(19)
(11)EP 2 910 887 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 15154715.5

(22)Date of filing:  11.02.2015
(51)International Patent Classification (IPC): 
F28F 3/04(2006.01)
F28D 9/00(2006.01)
F02K 3/115(2006.01)
F28F 9/02(2006.01)
F02C 7/143(2006.01)

(54)

MICROCHANNEL HEAT EXCHANGERS FOR GAS TURBINE INTERCOOLING AND CONDENSING AS WELL AS CORRESPONDING METHOD

MIKROKANALWÄRMETAUSCHER FÜR GASTURBINENZWISCHENKÜHLUNG UND KONDENSATION SOWIE KORRESPONDIERENDE METHODE

ÉCHANGEURS DE CHALEUR À MICROCANAUX POUR LE REFROIDISSEMENT INTÉRIMAIRE D'UNE TURBINE À GAZ ET LA CONDENSATION DE MÊME QUE PROCEDE CORRESPONDANT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 21.02.2014 US 201461943064 P

(43)Date of publication of application:
26.08.2015 Bulletin 2015/35

(73)Proprietors:
  • Rolls-Royce Corporation
    Indianapolis, Indiana 46225-1103 (US)
  • Rolls-Royce North American Technologies, Inc.
    Indianapolis, IN 46241 (US)

(72)Inventors:
  • Loebig, James C.
    Greenwood, IN Indiana 46142 (US)
  • Dejulio, Emil R.
    Columbus, IN Indiana 47203 (US)

(74)Representative: Ström & Gulliksson AB 
P O Box 4188
203 13 Malmö
203 13 Malmö (SE)


(56)References cited: : 
EP-A2- 1 154 135
WO-A1-03/080233
US-A1- 2002 119 079
US-A1- 2011 146 226
EP-A2- 2 412 631
JP-A- 2004 028 538
US-A1- 2009 229 794
US-A1- 2012 175 095
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF TECHNOLOGY



    [0001] An improved heat exchanger for use in a gas turbine engine is disclosed.

    BACKGROUND



    [0002] Heat exchangers may be employed in the gas turbine engine sector (e.g., the aerospace sector) for the purpose of transferring heat between a core air stream and a bypass stream. Historically, air to air type heat exchangers are employed for this purpose. These types of heat exchangers however can require complex ducting, which adds system weight, costs, and can reduce their effectiveness. Accordingly, there is room for further improvements in this area. EP 2 412 631 A2 discloses a prior art gas turbine engine.

    [0003] According to the present disclosure, there is provided a heat exchange system and a method of operating a heat exchange system, as set forth in the appended claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0004] While the claims are not limited to a specific illustration, an appreciation of the various aspects is best gained through a discussion of various examples thereof. Referring now to the drawings, exemplary illustrations are shown in detail. Although the drawings represent the illustrations, the drawings are not necessarily to scale and certain features may be exaggerated to better illustrate and explain an innovative aspect of an example. Further, the exemplary illustrations described herein are not intended to be exhaustive or otherwise limiting or restricted to the precise form and configuration shown in the drawings and costs, and can reduce their effectiveness. Accordingly, there is room for further improvements in this area.

    [0005] According to the present disclosure, there is provided a heat exchange system and a method of operating a heat exchange system, as set forth in the appended claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0006] While the claims are not limited to a specific illustration, an appreciation of the various aspects is best gained through a discussion of various examples thereof. Referring now to the drawings, exemplary illustrations are shown in detail. Although the drawings represent the illustrations, the drawings are not necessarily to scale and certain features may be exaggerated to better illustrate and explain an innovative aspect of an example. Further, the exemplary illustrations described herein are not intended to be exhaustive or otherwise limiting or restricted to the precise form and configuration shown in the drawings and disclosed in the following detailed description. Exemplary illustrations are described in detail by referring to the drawings as follows:

    FIG. 1 illustrates an exemplary gas turbine;

    FIG. 2 illustrates a exemplary microchannel heat exchange system according to an embodiment;

    FIG. 3a illustrates an exemplary microchannel heat exchanger (MCHX) according to an embodiment;

    FIG. 3b illustrates an exaggerated view of a region of the exemplary MCHX of Figure 3a according to an embodiment;

    FIG. 4 illustrates a partial cross-sectional view of FIG. 3a along 4-4 according to an embodiment;

    FIG. 5 illustrates a cross-sectional view of FIG. 3a along 5-5 according to an illustrative embodiment, not forming part of the claimed invention;

    FIG. 6 illustrates an exemplary MCHX sealing layer according to an embodiment;

    FIG. 7a illustrates an exemplary MCHX air-passage layer according to an embodiment; and

    FIG. 7b illustrates a perspective view of a portion of the exemplary MCHX air-passage layer of FIG. 7a according to an embodiment.


    DETAILED DESCRIPTION



    [0007] Figure 1 illustrates an exemplary gas turbine engine 100, which includes a fan 102, a vane/strut 104, a core stream diffuser 106, an intercooler-type microchannel heat exchanger (MCHX) 108, a high pressure compressor nozzle 110, and a closed cycle turbine 112. Ambient air enters past the fan 102 and is directed past the core stream diffuser 106 as a core air stream 114 that proceeds through the intercooler-type MCHX 108 where it is cooled.

    [0008] The gas turbine engine 100 also includes a bypass stream diffuser 116, a condenser-type MCHX 118, and an exit nozzle 120. Fan stream air in the form of a bypass air stream 122 proceeds past the bypass stream diffuser 116 to the condenser-type MCHX 118, and passes through the condenser-type MCHX 118 where the bypass air stream 122 is heated before exiting the exit nozzle 120. As will be discussed in detail below with respect to Figure 2, according to an embodiment, a working fluid (not shown) that passes through the intercooler-type MCHX 108 of Figure 1 also passes through the condenser-type MCHX 118. Accordingly, the core air stream 114 heats the working fluid in the intercooler-type MCHX 108 (i.e., heat is transferred from the core air stream 114 to the working fluid in the intercooler-type MCHX 108) while the bypass air stream 122 cools the working fluid in the condenser-type MCHX 118 (i.e., heat is transferred from the working fluid in the condenser-type MCHX 118 to the bypass air stream 122).

    [0009] Further details regarding the intercooler-type MCHX 108 and the condenser-type MCHX 118 will be set forth below with respect to Figures 2-7.

    [0010] With reference now to Figure 2, a detailed view 200 of a portion of gas turbine engine 100 of Figure 1 employing a microchannel heat exchange system is shown according to an embodiment. The portions of the gas turbine engine 100 shown in both Figures 1 and 2 include the intercooler-type MCHX 108, the closed cycle turbine 112, the condenser-type MCHX 118, the core stream diffuser 106, and the bypass stream diffuser 116. Figure 2 also depicts an accumulator/separator 202, a liquid working fluid pump 204, and a series of working fluid piping 206.

    [0011] According to an embodiment, a core air stream 208 passes through the core stream diffuser 106 and through the intercooler-type MCHX 108. As the core air stream 208 passes though the intercooler-type MCHX 108, a working fluid (not shown) therein changes phase from a liquid to a gas as heat from the core air stream 208 is transferred to the working fluid in the intercooler-type MCHX 108. Alternatively, it is contemplated that the working fluid instead changes from a liquid to a supercritical fluid. Referring back to the present embodiment, after passing through the intercooler-type MCHX 108 the working fluid then passes via the series of working fluid piping 206 as a high pressure gas or supercritical fluid to the closed cycle turbine 112 thus generating power. The working fluid is then conveyed via the series of working fluid piping 206 as a low pressure gas or gas and liquid mixture to the condenser-type MCHX 118. The condenser-type MCHX 118 causes the working fluid therein to change phase once again, this time from a gas to a liquid by transferring heat from the working fluid to a bypass air stream 210 that passes through the condenser-type MCHX 118 via the bypass stream diffuser 116.

    [0012] Accordingly, heat has been transferred from the core air stream 208 to the bypass air stream 210 via the working fluid.

    [0013] After the working fluid passes through the condenser-type MCHX 118, the working fluid is then conveyed via the series of working fluid piping 206 as a liquid to the accumulator/separator 202, then to the liquid pump 204, and then again to the intercooler-type MCHX 108. As will be appreciated, piping configurations different than the configuration of the series of working fluid piping 206 shown in Figure 2 may be employed to couple together two MCHXs such as intercooler-type MCHX 108 and condenser-type MCHX 118.

    [0014] By employing a heat exchange or management system having the intercooler-type MCHX 108 functionally or fluidly connected to the condenser-type MCHX 118 as shown in Figure 2, heavy and complex ducting previously required with air-to-air heat exchange systems can be avoided or at least minimized.

    [0015] Turning now to Figures 3a-3b, an MCHX 300 and an exaggerated view 302 of a portion thereof are shown according to an embodiment. The MCHX 300 includes an inlet 304 on a front side 306 and an outlet 308 also on the front side 306. It is noted, that according to other embodiments, the outlet may be on a back side 310 rather than the front side 306. Alternatively, the outlet 308 may remain on the front side 306, while the inlet 304 is instead positioned on the back side 310. Indeed, according to embodiments, the outlet 308 and inlet 304 may be on any side of the MCHX 300.

    [0016] Referring to the present embodiment, though not required, it is contemplated that the MCHX 300 have an external intake manifold 312 and an external outtake manifold 314, where each is shown in phantom. The MCHX 300 also includes a top side 316 and a bottom side 318.

    [0017] The exaggerated view 302 of Figure 3b is of region A on the top side 316 of the MCHX 300 shown in Figure 3a. As illustrated in the exaggerated view 302, the top side 316 includes a plurality of air-passage channels 320. These air-passage channels 320 extend through the MCHX 300 from the top side 316 to the bottom side 318. The air-passage channels 320 are configured to allow air 322 to pass through the MCHX 300. That is, the air-passage channels 320 are configured to allow air 322 to enter the top side 316 of the MCHX 300 and exit through the bottom side 318 of the MCHX 300. Further information regarding the plurality of air-passage channels 320 will be set forth in detail below with respect to Figures 4 and 7a-b.

    [0018] The exaggerated view 302 of Figure 3b also illustrates that the MCHX 300 is comprised of a plurality of layers. The layers include a plurality of working fluid layers 324, a plurality of sealing layers 326, and a plurality of air-passage layers 328 that includes the plurality of air-passage channels 320. Each layer 324-328 extends from the top side 316 of the MCHX 300 to the bottom side 318 of the MCHX 300. It is contemplated that these layers 324-328 include nickel, titanium, and/or aluminum alloys.

    [0019] According to an embodiment, a working fluid 330 enters the MCHX 300 via the inlet 304 into the external intake manifold 312, passes through the working fluid layers 324 that run parallel with the air-passage channels 320 of the air-passage layers 328, through the external outtake manifold 314, and then out the outlet 308. The working fluid 330 may be almost any fluid or mixture, including high pressure gases, single component 2-phase fluids, multi-component mixtures 2-phase fluids, single component and multi-component supercritical fluids, and single and multi-component liquids.

    [0020] The MCHX 300 is generally a counter flow-type heat exchanger. That is, as air 322, such as a core stream or a bypass stream, moves through the MCHX 300 via the air-passage channels 320 in a first direction 332, heat is transferred between the air 322 and the working fluid 330 that is moving in a second direction 334 that is opposite the first direction 332. Accordingly, an efficient heat transfer occurs between the air 322 in the air-passage channels 320 and the working fluid 330 moving in an opposite direction in the working fluid layer 324.

    [0021] If the MCHX 300 functions as an intercooler, the air 322 entering the top side 316 of the MCHX 300 is warmer than the working fluid 330 entering the inlet 304. As such, heat is transferred from the air 322 to the working fluid 330 as each travel in opposite directions through the MCHX 300.

    [0022] The MCHX 300, if configured to act as an intercooler, is configured to allow the working fluid 330 to take on a gaseous form as it passes through the working fluid layer 324 and absorbs heat from the air 322 passing in the opposite direction through the air-passage layers 328. Accordingly, the working fluid 330 entering the inlet 304 is in a high pressure liquid form and the working fluid leaving the MCHX 300 via the outlet 308 is in a gaseous form (e.g., steam form). It is noted that whether the working fluid 330 is in a fluid or gaseous form, it is still considered a working fluid.

    [0023] Alternatively, the MCHX 300 may be configured to serve as a condenser-type MCHX. According to such an embodiment, the working fluid 330 passes heat to the air 322 and the working fluid 330 condenses as it passes through the working fluid layer 324.

    [0024] It is noted that the saddle shape of the MCHX 300 depicted in figure 3 may be beneficial in a variety of applications. For example, MCHX 300 may be an intercooler-type heat exchanger that may be fit between an intermediate pressure compressor and a high pressure compressor in a three spool high bypass turban engine. It is noted, however, that embodiments are not dictated by the shape of the MCHX 300 shown in Figure 3. That is, alternate embodiments may employ other shapes that also employ microchannel air-passage and working fluid layers. Further, embodiments may also be implemented in applications other than three spool applications, such as single or double spool (shaft) applications.

    [0025] Referring now to Figure 4, a partial cross-sectional view 400 of the MCHX 300 of Figure 2 along 4-4 is shown according to an embodiment. That is only a portion of the cross-section along 4-4 is shown. As seen in Figure 4, the plurality of the working fluid layers 324, the plurality of the sealing layers 326, and the plurality of the air-passage layers 328, each depicted in Figure 3, are also depicted in Figure 4. Each of the working fluid layers 324 includes a plurality of working fluid channels 402 and each of the air-passage layers 328 includes the plurality of the air-passage channels 320. As air (not shown) passes through the air-passage channels 320, heat is transferred between the air and the working fluid (not shown) that is passing in the opposite direction through the working fluid channels 402. The working fluid channels 402 and air-passage channels 320 are microchannels and the sizes generally range from 0.0127 cm (i.e. 0.005 inches) to 0.120 cm (i.e. 0.120 inches).

    [0026] It is contemplated that during manufacturing, the layers 324-328 be bonded together by diffusion bonding or brazing. Accordingly, boundaries between the layers would be generally indistinguishable.

    [0027] Further, it is contemplated that during manufacturing, a plurality of working/sealing sets 404 are created via diffusion bonding or brazing. That is, each of the working fluid layers 324 is respectively diffusion bonded or brazed to each of sealing layers 326 to form the plurality of working/sealing sets 404. According to an embodiment, the sealing layers 402 are un-etched, and each effectively creates a seal over the working fluid layer 324 while leaving the working fluid channels 402 of the sets 404 open for fluid flow.

    [0028] These working/sealing sets 404 have a high structural integrity since they, in some aspects, act as a pressure vessel for the high pressure working fluid that flows therethrough. Since the working fluid channels 402 are microchannels, each of the working/sealing sets 404 accommodate a high pressure of working fluid without a corresponding high stress in each of the working/sealing sets 404 due to the low value of Pr/t stress, where "P" is internal pressure, "r" is channel diameter, and "t" is channel wall thickness.

    [0029] After the sets 404 are created, each is respectively diffusion bonded or brazed to each of the air-passage layers 328. In other words, each of the air-passage layers 328 is sandwiched between two of the working/sealing sets 404.

    [0030] According to an embodiment where the MCHX, such as MCHX 300, is configured as an intercooler in a turbofan environment, eight of the MCHXs 300 may be employed, each having one hundred and thirty-two air-passage layers 328 with each air-passage channel 320 thereof having a dimension of 0,05715 cm (i.e. 0.0225 inches) by 0,05715 cm (i.e. 0.0225 inches). Each of the eight MCHX 300 would also employ one hundred and thirty-three working/sealing sets 404 with the sets 404 being approximately 0.0508 cm (i.e. 0.020 inches) thick. In such an embodiment, each of the working/sealing sets 404 may have an approximately 0.0107 cm (i.e. 0.005 inches) thick un-etched sealing layer 326 and an approximately 0.0381 cm (i.e. 0.015 inches) thick working fluid layer 324. The etch depth of the working fluid channels 402 may be approximately 0.0254 cm (i.e. 0.010 inches). It is noted that according to other embodiments, other dimensions may instead be employed that fall within the microchannel range set forth above.

    [0031] With reference now to Figure 5, a cross-sectional view of the MCHX 300 of Figure 3a along 5-5 is shown according to an embodiment. The cross-sectional view shown in Figure 5 depicts a single working fluid layer 500, such as one of the working fluid layers 324 of Figures 3a-4. The single working fluid layer 500 of Figure 5 includes the plurality of working fluid channels 402, a plurality of raised pedestals 502, a plurality of substrate rises 504, a substrate perimeter 506, and an internal intake and outtake manifolds 508, 510, respectively, around the raised pedestals 502. The internal intake and outtake manifold 508, 510 are generally the same depth as the working fluid channels 402. An upper and lower portion 512, 514 (respectively shown in phantom) of the respective external outtake and intake manifolds 314, 312 of Figure 3 are also shown. With continued reference to Figure 5, it is noted that the substrate rises 504, substrate perimeter 506, and the upper and lower portions 512, 514, respectively, are generally at the same height.

    [0032] Figure 5 also depicts an external outtake manifold void 516 and an external intake manifold void 518 (illustrative embodiment not forming part of the claimed invention). It is noted that according to an embodiment, external intake and outtake manifolds are not required since the internal intake manifold 508 and the internal outtake manifold 510 may be all that is needed to accommodate the transfer of the working fluid.

    [0033] According to the present embodiment (illustrative embodiment not forming part of the claimed invention), the single working fluid layer 500 is configured to allow a working fluid to enter from the external intake manifold void 518 into the internal intake manifold 508 around the pedestals 502 therein and pass into the plurality of working fluid channels 402. It is contemplated that the working fluid be a mixture such as a water-ammonia mixture. The working fluid passes through the working fluid channels 402 and enters the internal outtake manifold 510 where it passes around the raised pedestals 502 therein and out the external outtake manifold void 516. It is noted that, according to the embodiment depicted in Figure 5, the single working fluid layer 500 is for an evaporative or boiling type MCHX such as intercooler-type MCHX 108 depicted in Figures 1 and 2. Accordingly, the volume of the internal outtake manifold 510 of Figure 5 is larger than the volume of the internal intake manifold 508. The larger volume of the internal outtake manifold 510 accommodates the expansion of the working fluid from a liquid to a gas or supercritical fluid as it passes through the working fluid channels 402. However, in an alternate embodiment not shown where the MCHX is a condenser-type MCHX, the internal outtake manifold has a smaller volume than the internal intake manifold to accommodate the decrease in volume (e.g., condensing from a gas to a liquid) of the working fluid as it passes through the working fluid channels thereof.

    [0034] With continued reference to Figure 5, the arrangement of the raised pedestals 502 shown is configured to aid the flow of the working fluid. For example, the arrangement of the raised pedestals 502 in the internal intake manifold 508 aides in the distribution of the working fluid into the working fluid channels 402. Likewise, the arrangement of the pedestals 502 in the upper working fluid region 510 aides in the transfer of the working fluid out of the working fluid channels 402 and into the external outtake manifold void 516.

    [0035] The size of the working fluid channels 402 generally ranges from 0.0127 cm (i.e. 0.005 inches) to 0.3048 cm (i.e. 0.120 inches). The single working fluid layer 500 is manufactured by a process that combines portions of printed circuit board manufacturing (e.g., masking, ultraviolet exposure, and mask development) with electrochemical machining/etching in sheet metal. With regards to the etching, isotropic or anisotropic etching may be employed.

    [0036] Due to the manner of manufacturing of the single working fluid layer 500, the design of the single working fluid layer 500 is easily configurable. For example, whereas the embodiment of Figure 5 depicts straight working fluid channels 402 and round raised pedestals 502, other embodiments may employ different shapes of these features. For example, though not shown, the design artwork may be relatively easily modified to employ pedestals that are not round and/or channels that are staggered or even snake shaped. It is the use of the resist, mask, expose, develop, and electrochemical etching/machining processes employed in the printed circuit board sector that make the design art work easily configurable.

    [0037] It is noted that embodiments are not dictated by the saddle shape shown in Figure 5. That is, working fluid layers may take on shapes other than a saddle shape.

    [0038] Referring now to Figure 6, a sealing layer 600 is shown according to an embodiment. As discussed above with respect to Figure 4, it is contemplated that each working fluid layer (e.g., single working fluid layer 500 of Figure 5) is bonded to a sealing layer (e.g., the sealing layer 326 of Figure 4), thus creating a working sealing set such as working/sealing set 404 of Figure 4. Accordingly, the sealing layer 600 of Figure 6 is configured to have generally the same footprint as the working fluid layer (e.g., the working fluid layer 500 of Figure 5). The sealing layer 600 is bonded via diffusion bonding or brazing to the raised substrate of the working fluid layer. For example, with reference to Figures 5 and 6, the sealing layer 600 is bonded to the substrate rises 504, the substrate perimeter 506, the raised pedestals 502, and the upper and lower portions of the respective external outtake and intake manifolds 512, 514 of the single working fluid layer 500. Since neither the working fluid channels 402 nor the internal outtake and intake manifolds 510, 508, respectively, around the raised pedestals 502 are bonded to the sealing layer 600, the working fluid is allowed to move into the internal intake manifold 508 via the external intake manifold void 518, then into the working fluid channels 402, out into the internal outtake manifold 510, and then out through the external outtake manifold void 516.

    [0039] It is noted that embodiments are not dictated by the saddle shape shown in Figure 6. That is, sealing layers may take on shapes other than a saddle shape.

    [0040] With reference now to Figure 7a, an air-passage layer 700 is shown according to an embodiment. The air-passage layer 700 includes a plurality of air-passage channels 702, a plurality of air-passage substrate rises 704, a first substrate perimeter 706, a portion of external outtake manifold region 708 (shown in phantom), a second substrate perimeter 710, and a portion of an external intake manifold region 712 (shown in phantom). Further, Figure 7a also depicts a portion of an external intake manifold void 714 and an external outtake manifold void 716.

    [0041] It is noted that the air-passage channels 702 and the air-passage substrate rises 704 extend from a top end 718 of the air-passage layer 700 to a bottom end 720 of the air-passage layer 700. Further, according to the present embodiment, the air-passage channels 702 generally converge at the bottom end 720 relative to the top end 718. As such, if the air-passage layer 700 is employed in an intercooler-type MCHX (e.g., intercooler-type MCHX 108 of Figures 1 and 2), the convergence compensates for any loss of air stream velocity through the air-passage channels 702 of Figure 7a due to cooling. Other embodiments, however, are envisioned having convergence instead on the top end 718 or no convergence at all.

    [0042] The air-passage substrate rises 704, first and second perimeters 706, 710, and the portions of the external outtake and intake manifolds 708, 712 are generally at the same height. Accordingly, these areas 704-712 are diffusion bonded or brazed to respective working/sealing sets 404 of Figure 4 during manufacture.

    [0043] The air-passage channels 702 of Figure 7a are microchannels and generally range in size between 0.0127 cm (i.e. 0.005 inches) and 0.3048 cm (i.e. 0.120 inches). The small features of the of the air-passage channels 702 enable a large air surface area of the air-passage layer 700 so that the product of the heat transfer coefficient times the surface area (i.e., the HA product) can be generally the same magnitude as the working fluid layer (e.g., working/sealing sets 404). Accordingly, an MCHX (e.g., intercooler-type MCHX 108 and condenser-type MCHX 118, each of Figures 1 and 2, and MCHX 300 of Figure 3) can be a fraction of the volume of a conventional heat exchanger (not shown) with generally equivalent performance (e.g., air pressure loss and thermal efficiency).

    [0044] The air-passage layer 700 is manufactured by a process that combines portions of printed circuit board manufacturing (e.g., masking, ultraviolet exposure, and mask development) with electrochemical machining/etching in sheet metal. With regards to the etching, isotropic or anisotropic etching may be employed.

    [0045] Due to the manner of manufacturing the air-passage layer 700, the design of thereof is configurable. For example, whereas the embodiment of Figure 7a depicts straight air-passage channels 702, other embodiment may employ different shapes of this feature. For example, though not shown, the design artwork may be relatively easily modified to create staggered or snake shaped air-passage microchannels. Further, it is noted that embodiments are not dictated by the saddle shape shown in Figure 7a. That is, air-passage layers may take shapes other than a saddle shape.

    [0046] Referring now to Figures 7b and 7a, where figure 7b depicts a perspective view of a portion of air-passage layer 700 according to an embodiment. Figure 7b illustrates that it is contemplated that the air-passage channels 702 and the air-passage substrate rises 704 are on both sides of air-passage layer 700.

    [0047] According to embodiments, MCHXs such as MCHX 108 and 118, both of Figures 1 and 2, and MCHX 300 of Figure 3 are comprised of a plurality of microchannel layers (e.g., working fluid layer 324 shown in Figures 4 and 5 and air-passage layer 700 shown in figure 7). Such MCHXs have a high level or porosity, where porosity is a total void volume (i.e., the sum of each manifold volume and each passage or channel volume) over the total MCHX volume. Whereas a typical heat exchanger (not shown) may have a porosity in the range from twenty to thirty percent, embodiments of the MCHX discussed in detail herein may have a porosity in the range of thirty to seventy percent.

    [0048] The MCHXs (i.e., 108 and 118 both of Figures 1 and 2, and 300 of Figure 3) and the embodiments thereof discussed in detail above, whether they are of the intercooler or condenser-type MCHXs, have the advantages of having a small size and weight for a given thermal effectiveness and pressure drop. As discussed above, they have a high porosity. Accordingly, these types of MCHXs can be utilized in applications that have tight size and weight requirements. For example, the MCHXs discussed above and the embodiments thereof can be utilized in aerospace application where size and weight requirements need to be met. Further, since an intermediate fluid is utilized (e.g., working fluid 330 of Figure 3a), the need for heavy and complex ducting often needed for air-to-air type heat exchangers can be avoided.


    Claims

    1. A gas turbine engine (100) heat exchange system (200), comprising: a first microchannel heat exchanger (MCHX) (108, 300) configured to transfer heat between a first air stream (114, 208, 322) and a working fluid (330), wherein the first MCHX (108, 300) comprises:

    a first plurality of air-passage layers (328, 700), wherein each air-passage layer (328, 700) of the first plurality of air-passage layers (328, 700) includes a first plurality of etched air-passage microchannels (320, 702) configured to allow passage of the first air stream (114, 208 322) therethrough; and
    a first plurality of working fluid layers (324, 500), wherein each working fluid layer (324, 500) of the first plurality of working fluid layers (324, 500) includes a first plurality of etched working fluid microchannels (402) configured to allow passage of the working fluid (330) therethrough, the first MCHX (108, 300) further comprising a first plurality of sealing layers (326, 600) bonded to the first plurality of working fluid layers (324, 500) such that a single sealing layer (326, 600) of the first plurality of sealing layers (326, 600) is bonded to a single working fluid layer (324, 500) of the first plurality of working fluid layers (324, 500) to create a first plurality of working and sealing layer sets (404), wherein each air-passage layer (328, 700) of the first plurality of air-passage layers (328, 700) is diffusion bonded between two working and sealing layer sets (404) of the first plurality of working and sealing layer sets (404); characterized by

    wherein each working and sealing layer set (404) of the first plurality of working and sealing layer sets (404) comprises an etched internal intake manifold (508), wherein the etched internal intake manifold (508) is configured to distribute the working fluid (330) to the first plurality of etched working fluid microchannels (402), and an etched internal outtake manifold (510), wherein the etched internal outtake manifold (510) is configured to receive the working fluid (330) from the first plurality of etched working fluid microchannels (402); and

    wherein the etched intake manifold (508) and the etched outtake manifold (510) of each working and sealing layer set (404) of the first plurality of working and sealing layer sets (404) surround a plurality of supports (502, 504) configured to support a sealing layer (326, 600) of the first plurality of sealing layers (326, 600).


     
    2. The gas turbine engine (100) heat exchange system (200) of claim 1, wherein the plurality of etched air-passage microchannels (320, 702) are on a first side of each air-passage layer (328, 700) of the first plurality of air-passage layers (328, 700) and on a second side of each air-passage layer (328, 700) of the first plurality of air-passage layers (328, 700), and wherein the first side is opposite the second side.
     
    3. The gas turbine engine (100) heat exchange system (200) of claim 1 or 2, wherein the first plurality of etched air-passage microchannels (320, 720) converge at a first end (718) of each air-passage layer (328, 700) of the first plurality of air-passage layers (328, 700).
     
    4. The gas turbine engine (100) heat exchange system (200) as in any of claims 1 to 3, wherein an inner dimension of each etched air-passage microchannel (320, 702) of the first plurality of etched air-passage microchannels (320, 702) and each etched working fluid microchannel (402) of the first plurality of etched working fluid microchannels (402) is no less than 0.0127 cm and no more than 0.3048 cm.
     
    5. The gas turbine engine (100) heat exchange system (200) as in any of claims 1 to 4, further comprising a second MCHX (118) functionally connected with the first MCHX (108, 118, 300), wherein the second MCHX (118) comprises:

    a second plurality of air-passage layers (328, 700), wherein each air-passage layer (328, 700) of the second plurality of air-passage layers (328, 700) includes a second plurality of etched air-passage microchannels (320, 700) configured to allow the passage of a bypass air stream (122, 210) therethrough; and

    a second plurality of working fluid layers (324, 500), wherein each working fluid layer (324, 500) of the second plurality of working fluid layers (324, 500) includes a second plurality of etched working fluid microchannels (402) configured to allow the passage of the working fluid (330) therethrough, and wherein the gas turbine engine (100) heat exchange system (200) is configured to transport a quantity of heat from the first air stream (114, 208, 322) to the bypass air stream (122, 210).


     
    6. The gas turbine engine (100) heat exchange system (200) of claim 5, wherein the first MCHX (108, 300) is an intercooler MCHX (108, 300) and the second MCHX (118) is a condenser MCHX (118, 300).
     
    7. The gas turbine engine (100) heat exchange system (200) of claim 1, wherein the internal intake manifold (508) has a dimensional volume different than that of the internal outtake manifold (510).
     
    8. The gas turbine engine (100) heat exchange system (200) as in any of claim 1, wherein an internal volume of the internal intake manifold (508) is less than an internal volume of the internal outtake manifold (510).
     
    9. A method of conveying a quantity of heat within a gas turbine engine (100) comprising:

    passing an air stream (114, 208322) from a gas turbine engine (100) through a first plurality of etched microchannel air passages (320, 702) of a first heat exchanger (108, 300), wherein the first heat exchanger (108, 300) comprises a first plurality of air-passage layers (328, 700), wherein each air-passage layer (328, 700) of the first plurality of air-passage layers (328, 700) includes the first plurality of etched air-passage microchannels (320, 702), wherein each air-passage layer (328, 700) of the first plurality of air-passage layers (328, 700) is diffusion bonded between two working and sealing layer sets (404) of the first plurality of working and sealing layer sets (404); and

    passing a working fluid (330) through a first plurality of etched microchannel working fluid passages (402) of the first heat exchanger (108, 300) such that a quantity of heat is transferred between the working fluid (300) and the air stream (114, 208, 322), wherein the first heat exchanger comprises a first plurality of working fluid layers (324, 500), wherein each working fluid layer (324, 500) of the first plurality of working fluid layers (324, 500) includes the first plurality of etched working fluid microchannels (402), wherein the first heat exchanger (108, 300) further comprises a first plurality of sealing layers (326, 600) bonded to the first plurality of working fluid layers (324, 500) such that a single sealing layer (326, 600) of the first plurality of sealing layers (326, 600) is bonded to a single working fluid layer (324, 500) of the first plurality of working fluid layers (324, 500) to create a first plurality of working and sealing layer sets (404); characterized by

    wherein each working and sealing layer set (404) of the first plurality of working and sealing layer sets (404) comprises an etched internal intake manifold (508), wherein the etched internal intake manifold (508) is configured to distribute the working fluid (330) to the first plurality of etched working fluid microchannels (402), and an etched internal outtake manifold (510), wherein the etched internal outtake manifold (510) is configured to receive the working fluid (330) from the first plurality of etched working fluid microchannels (402); and

    wherein the etched intake manifold (508) and the etched outtake manifold (510) of each working and sealing layer set (404) of the first plurality of working and sealing layer sets (404) surround a plurality of supports (504) configured to support a sealing layer (326, 600) of the first plurality of sealing layers (326, 600).


     
    10. The method of claim 9, wherein an inner dimension of each passage (402) of the plurality of etched microchannel working fluid passages (402) and each passage (320, 702) of the plurality of etched microchannel air passages (320, 702) is no less than 0.0127cm and no more than 0.3048 cm.
     
    11. The method of claim 9 or 10, further comprising:

    passing the working fluid (330) through a plurality of etched microchannel working fluid passages (402) of a second heat exchanger (118); and

    passing a second air stream (122, 210) through a plurality of etched microchannel air passages (320, 702) of the second heat exchanger to transfer a quantity of heat from the first air stream (114, 208, 322) to the second air stream (122, 210,).


     


    Ansprüche

    1. Wärmetauschersystem (200) eines Gasturbinentriebwerks (100), umfassend: einen ersten Mikrokanalwärmetauscher (Microchannel Heat Exchanger, MCHX) (108, 300), dazu ausgelegt, Wärme zwischen einem ersten Luftstrom (114, 208, 322) und einem Arbeitsfluid (330) zu übertragen, wobei der erste MCHX (108, 300) Folgendes umfasst:

    eine erste Mehrzahl von Luftdurchgangsschichten (328, 700), wobei jede Luftdurchgangsschicht (328, 700) der ersten Mehrzahl von Luftdurchgangsschichten (328, 700) eine erste Mehrzahl von geätzten Luftdurchgangsmikrokanälen (320, 702) beinhaltet, die dazu ausgelegt sind, den Durchgang des ersten Luftstroms (114, 208, 322) dort hindurch zu gestatten; und

    eine erste Mehrzahl von Arbeitsfluidschichten (324, 500), wobei jede Arbeitsfluidschicht (324, 500) der ersten Mehrzahl von Arbeitsfluidschichten (324, 500) eine erste Mehrzahl von geätzten Arbeitsfluidmikrokanälen (402) umfasst, die dazu ausgelegt sind, einen Durchgang des Arbeitsfluids (330) dort hindurch zu ermöglichen, wobei der erste MCHX (108, 300) ferner eine erste Mehrzahl von Dichtungsschichten (326, 600) umfasst, die so mit der ersten Mehrzahl von Arbeitsfluidschichten (324, 500) verbunden sind, dass eine einzelne Dichtungsschicht (326, 600) der ersten Mehrzahl von Dichtungsschichten (326, 600) mit einer einzelnen Arbeitsfluidschicht (324, 500) der ersten Mehrzahl von Arbeitsfluidschichten (324, 500) verbunden ist, um eine erste Mehrzahl von Arbeits- und Dichtungsschichtsätzen (404) zu erzeugen, wobei jede Luftdurchgangsschicht (328, 700) der ersten Mehrzahl von Luftdurchgangsschichten (328, 700) zwischen zwei Arbeits- und Dichtungsschichtsätzen (404) der ersten Mehrzahl von Arbeits- und Dichtungsschichtsätzen (404) diffusionsverbunden ist; dadurch gekennzeichnet,

    dass jeder Arbeits- und Dichtungsschichtsatz (404) der ersten Mehrzahl von Arbeits- und Dichtungsschichtsätzen (404) einen geätzten inneren Ansaugkrümmer (508) umfasst, wobei der geätzte innere Ansaugkrümmer (508) dazu ausgelegt ist, das Arbeitsfluid (330) zu der ersten Mehrzahl von geätzten Arbeitsfluidmikrokanälen (402) zu verteilen, und einen geätzten inneren Auslasskrümmer (510), wobei der geätzte innere Auslasskrümmer (510) dazu ausgelegt ist, das Arbeitsfluid (330) von der ersten Mehrzahl von geätzten Arbeitsfluidmikrokanälen (402) aufzunehmen; und

    wobei der geätzte Ansaugkrümmer (508) und der geätzte Auslasskrümmer (510) jedes Arbeits- und Dichtungsschichtsatzes (404) der ersten Mehrzahl von Arbeits- und Dichtungsschichtsätzen (404) eine Mehrzahl von Stützen (502, 504) umgeben, die dazu ausgelegt sind, eine Dichtungsschicht (326, 600) der ersten Mehrzahl von Dichtungsschichten (326, 600) zu stützen.


     
    2. Wärmetauschersystem (200) eines Gasturbinentriebwerks (100) nach Anspruch 1, wobei sich die Mehrzahl von geätzten Luftdurchgangsmikrokanälen (320, 702) auf einer ersten Seite jeder Luftdurchgangsschicht (328, 700) der ersten Mehrzahl von Luftdurchgangsschichten (328, 700) und auf einer zweiten Seite jeder Luftdurchgangsschicht (328, 700) der ersten Mehrzahl von Luftdurchgangsschichten (328, 700) befindet, und wobei die erste Seite der zweiten Seite gegenüberliegt.
     
    3. Wärmetauschersystem (200) eines Gasturbinentriebwerks (100) nach Anspruch 1 oder 2, wobei die erste Mehrzahl von geätzten Luftdurchgangsmikrokanälen (320, 720) an einem ersten Ende (718) jeder Luftdurchgangsschicht (328, 700) der ersten Mehrzahl von Luftdurchgangsschichten (328, 700) konvergieren.
     
    4. Wärmetauschersystem (200) eines Gasturbinentriebwerks (100) nach einem der Ansprüche 1 bis 3, wobei eine Innenabmessung jedes geätzten Luftdurchgangsmikrokanals (320, 702) der ersten Mehrzahl von geätzten Luftdurchgangsmikrokanälen (320, 702) und jedes geätzten Arbeitsfluidmikrokanals (402) der ersten Mehrzahl von geätzten Arbeitsfluidmikrokanälen (402) nicht weniger als 0,0127 cm und nicht mehr als 0,3048 cm beträgt.
     
    5. Wärmetauschersystem (200) eines Gasturbinentriebwerks (100) nach einem der Ansprüche 1 bis 4, ferner umfassend einen zweiten MCHX (118), der funktionell mit dem ersten MCHX (108, 118, 300) verbunden ist, wobei der zweite MCHX (118) Folgendes umfasst:

    eine zweite Mehrzahl von Luftdurchgangsschichten (328, 700), wobei jede Luftdurchgangsschicht (328, 700) der zweiten Mehrzahl von Luftdurchgangsschichten (328, 700) eine zweite Mehrzahl von geätzten Luftdurchgangsmikrokanälen (320, 700) beinhaltet, die dazu ausgelegt sind, den Durchgang eines Umgehungsluftstroms (122, 210) dort hindurch zu ermöglichen; und

    eine zweite Mehrzahl von Arbeitsfluidschichten (324, 500), wobei jede Arbeitsfluidschicht (324, 500) der zweiten Mehrzahl von Arbeitsfluidschichten (324, 500) eine zweite Mehrzahl von geätzten Arbeitsfluidmikrokanälen (402) beinhaltet, die dazu ausgelegt sind, den Durchgang des Arbeitsfluids (330) dort hindurch zu ermöglichen, und wobei das Wärmetauschersystem (200) des Gasturbinentriebwerks (100) dazu ausgelegt ist, eine Wärmemenge von dem ersten Luftstrom (114, 208, 322) zu dem Umgehungsluftstrom (122, 210) zu transportieren.


     
    6. Wärmetauschersystem (200) eines Gasturbinentriebwerks (100) nach Anspruch 5, wobei der erste MCHX (108, 300) ein Zwischenkühler-MCHX (108, 300) und der zweite MCHX (118) ein Kondensator-MCHX (118, 300) ist.
     
    7. Wärmetauschersystem (200) eines Gasturbinentriebwerks (100) nach Anspruch 1, wobei der innere Ansaugkrümmer (508) ein Abmessungsvolumen aufweist, das sich von dem des inneren Auslasskrümmers (510) unterscheidet.
     
    8. Wärmetauschersystem (200) eines Gasturbinentriebwerks (100) nach Anspruch 1, wobei ein Innenvolumen des inneren Ansaugkrümmers (508) kleiner als ein Innenvolumen des inneren Auslasskrümmers (510) ist.
     
    9. Verfahren zum Fördern einer Wärmemenge in einem Gasturbinentriebwerk (100), umfassend:

    Leiten eines Luftstroms (114, 208322) von einem Gasturbinentriebwerk (100) durch eine erste Mehrzahl von geätzten Mikrokanalluftdurchgängen (320, 702) eines ersten Wärmetauschers (108, 300), wobei der erste Wärmetauscher (108, 300) eine erste Mehrzahl von Luftdurchgangsschichten (328, 700) umfasst, wobei jede Luftdurchgangsschicht (328, 700) der ersten Mehrzahl von Luftdurchgangsschichten (328, 700) die erste Mehrzahl von geätzten Luftdurchgangsmikrokanälen (320, 702) beinhaltet, wobei jede Luftdurchgangsschicht (328, 700) der ersten Mehrzahl von Luftdurchgangsschichten (328, 700) zwischen zwei Arbeits- und Dichtungsschichtsätzen (404) der ersten Mehrzahl von Arbeits- und Dichtungsschichtsätzen (404) diffusionsverbunden ist; und

    Leiten eines Arbeitsfluids (330) durch eine erste Mehrzahl von geätzten Mikrokanalarbeitsfluiddurchgängen (402) des ersten Wärmetauschers (108, 300), sodass eine Wärmemenge zwischen dem Arbeitsfluid (300) und dem Luftstrom (114, 208, 322) übertragen wird, wobei der erste Wärmetauscher eine erste Mehrzahl von Arbeitsfluidschichten (324, 500) umfasst, wobei jede Arbeitsfluidschicht (324, 500) der ersten Mehrzahl von Arbeitsfluidschichten (324, 500) die erste Mehrzahl von geätzten Arbeitsfluidmikrokanälen (402) umfasst, wobei der erste Wärmetauscher (108, 300) ferner eine erste Mehrzahl von Dichtungsschichten (326, 600) umfasst, die so mit der ersten Mehrzahl von Arbeitsfluidschichten (324, 500) verbunden sind, dass eine einzelne Dichtungsschicht (326, 600) der ersten Mehrzahl von Dichtungsschichten (326, 600) mit einer einzelnen Arbeitsfluidschicht (324, 500) der ersten Mehrzahl von Arbeitsfluidschichten (324, 500) verbunden ist, um eine erste Mehrzahl von Arbeits- und Dichtungsschichtsätzen (404) zu erzeugen; dadurch gekennzeichnet,

    dass jeder Arbeits- und Dichtungsschichtsatz (404) der ersten Mehrzahl von Arbeits- und Dichtungsschichtsätzen (404) einen geätzten inneren Ansaugkrümmer (508) umfasst, wobei der geätzte innere Ansaugkrümmer (508) dazu ausgelegt ist, das Arbeitsfluid (330) zu der ersten Mehrzahl von geätzten Arbeitsfluidmikrokanälen (402) zu verteilen, und einen geätzten inneren Auslasskrümmer (510), wobei der geätzte innere Auslasskrümmer (510) dazu ausgelegt ist, das Arbeitsfluid (330) von der ersten Mehrzahl von geätzten Arbeitsfluidmikrokanälen (402) aufzunehmen; und

    wobei der geätzte Ansaugkrümmer (508) und der geätzte Auslasskrümmer (510) jedes Arbeits- und Dichtungsschichtsatzes (404) der ersten Mehrzahl von Arbeits- und Dichtungsschichtsätzen (404) eine Mehrzahl von Stützen (504) umgeben, die dazu ausgelegt sind, eine Dichtungsschicht (326, 600) der ersten Mehrzahl von Dichtungsschichten (326, 600) zu stützen.


     
    10. Verfahren nach Anspruch 9, wobei eine Innenabmessung jedes Durchgangs (402) der Mehrzahl von geätzten Mikrokanalarbeitsfluiddurchgängen (402) und jedes Durchgangs (320, 702) der Mehrzahl von geätzten Mikrokanalluftdurchgängen (320, 702) nicht weniger als 0,0127 cm und nicht mehr als 0,3048 cm beträgt.
     
    11. Verfahren nach Anspruch 9 oder 10, das ferner Folgendes umfasst:

    Leiten des Arbeitsfluids (330) durch eine Mehrzahl von geätzten Mikrokanalarbeitsfluiddurchgängen (402) eines zweiten Wärmetauschers (118); und

    Leiten eines zweiten Luftstroms (122, 210) durch eine Mehrzahl von geätzten Mikrokanalluftdurchgängen (320, 702) des zweiten Wärmetauschers, um eine Wärmemenge von dem ersten Luftstrom (114, 208, 322) zu dem zweiten Luftstrom (122, 210) zu übertragen.


     


    Revendications

    1. Système d'échange de chaleur (200) de moteur de turbine à gaz (100) comprenant : un premier échangeur de chaleur à microcanaux (MCHX) (108, 300) configuré pour transférer la chaleur entre un premier flux d'air (114, 208, 322) et un fluide de travail (330), dans lequel le premier MCHX (108, 300) comprend :

    une première pluralité de couches de passage d'air (328, 700), dans lequel chaque couche de passage d'air (328, 700) de la première pluralité de couches de passage d'air (328, 700) comprend une première pluralité de microcanaux de passage d'air gravés (320, 702) configurés pour permettre le passage du premier flux d'air (114, 208, 322) à travers ces derniers ; et

    une première pluralité de couches de fluide de travail (324, 500), dans lequel chaque couche de fluide de travail (324, 500) de la première pluralité de couches de fluide de travail (324, 500) comprend une première pluralité de microcanaux de fluide de travail gravés (402) configurés pour permettre le passage de fluide de travail (330) à travers ces derniers, le premier MCHX (108, 300) comprenant en outre une première pluralité de couches d'étanchéité (326, 600) reliée à la première pluralité de couches de fluide de travail (324, 500) de sorte qu'une seule couche d'étanchéité (326, 600) de la première pluralité de couches d'étanchéité (326, 600) est reliée à une seule couche de fluide de travail (324, 500) de la première pluralité de couches de fluide de travail (324, 500) pour créer une première pluralité d'ensembles de couches de travail et d'étanchéité (404), dans lequel chaque couche de passage d'air (328, 700) de la première pluralité de couches de passage d'air (328, 700) est reliée par diffusion entre deux ensembles de couches de travail et d'étanchéité (404) de la première pluralité d'ensembles de couche de travail et d'étanchéité (404) ; caractérisé par :

    dans lequel chaque ensemble de couche de travail et d'étanchéité (404) de la première pluralité d'ensembles de couche de travail et d'étanchéité (404) comprend un collecteur d'admission interne gravé (508), dans lequel le collecteur d'admission gravé (508) est configuré pour distribuer le fluide de travail (330) à la première pluralité de microcanaux de fluide de travail gravés (402) et un collecteur de sortie interne gravé (510), dans lequel le collecteur de sortie interne gravé (510) est configuré pour recevoir le fluide de travail (330) de la première pluralité de microcanaux de fluide de travail gravés (402) ; et

    dans lequel le collecteur d'admission gravé (508) et le collecteur de sortie gravé (510) de chaque ensemble de couche de travail et d'étanchéité (404) de la première pluralité d'ensembles de couche de travail et d'étanchéité (404) entourent une pluralité de supports (502, 504) configurée pour supporter une couche d'étanchéité (326, 600) de la première pluralité de couches d'étanchéité (326, 600).


     
    2. Système d'échange de chaleur (200) de moteur de turbine à gaz (100) selon la revendication 1, dans lequel la pluralité de microcanaux de passage d'air gravés (320, 702) est sur un premier côté de chaque couche de passage d'air (328, 700) de la première pluralité de couches de passage d'air (328, 700) et sur un second côté de chaque couche de passage d'air (328, 700) de la première pluralité de couches de passage d'air (328, 700), et dans lequel le premier côté est opposé au second côté.
     
    3. Système d'échange de chaleur (200) de moteur de turbine à gaz (100) selon la revendication 1 ou 2, dans lequel la première pluralité de microcanaux de passage d'air gravés (320, 720) converge au niveau d'une première extrémité (718) de chaque couche de passage d'air (328, 700) de la première pluralité de couches de passage d'air (328, 700).
     
    4. Système d'échange de chaleur (200) de moteur de turbine à gaz (100) selon l'une quelconque des revendications 1 à 3, dans lequel une dimension interne de chaque microcanal de passage d'air gravé (320, 702) de la première pluralité de microcanaux de passage d'air gravés (320, 702) et chaque microcanal de fluide de travail gravé (402) de la première pluralité de microcanaux de fluide de travail gravés (402) n'est pas inférieure à 0,0127 cm et non supérieure à 0,3048 cm.
     
    5. Système d'échange de chaleur (200) de moteur de turbine à gaz (100) selon l'une quelconque des revendications 1 à 4, comprenant en outre un second MCHX (118) raccordé, fonctionnellement, au premier MCHX (108, 118, 300), dans lequel le second MCHX (118) comprend :

    une seconde pluralité de couches de passage d'air (328, 700), dans lequel chaque couche de passage d'air (328, 700) de la seconde pluralité de couches de passage d'air (328, 700) comprend une seconde pluralité de microcanaux de passage d'air gravés (320, 700) configurés pour permettre le passage d'un flux d'air de dérivation (112, 210) à travers ces derniers ; et

    une seconde pluralité de couches de fluide de travail (324, 500), dans lequel chaque couche de fluide de travail (324, 500) de la seconde pluralité de couches de fluide de travail (324, 500) comprend une seconde pluralité de microcanaux de fluide de travail (402) configurée pour permettre le passage du fluide de travail (330) à travers ces derniers, et dans lequel le système d'échange de chaleur (200) de moteur de turbine à gaz (100) est configuré pour transporter une quantité de chaleur du premier flux d'air (114, 208, 322) au flux d'air de dérivation (122, 210).


     
    6. Système d'échange de chaleur (200) de moteur de turbine à gaz (100) selon la revendication 5, dans lequel le premier MCHX (108, 300) est un MCHX de refroidisseur intermédiaire (108, 300) et le second MCHX (118) est un MCHX de condenseur (118, 300).
     
    7. Système d'échange de chaleur (200) de moteur de turbine à gaz (100) selon la revendication 1, dans lequel le collecteur d'admission interne (508) a un volume dimensionnel différent de celui du collecteur de sortie interne (510).
     
    8. Système d'échange de chaleur (200) de moteur de turbine à gaz (100) selon la revendication 1, dans lequel un volume interne du collecteur d'admission interne (508) est inférieur à un volume interne du collecteur de sortie interne (510).
     
    9. Procédé pour transporter une quantité de chaleur dans un moteur de turbine à gaz (100) comprenant les étapes consistant à :

    faire passer un flux d'air (114, 208, 322) à partir d'un moteur de turbine à gaz (100) par une première pluralité de passages d'air à microcanaux gravés (320, 702) d'un premier échangeur de chaleur (108, 300), dans lequel le premier échangeur de chaleur (108, 300) comprend une première pluralité de couches de passage d'air (328, 700), dans lequel chaque couche de passage d'air (328, 700) de la première pluralité de couches de passage d'air (328, 700) comprend la première pluralité de microcanaux de passage d'air gravés (320, 702), dans lequel chaque couche de passage d'air (328, 700) de la première pluralité de couches de passage d'air (328, 700) est reliée par diffusion entre deux ensembles de couches de travail et d'étanchéité (404) de la première pluralité d'ensembles de couches de travail et d'étanchéité (404) ; et

    faire passer un fluide de travail (330) à travers une première pluralité de passages de fluide à microcanaux gravés (402) du premier échangeur de chaleur (108, 300) de sorte qu'une quantité de chaleur est transférée entre le fluide de travail (300) et le flux d'air (114, 208, 322), dans lequel le premier échangeur de chaleur comprend une première pluralité de couches de fluide de travail (324, 500), dans lequel chaque couche de fluide de travail (324, 500) de la première pluralité de couches de fluide de travail (324, 500) comprend la première pluralité de microcanaux de fluide de travail gravés (402), dans lequel le premier échangeur de chaleur (108, 300) comprend en outre une première pluralité de couches d'étanchéité (326, 600) reliées à la première pluralité de couches de fluide de travail (324, 500), de sorte qu'une seule couche d'étanchéité (326, 600) de la première pluralité de couches d'étanchéité (326, 600) est reliée à une seule couche de fluide de travail (324, 500) de la première pluralité de couches de fluide de travail (324, 500) afin de créer une première pluralité d'ensembles de couches de travail et d'étanchéité (404) ; caractérisé par :

    dans lequel chaque ensemble de couche de travail et d'étanchéité (404) de la première pluralité d'ensembles de couches de travail et d'étanchéité (404) comprend un collecteur d'admission interne gravé (508), dans lequel le collecteur d'admission interne gravé (508) est configuré pour distribuer le fluide de travail (330) à la première pluralité de microcanaux de fluide de travail gravés (402), et un collecteur de sortie interne gravé (510), dans lequel le collecteur de sortie interne gravé (510) est configuré pour recevoir le fluide de travail (330) de la première pluralité de microcanaux de fluide de travail gravés (402) ;

    dans lequel le collecteur d'admission gravé (508) et le collecteur de sortie gravé (510) de chaque ensemble de couches de travail et d'étanchéité (404) de la première pluralité d'ensembles de couches de travail et d'étanchéité (404) entourent une pluralité de supports (504) configurés pour supporter une couche d'étanchéité (326, 600) de la première pluralité de couches d'étanchéité (326, 600).


     
    10. Procédé selon la revendication 9, dans lequel une dimension interne de chaque passage (402) de la pluralité de passages de fluide de travail à microcanaux gravés (402) et chaque passage (320, 702) de la pluralité de passages d'air à microcanaux gravés (320, 702) n'est pas inférieure à 0,0127 cm et non supérieure à 0,3048 cm.
     
    11. Procédé selon la revendication 9 ou 10, comprenant en outre les étapes consistant à :

    faire passer le fluide de travail (330) par une pluralité de passages de fluide de travail à microcanaux gravés (402) d'un second échangeur de chaleur (118) ; et

    faire passer un second flux d'air (122, 210) par une pluralité de passages d'air à microcanaux gravés (320, 702) du second échangeur de chaleur afin de transférer une quantité de chaleur du premier flux d'air (114, 208, 322) au second flux d'air (122, 210).


     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description