylene, and the like, and mixtures of inert gases with small portions of non-inert gases, such as hydrogen. Heat transfer liquids may be selected from inert liquids that may be organic, inorganic, or some combination thereof, for example, salt solutions, glycol solutions, oils and the like. Other possible heat transfer fluids include steam (if cooler than the oxygen manifold temperature), carbon dioxide, or mixtures thereof with nitrogen. Heat transfer fluids may be compositions comprising both gas and liquid phases, such as the higher chlorofluorocarbons.

    [0059] Certain embodiments may comprise a method control scheme for the downstream apparatus. For example, as explained in US2012077135 A1, a master method controller may be configured to provide any number of control logics, including feedback control, feed-forward control, cascade control, and the like. The disclosure is not limited to a single master method controller, as any combination of controllers could be used. The term "control", used as a transitive verb, means to verify or regulate by comparing with a standard or desired value. Control may be closed loop, feedback, feed-forward, cascade, model predictive, adaptive, heuristic and combinations thereof. The term "controller" means a device at least capable of accepting input from sensors and meters in real time or near-real time, and sending commands directly to one or more foam de-stabilization elements, and/or to local devices associated with foam de-stabilization elements able to accept commands. A controller may also be capable of accepting input from human operators; accessing databases, such as relational databases; sending data to and accessing data in databases, data warehouses or data marts; and sending information to and accepting input from a display device readable by a human. A controller may also interface with or have integrated therewith one or more software application modules, and may supervise interaction between databases and one or more software application modules. The controller may utilize Model Predictive Control (MPC) or other advanced multivariable control methods used in multiple input/multiple output (MIMO) systems.

    [0060] The downstream apparatus floors and sidewall structures may include a glass-contact refractory lining. The glass-contact lining may be 1 centimeter, 2 centimeters, 3 centimeters or more in thickness, however, greater thickness may entail more expense without resultant greater benefit. The refractory lining may be one or multiple layers. Glass-contact refractory used in downstream apparatus described herein may be cast concretes such as disclosed in U.S. Patent No. 4,323,718. Two cast concrete layers are described in the '718 patent, the first being a hydraulically setting insulating composition (for example, that known under the trade designation CASTABLE BLOC-MIX-G, a product of Fleischmann Company, Frankfurt/Main, Federal Republic of Germany). This composition may be poured in a form of a wall section of desired thickness, for example a layer 5cm thick, or 10cm, or greater. This material is allowed to set, followed by a second layer of a hydraulically setting refractory casting composition (such as that known under the trade designation RAPID BLOCK RG 158, a product of Fleischmann company, Frankfurt/Main, Federal Republic of Germany) may be applied thereonto. Other suitable materials for the downstream apparatus, components that require resistance to high temperatures, such as particle guns, rotating blades and paddles, and refractory block burners (if used) are fused zirconia (ZrO2), fused cast AZS (alumina-zirconia-silica), rebonded AZS, or fused cast alumina (Al2O3). The choice of a particular material is dictated among other parameters by the geometry of the downstream apparatus and the foam de-stabilization equipment used, and the type of glass to be produced.


    Claims

    1. A method comprising:

    flowing a molten mass of glass and bubbles into an apparatus downstream of a submerged combustion melter, the downstream apparatus comprising a floor, a roof, and a wall connecting the floor and the roof, the downstream apparatus devoid of submerged combustion burners and other components that would increase turbulence of the molten mass, the molten mass having foam on at least a portion of a top surface of the molten mass; and

    imposing a de-stabilizing force directly to the foam or to the molten mass and foam, the force selected from the group consisting of a vibratory force, an acoustic wave force, a particulate-based force, and a non-particulate-based mechanical force.


     
    2. The method of claim 1 wherein a vibration apparatus exerts the vibratory force, the vibration apparatus mechanically connected to the wall or roof, or both, of the downstream apparatus, preferably the vibration apparatus is selected from the group consisting of electric, hydraulic, and pneumatic vibration apparatus.
     
    3. The method of claim 2 wherein the imposing of a vibratory force comprises imposing a motion having a frequency and amplitude to the glass and foam sufficient to de-stabilize bubbles in the foam and cause at least a majority of them to break, preferably varying the frequency to identify an optimal frequency for de-stabilizing the majority of the bubbles in the foam and cause at least a majority of them to break.
     
    4. The method of claim 1 wherein an acoustic apparatus exerts the acoustic wave force on the foam, the acoustic apparatus selected from the group consisting of:

    i) one or more non-foam-impinging, pulsed, non-submerged combustion burners positioned in corresponding apertures in the wall or roof, or both, of the downstream apparatus;

    ii) one or more pulsed detonation engines positioned in corresponding apertures in the wall or roof, or both, of the downstream apparatus;

    iii) one or more audio drivers or audio speakers positioned in corresponding apertures in the wall, the roof, or both; and

    iv) combinations of any two or more of (i) - (iii).


     
    5. The method of claim 4 wherein the exerting of the acoustic wave force comprises imposing a motion having a frequency and amplitude to the foam sufficient to de-stabilize bubbles in the foam and cause at least a majority of them to break, preferably tuning the frequency and/or amplitude to identify an optimal frequency for de-stabilizing the majority of the bubbles in the foam and cause at least a majority of them to break.
     
    6. The method of claim 1 wherein a particulate delivery apparatus generates the particulate-based force, the particulate delivery apparatus emitting or directing a plurality of particles toward at least a portion of the foam, the particulate delivery apparatus selected from the group consisting of:

    i) one or more hoppers configured to drop the plurality of particles through one or more apertures in the wall, the roof, or both and onto at least a portion of the foam;

    ii) one or more particle guns positioned in corresponding apertures in the wall, the roof, or both and configured to shoot the plurality of particles onto at least a portion of the foam with sufficient momentum to break at least a portion of bubbles forming the foam.


     
    7. The method of claim 6 wherein the hoppers and particle guns are configured to drop or shoot particles selected for the group consisting of sulfur-containing compounds, glass cullet, ground glass, particles comprising a chemistry compatible with and integratable into the molten glass, frozen carbon dioxide, solid organic matter, and combinations and mixtures of any two or more of these, preferably the particle guns propel the plurality of particles using processes selected from the group consisting of non-reactive compressed gas propulsion, propulsion based on gas expansion due to one or more chemical reactions, electromagnetic propulsion, and combinations thereof.
     
    8. The method of claim 1 wherein the non-particulate-based mechanical force is applied directly to the foam using a non-particulate-based mechanical device, and the imposing of the de-stabilizing force is selected from the group consisting of:

    i) forcing one or more screen-like, foam-disturbing devices to contact at least a portion the foam in a continuous or intermittent fashion;

    ii) applying one or more non-screen-like, foam-disturbing devices to contact at least a portion of the foam in a continuous or intermittent fashion; and

    iii) combinations of (i) - (ii).


     
    9. The method of claim 8 wherein the screen-like and the non-screen-like foam-disturbing devices comprise a material resistant to the molten glass and foam in the downstream apparatus.
     
    10. The method of claim 8 comprising oscillating the screen-like or non-screen-like foam-disturbing device so as to alternately touch and not touch the foam.
     
    11. The method of claim 8 comprising vibrating the screen-like or non-screen-like foam-disturbing device when touching the foam.
     
    12. The method of claim 8 wherein the screen-like foam-disturbing devices are selected from the group consisting of one or more screens, one or more nonwoven materials, and one or more woven materials.
     
    13. The method of claim 8 wherein the non-screen foam-disturbing devices are selected from the group consisting of:

    i) one or more moveable elongate members that are substantially parallel to a level of the molten glass;

    ii) one or more moveable elongate members that are all substantially perpendicular to the level of the molten glass;

    iii) one or more moveable relatively flat or curved plates, blades, paddles, or wings.


     
    14. A system comprising:

    an apparatus fluidly connected downstream of a submerged combustion melter, the downstream apparatus comprising a floor, a roof, a wall structure connecting the floor and roof, the floor, roof, and wall structure defining an internal space configured to contain a flowing or non-flowing molten mass of glass and foam, the apparatus devoid of submerged combustion burners and other components that would increase turbulence of the molten mass, the molten mass having foam on at least a portion of a top surface of the molten mass; and

    one or more de-stabilization apparatus configured to impose a de-stabilizing force directly to the foam or to the molten mass and foam, the de-stabilization apparatus selected from the group consisting of a vibration apparatus, an acoustic wave force generating apparatus, a particulate-based force generating apparatus, and a non-particulate-based mechanical force generating apparatus.


     
    15. The system of claim 14 wherein the vibration apparatus is mechanically connected to one or more of the floor, the wall, and the roof of the downstream apparatus, preferably the vibration apparatus is selected from the group consisting of electric, hydraulic, and pneumatic vibration apparatus, preferably the vibration apparatus is configured to impose a vibratory motion having a frequency and amplitude to the glass and foam sufficient to de-stabilize bubbles in the foam and cause at least a majority of the bubbles in the foam to break, more preferably the vibration apparatus is configured to vary the frequency and/or amplitude to identify an optimal frequency for de-stabilizing the majority of the bubbles in the foam and cause at least a majority of the bubbles in the foam to break.
     
    16. The system of claim 14 wherein the acoustic wave force generating apparatus is selected from the group consisting of:

    i) one or more non-foam-impinging, pulsed, non-submerged combustion burners positioned in corresponding apertures in the wall or roof, or both, of the downstream apparatus;

    ii) one or more pulsed detonation engines positioned in corresponding apertures in the wall or roof, or both, of the downstream apparatus;

    iii) one or more audio drivers or audio speakers positioned in corresponding apertures in the wall, the roof, or both; and

    iv) combinations of any two or more of (i) - (iii).


     
    17. The system of claim 16 wherein the acoustic wave force generating apparatus is configured to impose a motion having a frequency and amplitude to the foam sufficient to de-stabilize bubbles in the foam and cause at least a majority of the bubbles in the foam to break, preferably the acoustic wave force generating apparatus is configured to tune the frequency to identify an optimal frequency for de-stabilizing the majority of the bubbles in the foam and cause at least a majority of the bubbles in the foam to break.
     
    18. The system of claim 14 wherein the particulate-based force generating apparatus is selected from the group consisting of:

    i) one or more hoppers configured to drop the plurality of particles through one or more apertures in the wall, the roof, or both and onto at least a portion of the foam;

    ii) one or more particle guns positioned in corresponding apertures in the wall, the roof, or both and configured to shoot the plurality of particles onto at least a portion of the foam with sufficient momentum to break at least a portion of bubbles forming the foam.


     
    19. The system of claim 18 wherein the hoppers and particle guns are configured to drop or shoot particles selected from the group consisting of sulfur-containing compounds, glass cullet, ground glass, particles comprising a chemistry compatible with and integratable into the molten glass, frozen carbon dioxide, solid organic matter, and combinations and mixtures of any two or more of these.
     
    20. The system of claim 18 wherein the particle guns are configured to propel the plurality of particles using processes selected from the group consisting of non-reactive compressed gas propulsion, propulsion based on gas expansion due to one or more chemical reactions, electromagnetic propulsion, and combinations thereof.
     
    21. The system of claim 14 wherein the non-particulate-based mechanical force generating apparatus is selected from the group consisting of:

    i) one or more screen-like, foam-disturbing devices configured to contact at least a portion the foam in a continuous or intermittent fashion;

    ii) one or more non-screen-like, foam-disturbing devices configured to contact at least a portion of the foam in a continuous or intermittent fashion; and

    iii) combinations of (i) - (ii).


     
    22. The system of claim 21 wherein the screen-like and the non-screen-like foam-disturbing devices comprise a material resistant to the molten glass and foam in the downstream apparatus.
     
    23. The system of claim 21 wherein the screen-like or non-screen-like foam-disturbing devices are configured to alternately touch and not touch the foam.
     
    24. The system of claim 21 wherein the screen-like or non-screen-like foam-disturbing devices are configured to vibrate when touching the foam.
     
    25. The system of claim 21 wherein the screen-like foam-disturbing devices are selected from the group consisting of one or more screens, one or more nonwoven materials, and one or more woven materials.
     
    26. The system of claim 21 wherein the non-screen-like foam-disturbing devices are selected from the group consisting of:

    i) one or more moveable elongate members that are substantially parallel to a level of the molten glass in the downstream apparatus;

    ii) one or more moveable elongate members that are all substantially perpendicular to the level of the molten glass in the downstream apparatus; and

    iii) one or more moveable relatively flat or curved plates, blades, paddles, or wings.


     


    Ansprüche

    1. Verfahren, umfassend:

    Einströmenlassen einer Schmelze aus Glas und Blasen in eine Vorrichtung stromabwärts eines Tauchschmelzers (Submerged-Combustion-Melter) wobei die stromabwärtige Vorrichtung einen Boden, ein Dach und eine Wand umfasst, die den Boden und das Dach verbindet, wobei die stromabwärtige Vorrichtung keine Tauchschmelzer und andere Komponenten aufweist, welche die Verwirbelung der Schmelze erhöhen würden, wobei die Schmelze auf mindestens einem Teil einer oberen Oberfläche der Schmelze Schaum aufweist; und

    Ausüben einer Destabilisierungskraft direkt auf den Schaum oder auf die Schmelze und den Schaum, wobei die Kraft aus der Gruppe ausgewählt ist, die aus einer Vibrationskraft, einer Schallwellenkraft, einer Kraft auf Partikelbasis und einer mechanischen Kraft nicht auf Partikelbasis besteht.


     
    2. Verfahren nach Anspruch 1, wobei eine Vibrationsvorrichtung die Vibrationskraft ausübt, wobei die Vibrationsvorrichtung mechanisch mit der Wand oder dem Dach oder beiden der stromabwärtigen Vorrichtung verbunden ist, wobei die Vibrationsvorrichtung vorzugsweise aus der Gruppe ausgewählt ist, die aus einer elektrischen, hydraulischen und pneumatischen Vibrationsvorrichtung besteht.
     
    3. Verfahren nach Anspruch 2, wobei das Ausüben einer Vibrationskraft das Ausüben einer Bewegung mit einer Frequenz und Amplitude auf das Glas und den Schaum umfasst, die ausreichen, um Blasen im Schaum zu destabilisieren und zumindest einen Großteil von ihnen zum Brechen zu bringen, wobei vorzugsweise die Frequenz variiert wird, um eine optimale Frequenz zum Destabilisieren des Großteils der Blasen in dem Schaum zu identifizieren und zumindest einen Großteil von ihnen zum Brechen zu bringen.
     
    4. Verfahren nach Anspruch 1, wobei eine akustische Vorrichtung die Schallwellenkraft auf den Schaum ausübt, wobei die akustische Vorrichtung ausgewählt ist aus der Gruppe bestehend aus:

    i) einem oder mehreren nicht auf den Schaum auftreffenden, gepulsten Nicht-Tauchschmelzern, die in entsprechenden Öffnungen in der Wand oder im Dach oder in beiden der stromabwärtigen Vorrichtung angeordnet sind;

    ii) einem oder mehreren gepulsten Detonationsmotoren, die in entsprechenden Öffnungen in der Wand oder im Dach oder in beiden der stromabwärtigen Vorrichtung angeordnet sind;

    iii) einem oder mehreren Audiotreibern oder Audiolautsprechern, die in entsprechenden Öffnungen in der Wand oder im Dach oder in beiden angeordnet sind; und

    iv) Kombinationen von beliebigen zwei oder mehreren von (i) - (iii).


     
    5. Verfahren nach Anspruch 4, wobei das Ausüben der Schallwellenkraft das Ausüben einer Bewegung mit einer Frequenz und Amplitude auf den Schaum umfasst, die ausreichen, um Blasen im Schaum zu destabilisieren und zumindest einen Großteil von ihnen zum Brechen zu bringen, wobei vorzugsweise die Frequenz und/oder Amplitude eingestellt wird/werden, um eine optimale Frequenz zum Destabilisieren des Großteils der Blasen in dem Schaum zu identifizieren und zumindest einen Großteil von ihnen zum Brechen zu bringen.
     
    6. Verfahren nach Anspruch 1, wobei eine Partikelabgabevorrichtung die Kraft auf Partikelbasis erzeugt, wobei die Partikelabgabevorrichtung eine Mehrzahl von Partikeln in Richtung mindestens eines Teils des Schaums abgibt oder darauf ausrichtet, wobei die Partikelabgabevorrichtung ausgewählt ist aus der Gruppe bestehend aus:

    i) einem oder mehreren Trichtern, die konfiguriert sind, um die Mehrzahl von Partikeln durch eine oder mehrere Öffnungen in der Wand, dem Dach oder beiden und auf mindestens einen Teil des Schaums fallen zu lassen;

    ii) einer oder mehreren Partikelkanonen, die in entsprechenden Öffnungen in der Wand, dem Dach oder beiden positioniert sind und konfiguriert sind, um die Mehrzahl von Partikeln auf mindestens einen Teil des Schaums mit einer ausreichenden Dynamik zu schießen, um mindestens einen Teil der den Schaum bildenden Blasen zu brechen.


     
    7. Verfahren nach Anspruch 6, wobei die Trichter und Partikelkanonen konfiguriert sind, um Partikel fallen zu lassen oder zu schießen, die aus der Gruppe ausgewählt sind, die aus schwefelhaltigen Verbindungen, Glasbruch, gemahlenem Glas, Partikeln umfassend eine Chemie, die mit dem Schmelzglas kompatibel und in das Schmelzglas integrierbar ist, gefrorenem Kohlendioxid, fester organischer Substanz und Kombinationen und Gemischen von zwei oder mehreren von diesen besteht, wobei die Partikelkanonen die Mehrzahl von Partikeln vorzugsweise unter Verwendung von Verfahren vorwärts treiben, die aus der Gruppe ausgewählt sind, die aus einem nichtreaktiven Druckgasvortrieb, einem auf Gasausdehnung aufgrund einer oder mehrerer chemischer Reaktionen basierenden Vortrieb, einem elektromagnetischen Vortrieb und Kombinationen davon besteht.
     
    8. Verfahren nach Anspruch 1, wobei die mechanische Kraft nicht auf Partikelbasis unter Verwendung einer mechanischen Vorrichtung nicht auf Partikelbasis direkt auf den Schaum aufgebracht wird und das Ausüben der Destabilisierungskraft ausgewählt ist aus der Gruppe bestehend aus:

    i) Erzwingen, das eine oder mehrere siebartige, schaumstörende Vorrichtungen mindestens einen Teil des Schaums kontinuierlich oder intermittierend kontaktieren;

    ii) Aufbringen einer oder mehrerer nicht-siebartiger, schaumstörender Vorrichtungen, um mindestens einen Teil des Schaums kontinuierlich oder intermittierend zu kontaktieren; und

    iii) Kombinationen von (i) - (ii).


     
    9. Verfahren nach Anspruch 8, wobei die siebartigen und die nicht-siebartigen, schaumstörenden Vorrichtungen ein Material umfassen, das gegen die Glasschmelze und den Schaum in der stromabwärtigen Vorrichtung beständig ist.
     
    10. Verfahren nach Anspruch 8, umfassend das Oszillieren der siebartigen oder nicht-siebartigen, schaumstörenden Vorrichtung, um den Schaum abwechselnd zu berühren und nicht zu berühren.
     
    11. Verfahren nach Anspruch 8, umfassend das Vibrieren der siebartigen oder nicht-siebartigen, schaumstörenden Vorrichtung beim Berühren des Schaums.
     
    12. Verfahren nach Anspruch 8, wobei die siebartigen, schaumstörenden Vorrichtungen aus der Gruppe bestehend aus einem oder mehreren Sieben, einem oder mehreren Vliesmaterialien und einem oder mehreren Gewebematerialien ausgewählt sind.
     
    13. Verfahren nach Anspruch 8, wobei die nicht-siebartigen, schaumstörenden Vorrichtungen ausgewählt sind aus der Gruppe bestehend aus:

    i) einem oder mehreren beweglichen länglichen Elementen, die im Wesentlichen parallel zu einem Schmelzglasniveau sind;

    ii) einem oder mehreren beweglichen länglichen Elementen, die alle im Wesentlichen senkrecht zu dem Schmelzglasniveau sind;

    iii) einer bzw. einem oder mehreren beweglichen, relativ flachen oder gekrümmten Platten, Blättern, Paddeln oder Flügeln.


     
    14. System, umfassend:

    eine Vorrichtung in Fluidverbindung stromabwärts eines Tauchschmelzers, wobei die stromabwärtige Vorrichtung einen Boden, ein Dach, eine Wandstruktur, die den Boden und das Dach verbindet, umfasst, wobei der Boden, das Dach und die Wandstruktur einen Innenraum definieren, der konfiguriert ist, um eine fließende oder nicht fließende Schmelze aus Glas und Blasen zu enthalten, wobei die stromabwärtige Vorrichtung keine Tauchschmelzer und andere Komponenten aufweist, welche die Verwirbelung der Schmelze erhöhen würden, wobei die Schmelze auf mindestens einem Teil einer oberen Oberfläche der Schmelze Schaum aufweist; und

    eine oder mehrere Destabilisierungsvorrichtungen, die konfiguriert sind, um eine Destabilisierungskraft direkt auf den Schaum oder auf die Schmelze und den Schaum auszuüben, wobei die Destabilisierungsvorrichtung aus der Gruppe ausgewählt ist, die aus einer Vibrationsvorrichtung, einer Schallwellenkraft erzeugenden Vorrichtung, einer eine Kraft auf Partikelbasis erzeugenden Vorrichtung und einer eine mechanische Kraft nicht auf Partikelbasis erzeugende Vorrichtung besteht.


     
    15. System nach Anspruch 14, wobei die Vibrationsvorrichtung mechanisch mit einem oder mehreren des Bodens, der Wand und dem Dach der stromabwärtigen Vorrichtung verbunden ist, wobei die Vibrationsvorrichtung vorzugsweise aus der Gruppe ausgewählt ist, die aus einer elektrischen, hydraulischen und pneumatischen Vibrationsvorrichtung besteht, wobei die Vibrationsvorrichtung vorzugsweise konfiguriert ist, um eine Vibrationsbewegung mit einer Frequenz und Amplitude auf das Glas und den Schaum auszuüben, die ausreichen, um Blasen in dem Schaum zu destabilisieren und zumindest einen Großteil der Blasen im Schaum zum Brechen zu bringen, wobei die Vibrationsvorrichtung bevorzugter konfiguriert ist, um die Frequenz und/oder Amplitude zu variieren, um eine optimale Frequenz zum Destabilisieren des Großteils der Blasen in dem Schaum zu identifizieren und um zumindest einen Großteil der Blasen im Schaum zum Brechen zu bringen.
     
    16. System nach Anspruch 14, wobei die Schallwellenkraft erzeugende Vorrichtung ausgewählt ist aus der Gruppe bestehend aus:

    i) einem oder mehreren nicht auf den Schaum auftreffenden, gepulsten Nicht-Tauchschmelzern, die in entsprechenden Öffnungen in der Wand oder im Dach oder in beiden der stromabwärtigen Vorrichtung angeordnet sind;

    ii) einem oder mehreren gepulsten Detonationsmotoren, die in entsprechenden Öffnungen in der Wand oder im Dach oder in beiden der stromabwärtigen Vorrichtung angeordnet sind;

    iii) einem oder mehreren Audiotreibern oder Audiolautsprechern, die in entsprechenden Öffnungen in der Wand oder im Dach oder in beiden angeordnet sind; und

    iv) Kombinationen von beliebigen zwei oder mehreren von (i) - (iii).


     
    17. System nach Anspruch 16, wobei die Schallwellenkraft erzeugende Vorrichtung konfiguriert ist, um eine Bewegung mit einer Frequenz und Amplitude auf den Schaum auszuüben, die ausreichen, um Blasen im Schaum zu destabilisieren und zumindest einen Großteil der Blasen in dem Schaum zum Brechen zu bringen, wobei die Schallwellenkraft erzeugende Vorrichtung vorzugsweise konfiguriert ist, um die Frequenz einzustellen, um eine optimale Frequenz zum Destabilisieren des Großteils der Blasen in dem Schaum zu identifizieren und zumindest einen Großteil der Blasen in dem Schaum zum Brechen zu bringen.
     
    18. System nach Anspruch 14, wobei die eine Kraft auf Partikelbasis erzeugende Vorrichtung ausgewählt ist aus der Gruppe bestehend aus:

    i) einem oder mehreren Trichtern, die konfiguriert sind, um die Mehrzahl von Partikeln durch eine oder mehrere Öffnungen in der Wand, dem Dach oder beiden und auf mindestens einen Teil des Schaums fallen zu lassen;

    ii) einer oder mehreren Partikelkanonen, die in entsprechenden Öffnungen in der Wand, dem Dach oder beiden positioniert sind und konfiguriert sind, um die Mehrzahl von Partikeln auf mindestens einen Teil des Schaums mit einer ausreichenden Dynamik zu schießen, um mindestens einen Teil der den Schaum bildenden Blasen zu brechen.


     
    19. System nach Anspruch 18, wobei die Trichter und Partikelkanonen konfiguriert sind, um Partikel fallen zu lassen oder zu schießen, die aus der Gruppe ausgewählt sind, die aus schwefelhaltigen Verbindungen, Glasbruch, gemahlenem Glas, Partikeln umfassend eine Chemie, die mit dem Schmelzglas kompatibel und in das Schmelzglas integrierbar ist, gefrorenem Kohlendioxid, fester organischer Substanz und Kombinationen und Gemischen von zwei oder mehreren von diesen besteht.
     
    20. System nach Anspruch 18, wobei die Partikelkanonen konfiguriert sind, um die Mehrzahl von Partikeln unter Verwendung von Verfahren vorwärts treiben, die aus der Gruppe ausgewählt sind, die aus einem nichtreaktiven Druckgasvortrieb, einem auf Gasausdehnung aufgrund einer oder mehrerer chemischer Reaktionen basierenden Vortrieb, einem elektromagnetischen Vortrieb und Kombinationen davon besteht.
     
    21. System nach Anspruch 14, wobei die eine mechanische Kraft nicht auf Partikelbasis erzeugende Vorrichtung ausgewählt ist aus der Gruppe bestehend aus:

    i) einer oder mehreren siebartigen, schaumstörenden Vorrichtungen, die konfiguriert sind, um mindestens einen Teil des Schaums kontinuierlich oder intermittierend zu kontaktieren;

    ii) einer oder mehreren nicht-siebartigen, schaumstörenden Vorrichtungen, die konfiguriert sind, um mindestens einen Teil des Schaums kontinuierlich oder intermittierend zu kontaktieren; und

    iii) Kombinationen von (i) - (ii).


     
    22. System nach Anspruch 21, wobei die siebartigen und die nicht-siebartigen, schaumstörenden Vorrichtungen ein Material umfassen, das gegen die Glasschmelze und den Schaum in der stromabwärtigen Vorrichtung beständig ist.
     
    23. System nach Anspruch 21, wobei die siebartigen oder nicht-siebartigen, schaumstörenden Vorrichtungen konfiguriert sind, um den Schaum abwechselnd zu berühren und nicht zu berühren.
     
    24. System nach Anspruch 21, wobei die siebartigen oder nicht-siebartigen, schaumstörenden Vorrichtungen konfiguriert sind, um beim Berühren des Schaums zu vibrieren.
     
    25. System nach Anspruch 21, wobei die siebartigen, schaumstörenden Vorrichtungen aus der Gruppe bestehend aus einem oder mehreren Sieben, einem oder mehreren Vliesmaterialien und einem oder mehreren Gewebematerialien ausgewählt sind.
     
    26. System nach Anspruch 21, wobei die nicht-siebartigen, schaumstörenden Vorrichtungen ausgewählt sind aus der Gruppe bestehend aus:

    i) einem oder mehreren beweglichen länglichen Elementen, die im Wesentlichen parallel zu einem Schmelzglasniveau in der stromabwärtigen Vorrichtung sind;

    ii) einem oder mehreren beweglichen länglichen Elementen, die alle im Wesentlichen senkrecht zu dem Schmelzglasniveau in der stromabwärtigen Vorrichtung sind; und

    iii) einer bzw. einem oder mehreren beweglichen, relativ flachen oder gekrümmten Platten, Blättern, Paddeln oder Flügeln.


     


    Revendications

    1. Procédé comprenant:

    faire écouler une masse fondue de verre et bulles dans un appareil en aval d'un pot de fusion à combustion immergé, l'appareil en aval comprenant une sole, une voûte et une paroi connectant la sole et la voûte, l'appareil en aval dépourvu de brûleurs à combustion immergé et d'autres composants qui pourraient accroître la turbulence de la masse fondue, la masse fondue ayant de mousse sur au moins une partie d'une surface supérieure de la masse fondue; et

    appliquer une force de déstabilisation directement à la mousse ou à la masse fondue et mousse, la force choisie du groupe consistant en une force vibratoire, une force d'onde acoustique, une force basée sur matière particulaire, et une force mécanique non basée sur matière particulaire.


     
    2. Procédé selon la revendication 1, où un appareil de vibration exerce la force vibratoire, l'appareil de vibration connecté par moyens mécaniques à la paroi ou à la voûte, ou aux deux de l'appareil en aval, préférablement l'appareil de vibration est choisi du groupe consistant en appareil de vibration électrique, hydraulique, et pneumatique.
     
    3. Procédé selon la revendication 2, où l'imposition d'une force vibratoire comprend l'imposition d'un mouvement ayant une fréquence et amplitude au verre et à la mousse suffisante pour déstabiliser les bulles dans la mousse et causer la rupture au moins à une majorité d'elles, préférablement en variant la fréquence pour identifier une fréquence optimale pour déstabiliser la majorité des bulles dans la mousse et causer la rupture au moins à une majorité d'elles.
     
    4. Procédé selon la revendication 1, où un appareil acoustique exerce la force d'onde acoustique sur la mousse, l'appareil acoustique choisi du groupe formé de:

    (i) un ou plusieurs brûleurs à combustion non immergé, pulsé, sans impact sur la mousse positionné dans les ouvertures correspondantes dans la paroi ou la voûte, ou dans les deux, de l'appareil en aval;

    (ii) un ou plusieurs moteurs à détonation pulsé positionné dans les ouvertures correspondantes dans la paroi ou la voûte, ou dans les deux, de l'appareil en aval;

    (iii) un ou plusieurs dispositifs audio ou haut-parleurs audio positionné dans les ouvertures correspondantes dans la paroi, la voûte, ou dans les deux; et

    (iv) combinaisons de deux ou plusieurs de (i) - (iii).


     
    5. Procédé selon la revendication 4, où l'exercice de la force d'onde acoustique comprend imposer un mouvement ayant une fréquence et amplitude à la mousse suffisante pour déstabiliser les bulles dans la mousse et causer la rupture au moins à une majorité d'elles, préférablement régler la fréquence et/ou l'amplitude pour identifier une fréquence optimale pour déstabiliser la majorité des bulles dans la mousse et causer la rupture au moins à une majorité d'elles.
     
    6. Procédé selon la revendication 1, où un appareil de livraison de matière particulaire fait générer la force basée sur matière particulaire, l'appareil de livraison de matière particulaire émettant ou dirigeant une pluralité de particules vers au moins une portion de la mousse, l'appareil de livraison de matière particulaire choisi du groupe formé de:

    i) un ou plusieurs récipients configurés pour laisser tomber la pluralité de particules par une ou plusieurs ouvertures dans la paroi, la voûte, ou dans les deux et dans au moins une portion de la mousse;

    ii) une ou plusieurs pistolets à particules positionnés dans les ouvertures correspondantes dans la paroi, la voûte, ou dans les deux et configurés pour tirer la pluralité de particules dans au moins une portion de la mousse avec un élan suffisant pour la rupture au moins à une partie des bulles formant la mousse.


     
    7. Procédé selon la revendication 6, où les récipients et les pistolets de particules sont configurés pour laisser tomber ou tirer les particules sélectionnées du groupe consistant en composés contenant du soufre, déchet de verre, verre dépoli, particules comprenant une chimie compatible avec et intégrable dans le verre fondu, dioxyde de carbone congelé, matière organique solide, et combinaisons et mélanges de deux ou plusieurs de ceux-ci, préférablement les pistolets de particules propulsent la pluralité de particules utilisant les procédés choisis du groupe formé de propulsion par gaz comprimé non réactif, propulsion à base d'un gaz d'expansion due à une ou plusieurs réactions chimiques, propulsion électromagnétique, et leurs combinaisons.
     
    8. Procédé selon la revendication 1, où la force mécanique non basée sur matière particulaire est appliquée directement à la mousse utilisant un dispositif mécanique non basée sur matière particulaire, et l'imposition de la force de déstabilisation est choisie du groupe formé de:

    i) forcer un ou plusieurs dispositifs perturbateurs de mousse, similaire au tamis pour mettre en contact au moins une portion de la mousse de façon continue ou intermittente;

    ii) appliquer un ou plusieurs dispositifs perturbateurs de mousse, similaire au tamis pour mettre en contact au moins une portion de la mousse de façon continue ou intermittente; et

    iii) combinaisons de (i) - (ii).


     
    9. Procédé selon la revendication 8, où les dispositifs perturbateurs de mousse, similaires ou non au tamis comprennent un matériau résistant au verre fondu et à la mousse dans l'appareil en aval.
     
    10. Procédé selon la revendication 8, comprenant faire osciller le dispositif perturbateur de mousse, similaire ou non au tamis de manière à toucher alternativement et ne pas toucher la mousse.
     
    11. Procédé selon la revendication 8, comprenant faire vibrer le dispositif perturbateur de mousse, similaire ou non au tamis quand touchant la mousse.
     
    12. Procédé selon la revendication 8, où les dispositifs perturbateurs de mousse, similaires au tamis sont choisis du groupe formé d'un ou plusieurs tamis, un ou plusieurs matériaux non tissés, et un ou plusieurs matériaux tissés.
     
    13. Procédé selon la revendication 8, où les dispositifs perturbateurs de mousse non similaires au tamis sont choisis du groupe formé de

    i) un ou plusieurs éléments allongés mobiles qui sont substantiellement parallèles à un niveau du verre fondu;

    ii) un ou plusieurs éléments allongés mobiles qui sont tous substantiellement perpendiculaires au niveau du verre fondu;

    iii) un ou plusieurs plaques, lames, palettes ou ailes relativement plates ou courbes.


     
    14. Système comprenant:

    un appareil connecté par fluide en aval d'un pot de fusion à combustion immergé, l'appareil en aval, comprenant une sole, une voûte, une structure de paroi connectant la sole et la voûte, la sole, la voûte, et la structure de paroi définissant un espace intérieur configuré pour comprendre une masse fondue fluide ou non fluide de verre et mousse, l'appareil dépourvu de brûleurs à combustion immergé et d'autres composants qui augmenteraient la turbulence de la masse fondue, la masse fondue ayant de la mousse sur au moins une partie d'une surface supérieure de la masse fondue; et

    un ou plusieurs appareils de déstabilisation configuré pour imposer une force de déstabilisation directement à la mousse ou à la masse fondue et mousse, l'appareil de déstabilisation choisi du groupe formé d'un appareil de vibration, un appareil générant la force d'onde acoustique, un appareil générant la force basée sur matière particulaire, et un appareil générant de force mécanique non basée sur matière particulière.


     
    15. Système selon la revendication 14, où l'appareil de vibration est connecté par voie mécanique à l'une ou plusieurs d'entre la sole, la paroi, et la voûte de l'appareil en aval, préférablement l'appareil de vibration est choisi du groupe formé de l'appareil de vibration électrique, hydraulique, et pneumatique, préférablement l'appareil de vibration est configuré pour imposer un mouvement vibratoire ayant une fréquence et amplitude au verre et à la mousse suffisante pour déstabiliser les bulles dans la mousse et causer la rupture au moins à une majorité des bulles dans la mousse, plus préférablement l'appareil de vibration est configuré pour faire varier la fréquence et/ou l'amplitude pour identifier une fréquence optimale pour déstabiliser la majorité des bulles dans la mousse et causer la rupture au moins à une majorité des bulles dans la mousse.
     
    16. Système selon la revendication 14, où l'appareil générant la force d'onde acoustique est choisi du groupe formé de:

    i) un ou plusieurs brûleurs à combustion non immergé, pulsé, sans impact sur la mousse positionné dans les ouvertures correspondantes dans la paroi ou la voûte, ou dans les deux de l'appareil en aval;

    ii) un ou plusieurs moteurs à détonation pulsé, positionné dans les ouvertures correspondantes dans la paroi ou la voûte, ou dans les deux de l'appareil en aval;

    iii) un ou plusieurs dispositifs audio ou haut-parleurs audio positionnés dans les ouvertures correspondantes dans la paroi, la voûte, ou dans les deux; et

    iv) combinaisons de deux ou plusieurs de (i) - (iii).


     
    17. Système selon la revendication 16, où l'appareil générant la force d'onde acoustique est configuré pour imposer un mouvement ayant une fréquence et amplitude à la mousse suffisante pour déstabiliser les bulles dans la mousse et causer la rupture au moins à une majorité des bulles dans la mousse, préférablement l'appareil générant la force d'onde acoustique est configuré pour régler la fréquence pour identifier une fréquence optimale pour déstabiliser la majorité des bulles dans la mousse et causer la rupture au moins à majorité des bulles dans la mousse.
     
    18. Système selon la revendication 14, où l'appareil générant la force basée sur matière particulaire, est choisi du groupe formé de:

    i) un ou plusieurs récipients configurés pour laisser tomber la pluralité de particules par une ou plusieurs ouvertures dans la paroi, la voûte, ou dans les deux et dans au moins une portion de la mousse;

    ii) une ou plusieurs pistolets à particules positionnés dans les ouvertures correspondantes dans la paroi, la voûte, ou dans les deux et configurés pour tirer la pluralité de particules dans au moins une portion de la mousse avec un élan suffisant pour rompre au moins une partie des bulles formant la mousse.


     
    19. Système selon la revendication 18, où les récipients et les pistolets de particules sont configurés pour laisser tomber ou tirer les particules sélectionnées du groupe formé de composés contenant du soufre, déchet de verre, verre dépoli, particules comprenant une chimie compatible avec et intégrable dans le verre fondu, dioxyde de carbone congelé, matière organique solide, et combinaisons et mélanges de deux ou plusieurs de ceux-ci.
     
    20. Système selon la revendication 18, où les pistolets de particules sont configurés pour propulser la pluralité de particules utilisant les procédés choisis du groupe formé de propulsion par gaz comprimé non réactif, propulsion à base d'un gaz d'expansion due à une ou plusieurs réactions chimiques, propulsion électromagnétique, et leurs combinaisons.
     
    21. Système selon la revendication 14, où l'appareil générant la force mécanique non basée sur matière particulaire est choisi du groupe formé de:

    i) un ou plusieurs dispositifs perturbateurs de mousse, similaire au tamis configuré pour mettre en contact au moins une portion de la mousse de façon continue ou intermittente;

    ii) un ou plusieurs dispositifs perturbateurs de mousse, similaire au tamis configuré pour mettre en contact au moins une portion de la mousse de façon continue ou intermittente;

    iii) combinaisons de (i) - (ii).


     
    22. Système selon la revendication 21, où les dispositifs perturbateurs de mousse, similaires au tamis comprennent un matériau résistant au verre fondu et à la mousse dans l'appareil en aval.
     
    23. Système selon la revendication 21, où les dispositifs perturbateurs de mousse, similaires au tamis ou non similaires sont configurés à toucher alternativement et pas toucher la mousse.
     
    24. Système selon la revendication 21, où les dispositifs perturbateurs de mousse, similaires au tamis ou non similaires sont configurés à vibrer quand touchant la mousse.
     
    25. Système selon la revendication 21, où les dispositifs perturbateurs de mousse, similaires au tamis sont choisis du groupe formé d'un ou plusieurs tamis, un ou plusieurs matériaux non tissés, et un ou plusieurs matériaux tissés.
     
    26. Système selon la revendication 21, où les dispositifs perturbateurs de mousse, similaires au tamis sont choisis du groupe formé de:

    i) un ou plusieurs éléments allongés mobiles qui sont substantiellement parallèles à un niveau du verre fondu dans l'appareil en aval;

    ii) un ou plusieurs éléments allongés mobiles qui sont substantiellement perpendiculaires au niveau du verre fondu dans l'appareil en aval;

    iii) un ou plusieurs plaques, lames, palettes ou ailes relativement plates ou courbes.


     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description