(19)
(11)EP 2 908 069 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
14.08.2019 Bulletin 2019/33

(21)Application number: 15153606.7

(22)Date of filing:  03.02.2015
(51)Int. Cl.: 
F24S 80/70  (2018.01)
F24S 80/54  (2018.01)
F25B 27/00  (2006.01)
F24S 70/20  (2018.01)
F24S 10/50  (2018.01)

(54)

Solar thermal absorber element

Solarthermisches Absorberelement

Élément absorbeur thermique solaire


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 17.02.2014 FI 20145153

(43)Date of publication of application:
19.08.2015 Bulletin 2015/34

(73)Proprietor: Savo-Solar OY
50100 Mikkeli (FI)

(72)Inventor:
  • Pischow, Kaj
    50100 MIKKELI (FI)

(74)Representative: Berggren Oy, Helsinki & Oulu 
P.O. Box 16 Eteläinen Rautatiekatu 10A
00101 Helsinki
00101 Helsinki (FI)


(56)References cited: : 
CH-A5- 612 747
DE-A1-102008 064 010
DE-U1-202005 019 500
GB-A- 938 012
US-A1- 2014 026 885
DE-A1- 10 161 085
DE-U1- 9 301 018
FR-A1- 2 363 775
US-A- 4 261 330
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical field



    [0001] The application relates generally to a solar thermal absorber element.

    Background



    [0002] Existing solar thermal collectors are manufactured by mounting a heat insulation and a solar thermal absorber, which has heat transport tubes, inside a collector frame one on the other at a time, and fixing a transparent cover to the frame. A structure of an existing collector enables an ambient air to flow through the collector structure and to dry the inner parts of the collector.

    [0003] However, the existing collectors enable sand, salt, and insects to invade inside its structure along the flowing air, which cause damages decreasing a lifetime and an efficiency of the collectors.

    [0004] In addition, the existing collectors suffer big heat losses because of the ventilated structure.

    [0005] In addition, the existing collectors suffer moisture condensation and condensation of other evaporated components from the insulation on an inner surface of the cover, which decrease an operation time of the collectors.

    [0006] Examples of existing collectors are disclosed in patent publications DE 102008064101, CH 612747, GB 938 012 A and DE 93 01 018 U1.

    [0007] The preceding drawbacks have limited significantly the usability of the existing collectors.

    Summary



    [0008] Therefore, one object of the invention is to withdraw the above-mentioned drawbacks and provide an efficient and cost effective solar thermal absorber element. One object of the invention is fulfilled by providing a solar thermal absorber element of claim 1, a solar thermal collector of claim 5, and a heating system of claim 6.

    [0009] According to one embodiment of the invention, a solar thermal absorber element comprising a cover glass, a coated roll-bond absorber, and a distance between the cover glass and the roll-bond absorber, wherein the roll-bond absorber comprises heat transport tubes, wherein a thermoplastic sealing attaches the cover glass and the roll-bond absorber to each other so that it is formed a hermetically sealed space, which is surrounded by the cover glass, the roll-bond absorber, and the thermoplastic sealing and which is filled up with a low thermal conductive gas.

    [0010] The term "highly selective vacuum coating" refers to e.g. a coating, which is deposited in vacuum and which form a selective absorber coating with a solar absorbance more than 96% with low thermal emission by radiation in the infrared. The term "roll-bond absorber" refers to an absorber, which comprises at least one tube and which is provided by a roll-bond technology.

    [0011] The term "thermoplastic sealing" refers to a sealing, which is made by a thermoplastic sealing (TPS) technology.

    [0012] The term "low thermal conductive gas" refers to e.g. a gas, which has a low thermal conductivity, e.g. noble gases. A low thermal conductive can be e.g. argon, krypton, or xenon.

    [0013] According to one embodiment of the invention, a solar thermal collector comprising a solar thermal absorber element comprising a cover glass, a coated roll-bond absorber, and a distance between the cover glass and the roll-bond absorber, wherein the roll-bond absorber comprises heat transport tubes, wherein a thermoplastic sealing attaches the cover glass and the roll-bond absorber to each other so that it is formed a hermetically sealed space, which is surrounded by the cover glass, the roll-bond absorber, and the thermoplastic sealing and which is filled up with a low thermal conductive gas.

    [0014] According to one embodiment of the invention, a heating system comprising a solar thermal absorber element, which comprises a cover glass, a coated roll-bond absorber, and a distance between the cover glass and the roll-bond absorber, wherein the roll-bond absorber comprises heat transport tubes, wherein a thermoplastic sealing attaches the cover glass and the roll-bond absorber to each other so that it is formed a hermetically sealed space, which is surrounded by the cover glass, the roll-bond absorber, and the thermoplastic sealing and which is filled up with a low thermal conductive gas. The system further comprising a heat pump connected to the solar thermal absorber element.

    [0015] Further embodiments of the invention are defined in dependent claims.

    [0016] The verb "to comprise" is used in this document as an open limitation that neither excludes nor requires the existence of also unrecited features. The verbs "to include" and "to have/has" are defined as to comprise.

    [0017] The terms "a", "an" and "at least one", as used herein, are defined as one or more than one and the term "plurality" is defined as two or more than two.

    [0018] The term "another", as used herein, is defined as at least a second or more.

    [0019] The term "or" is generally employed in its sense comprising "and/or" unless the content clearly dictates otherwise.

    [0020] For the above-mentioned defined verbs and terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this description/specification.

    [0021] Finally, the features recited in depending claims are mutually freely combinable unless otherwise explicitly stated.

    Brief description of the figures



    [0022] The embodiments of the invention will be described with reference to the accompanying figures, in which
    figure 1
    illustrates a cross-section of a solar thermal absorber element,
    figure 2
    illustrates a cross-section of a solar thermal collector, and
    figure 3
    illustrates a heating system.

    Detailed description of the figures



    [0023] Figure 1 illustrates a cross-section of a solar thermal absorber element (module) 100.

    [0024] The element 100 comprising a highly transparent cover glass 110, which allows solar radiation to pass to a roll-bond absorber 120 and at the same time covers the highly selective vacuum coated absorber 120 for mechanical damages, insects and dust. In addition, the glass 110 reduces heat losses from the absorber 120.

    [0025] The absorber 120 is configured to absorb the solar radiation. The absorber 120 comprising at least one heat transport tube 126 and it is formed by means of a roll-bond technology, where two e.g. aluminium plates are bonded together by a rolling process. A pattern and size of the tube(s) 126 are printed on an inner surface of one plate by a special silk screen and ink. The printed pattern remains between inner surfaces of the bonded plates and after the bonding, the tube(s) 126 is formed by inflating compressed air through the printed pattern.

    [0026] The tube(s) 126 forms a continuous heat transport channel, which has an inlet 127a and an outlet 127b and which is configured to circulate a heat transport fluid, e.g. water, air, or antifreeze, inside the absorber 120. A design of tube(s) 126 can be designed e.g. as a single twisting tube 126 and/or a multibranched tube 126, which is configured to decrease a flow resistant of the heat transport fluid.

    [0027] The inlet 127a and the outlet 127b are configured to be connected to external devices, e.g. a tubing of a solar thermal collector or its adapter means.

    [0028] The rigid absorber 120 keeps a distance h between the glass 110 and the absorber 120 constant - prevents the absorber 120 to bend towards the glass 110 - in order to minimize thermal losses. The thermal losses are minimized when the distance h is 10 mm. If the absorber 120 bends towards the glass 110 so that the distance h is less than 10 mm, the thermal losses increase dramatically.

    [0029] The absorber 120 comprises a highly selective vacuum coating 150, e.g. a so-called MEMO coating comprising ceramic layers based on silicon, aluminium, and titanium, on a front surface 122 of the absorber 120. The coating 150, which comprises layers 152, 154, 156, is deposited in vacuum on an entire and complete absorber 120 at once by means of a physical vapour deposition (PVD) process and/or a plasma-enhanced chemical vapour deposition (PECVD) process.

    [0030] A first layer 152 on the front surface 122 is configured to absorb light and to prevent a diffusion of elements from the absorber material, which decreases a performance of the absorber 120. The layer 152 has composition comprising titanium, aluminium, nitrogen, and one of following elements: silicon, yttrium, cerium, and chromium.

    [0031] The layer 152 can have e.g. a layer thickness between 10 nm-600 nm and it can comprise e.g. titanium, aluminium, silicon, and nitrogen (TixAlySiz)Na. Alternatively, yttrium, cerium, and/or chromium can be used additionally or instead of silicon.

    [0032] Indices x, y, z, and a, and later on also index b indicate a stequiometric or non-stequiometric composition of the layers 152, 154, 156.

    [0033] The values of the layer 152 for x, y, z, and a can be e.g. 0.4, 0.5, 0.1, and 1.0 respectively. Typically, a value of x is 0.3-0.5, value of y 0.3-0.6, value of z 0.03-0.2, and value of a 0.9-1.1.

    [0034] A second intermediate layer 154 on the layer 152 is configured to absorb light and to increase an interference at selected wavelengths. The layer 154 has composition comprising titanium, aluminium, nitrogen, oxygen, and one of following elements: silicon, yttrium, cerium, and chromium.

    [0035] The layer 154 can have e.g. a layer thickness between 10 nm-150 nm and it can comprise titanium, aluminium, silicon, nitrogen, and oxygen (TixAlySiz)NaOb. Alternatively, yttrium, cerium, and/or chromium can be used additionally or instead of silicon. The values for x, y, z, a, and b can be e.g. 0.4, 0.5, 0.1, 0.8, and 0.3 respectively. Typically, a value of x is 0.3-0.5, value of y 0.3-0.6, value of z 0.03-0.2, value of a 0.2-0.8, and value of b 0.2-0.8.

    [0036] A third top layer 156 on the second layer 154 is configured to serve as antireflection layer and to isolate the coating 150 from a surrounding gas. It has composition comprising titanium, aluminium, silicon, nitrogen, and oxygen.

    [0037] The layer 156 can have e.g. a layer thickness between 50 nm-250 nm and it can comprise titanium, aluminium, silicon, nitrogen, and oxygen (TixAlySiz)NaOb. Typically a value of x is 0-0.2, value of y 0-0.2, value of z 0-1, value of a 0-2, and value of b 0-2.

    [0038] The element 100 comprising a thermoplastic sealing (spacer) 130, which is configured to attach the glass 110 and the absorber 120 to each other so that there is the certain distance h, e.g. 10, 15, or 20 mm, between the glass 110 and the absorber 120.

    [0039] The attachment is made by a TPS technology. The sealing 130, e.g. a butyl sealing, is injected on the glass 110 for achieving a desired sealing thickness and the distance h between the glass 110 and the absorber 120. Then, the glass 110 with the sealing 130 and the absorber 120 are pressed together so that it is formed a gas tight (hermetically) sealed space 134, which is surrounded by the glass 110, the absorber 120, and the sealing 130 as the figure illustrates.

    [0040] At the same time, when the glass 110 and the absorber 120 are pressed together, a low thermal conductive gas 136, e.g. an argon gas, is injected into the space 134 so that it is filled up with the gas 136. The gas 136 reduces thermal losses by convection.

    [0041] The glass 110, the rigid absorber 120, and the gas tight sealing 130 keep the gas 136 in the space 134 and prevent the gas 136 to flow away from the space 134.

    [0042] The element 100 further comprising a secondary sealing 140, e.g. a silicon sealing, which is attached to the sealing 130 and between the glass 110 and the absorber 120. The sealing 140 protects the sealing 130 and carries a weight of the absorber 120.

    [0043] The sealed element 100 prevents dust or insects to let in the element 100, and preserves an efficiency of the absorber 120, when there is no efficiency change during a lifetime of the absorber 120 because of the dust or insects.

    [0044] In addition, the sealed element 100 prevents a water condensation on the glass 110, whereupon it can start to produce energy earlier on a morning.

    [0045] The element 100 is possible to assemble to the existing collector frames by the same way as the transparent covers have been fixed until now.

    [0046] Figure 2 illustrates a cross-section of a solar thermal collector 260, which comprising the element 200 illustrated in figure 1. The collector 260 is a flat plate -type collector e.g. for high temperatures.

    [0047] The collector 260 comprising a collector frame 270 that covers the collector 260 for mechanical damages, insects, and dust.

    [0048] The frame 270 comprising at least one support element 272 on its collar part 271 on an inner surface 282 of the frame 270. The support element(s) 272 is configured to support the element 200 - especially its glass 210 - when the element 200 is mounted into the frame 270.

    [0049] In addition, the frame 270 comprising at least one support element 274 on a bottom part 273 on the inner surface 282 and a backing plate 276. The support element(s) 274 supports the backing plate 276, which is configured to support a heat insulation 280 of the collector 260 and to cover the collector 260 for the mechanical damages, insects and dust.

    [0050] The insulation 280 is configured to thermally insulate the element 200 and to minimize an effect of its environment. The insulation 280, e.g. a mineral wool or a wood fiber wool, is mounted on the backing plate 276 as the figure illustrates, whereupon it supports the absorber 220 when element 200 is mounted into the frame 270.

    [0051] The backing plate 276 can be a part of the insulation 280, whereupon it is also configured to thermally insulate the element 200.

    [0052] The sealed element 200 prevents the insulation 280 based water condensation on the glass 210 and itenables to use cheaper insulation materials in the collector 260, because there is no condensation of any evaporated components from the insulation 280 on the glass 210.

    [0053] The mounted element 200 is supported by the support element(s) 272 and the insulation 280, and the tube(s) 126 - the heat transport channel - is connected to the collector 260 by means of the inlet 127a and the outlet 127b, and e.g. the adapter means (not illustrated) of the collector 260.

    [0054] The element 200 is extremely valuable in high temperature flat plate collectors 260, which can be utilized e.g. solar cooling applications. The elements 200 will provide a possibility to build very effective modular large area collectors for process and district heating systems, which are the fastest growing solar thermal application areas.

    [0055] Figure 3 illustrates a heating system 390 for providing thermal energy.

    [0056] The system 390 comprising the element 300 illustrated in figure 1 and a heat pump 392, e.g. a geothermal heatpump, connected to the element 300 by means of e.g. the inlet 127a and the outlet 127b of the element 300, adapter means, and heat transport connections 394a, 394b.

    [0057] The element 300 provides heat, e.g. it heats a building and its hot water, whenever it is possible. In the autumn, winter, and spring, when there is no sunshine sufficiently, the element 300 improves a performance of the heat pump 392 by preheating heat transport fluid before it flows into the heat pump 392. The preheated fluid increases an efficiency of the heat pump 392 and minimizes a use of heat pump 392 based thermal energy.

    [0058] In addition, the system 300 can use merely the heat pump 392 for providing the thermal energy.

    [0059] The invention has been now explained above with reference to the aforesaid embodiments and the several advantages of the invention have been demonstrated. It is clear that the invention is not only restricted to these embodiments, but comprises all possible embodiments within the scope of the invention thought and the following claims.


    Claims

    1. A solar thermal absorber element (100, 200, 300) comprising a cover glass (110, 210),
    a coated roll-bond absorber (120, 220), and
    a distance (h) between the cover glass and the roll-bond absorber, wherein the element further comprises a highly selective vacuum coated roll-bond absorber (120,220) comprising heat transport tubes (126), characterized in that
    a thermoplastic sealing (130) attaches the cover glass and the roll-bond absorber to each other so that it is formed a hermetically sealed space (134), which is surrounded by the cover glass, the roll-bond absorber, and the thermoplastic sealing, and which is filled up with a low thermal conductive gas (136).
     
    2. The element of claim 1, which further comprising a secondary sealing (140), which is attached to the thermoplastic sealing and between the cover glass and the roll-bond absorber, the secondary sealing is configured to protect the thermoplastic sealing and to carry a weight of the roll-bond absorber.
     
    3. The element of any of preceding claims, where the roll-bond absorber comprises a coating (150) on a front surface (122) of the roll-bond absorber.
     
    4. The element of any of preceding claims, where the coating comprising deposited layers (152, 154, 156), a first layer (152) on the roll-bond absorber has composition comprising titanium, aluminium, nitrogen, and one of following elements: silicon, yttrium, cerium, and chromium; a second layer (154) on the first layer has composition comprising titanium, aluminium, nitrogen, oxygen, and one of following elements: silicon, yttrium, cerium, and chromium; and a third layer (156) on the second layer has composition comprising titanium, aluminium, silicon, nitrogen, and oxygen.
     
    5. A solar thermal collector (260) comprising a solar thermal absorber element (200) of any of claims 1-4.
     
    6. A heating system (390) comprising a solar thermal absorber element (300) of any of claims 1-4 and a heat pump (392) connected to the solar thermal absorber element.
     


    Ansprüche

    1. Solarthermisches Absorberelement (100, 200, 300), umfassend
    ein Abdeckglas (110, 210),
    einen beschichteten Rollbond-Absorber (120, 220) und einen Abstand (h) zwischen dem Abdeckglas und dem Rollbond-Absorber, wobei das Element ferner einen hochselektiven vakuumbeschichteten Rollbond-Absorber (120, 220) umfasst, der Wärmeleitrohre (126) umfasst,
    dadurch gekennzeichnet, dass
    eine thermoplastische Dichtung (130) das Abdeckglas und den Rollbond-Absorber so miteinander befestigt, dass sie einen hermetisch abgeschlossenen Raum (134) bildet, der von dem Abdeckglas, dem Rollbond-Absorber und der thermoplastischen Dichtung umgeben ist und der mit einem schwach wärmeleitenden Gas (136) gefüllt ist.
     
    2. Element nach Anspruch 1, das ferner eine sekundäre Dichtung (140) umfasst, die an der thermoplastischen Dichtung und zwischen dem Abdeckglas und dem Rollbond-Absorber befestigt ist, wobei die sekundäre Dichtung zum Schutz der thermoplastischen Dichtung und zum Tragen eines Gewichts des Rollbond-Absorbers konfiguriert ist.
     
    3. Element nach einem der vorhergehenden Ansprüche, wobei der Rollbond-Absorber eine Beschichtung (150) auf einer Vorderseite (122) des Rollbond-Absorbers umfasst.
     
    4. Element nach einem der vorhergehenden Ansprüche, wobei die Beschichtung, die abgeschiedene Schichten (152, 154, 156) umfasst, eine erste Schicht (152) auf dem Rollbond-Absorber, eine Zusammensetzung aufweist, die Titan, Aluminium, Stickstoff und eines der folgenden Elemente umfasst: Silizium, Yttrium, Cer und Chrom; eine zweite Schicht (154) auf der ersten Schicht eine Zusammensetzung aufweist, die Titan, Aluminium, Stickstoff, Sauerstoff und eines der folgenden Elemente umfasst: Silizium, Yttrium, Cer und Chrom; und eine dritte Schicht (156) auf der zweiten Schicht eine Zusammensetzung aufweist, die Titan, Aluminium, Silizium, Stickstoff und Sauerstoff umfasst.
     
    5. Sonnenkollektor (260), umfassend ein solarthermisches Absorberelement (200) nach einem der Ansprüche 1-4.
     
    6. Heizsystem (390), umfassend ein solarthermisches Absorberelement (300) nach einem der Ansprüche 1-4 und eine mit dem solarthermischen Absorberelement verbundene Wärmepumpe (392).
     


    Revendications

    1. Élément absorbeur solaire thermique (100, 200, 300) comprenant
    un verre de recouvrement (110, 210),
    un absorbeur colaminé enduit (120, 220), et
    une distance (h) entre le verre de recouvrement et l'absorbeur colaminé, dans lequel l'élément comprend en outre un absorbeur colaminé enduit sous vide hautement sélectif (120, 220) comprenant des tubes de transport de chaleur (126),
    caractérisé en ce qu'un
    scellement thermoplastique (130) attache entre eux le verre de recouvrement et l'absorbeur colaminé de manière à former un espace scellé hermétiquement (134), qui est entouré par le verre de recouvrement, l'absorbeur colaminé et le scellement thermoplastique, et qui est rempli d'un gaz à faible conductivité thermique (136).
     
    2. Élément selon la revendication 1, comprenant en outre un scellement secondaire (140), qui est attaché au scellement thermoplastique et entre le verre de recouvrement et l'absorbeur colaminé, le scellement secondaire étant configuré pour protéger le scellement thermoplastique et pour supporter le poids de l'absorbeur colaminé.
     
    3. Élément selon l'une quelconque des revendications précédentes, dans lequel l'absorbeur colaminé comprend un revêtement (150) sur une surface avant (122) de l'absorbeur colaminé.
     
    4. Élément selon l'une quelconque des revendications précédentes, dans lequel le revêtement comprend des couches déposées (152, 154, 156), où une première couche (152) sur l'absorbeur colaminé présente une composition comprenant du titane, de l'aluminium, de l'azote, et l'un des éléments suivants : le silicium, l'yttrium, le cérium et le chrome ; une deuxième couche (154) sur la première couche présente une composition comprenant du titane, de l'aluminium, de l'azote, de l'oxygène, et l'un des éléments suivants : le silicium, l'yttrium, le cérium et le chrome ; et une troisième couche (156) sur la deuxième couche présente une composition comprenant du titane, de l'aluminium, du silicium, de l'azote et de l'oxygène.
     
    5. Capteur solaire thermique (260) comprenant un élément absorbeur solaire thermique (200) selon l'une quelconque des revendications 1 à 4.
     
    6. Système de chauffage (390) comprenant un élément absorbeur solaire thermique (300) selon l'une quelconque des revendications 1 à 4 et une pompe à chaleur (392) connectée à l'élément absorbeur solaire thermique.
     




    Drawing






    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description