(19)
(11)EP 2 919 864 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.12.2021 Bulletin 2021/52

(21)Application number: 12813058.0

(22)Date of filing:  13.11.2012
(51)International Patent Classification (IPC): 
A62C 37/36(2006.01)
G08B 17/12(2006.01)
(52)Cooperative Patent Classification (CPC):
G08B 17/12; A62C 37/36
(86)International application number:
PCT/FI2012/051104
(87)International publication number:
WO 2014/076349 (22.05.2014 Gazette  2014/21)

(54)

SOUND AND LIGHT ANALYSIS FOR FIRE LOCATION DETECTION

SCHALL- UND LICHTANALYSE ZUR BRANDPOSITIONSERKENNUNG

ANALYSE DU SON ET LUMIÈRE POUR LA DÉTECTION DE LA LOCALISATION D'UN INCENDIE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
23.09.2015 Bulletin 2015/39

(73)Proprietor: Marioff Corporation Oy
01300 Vantaa (FI)

(72)Inventor:
  • NIKKARILA, Juha-Pekka
    12400 Tervakoski (FI)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
GB-A- 2 247 584
US-A- 4 821 805
US-A- 4 694 172
US-A1- 2005 110 632
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION



    [0001] The invention relates generally to fire suppression systems and, more particularly, to the detection of the location of a fire by a fire suppression system.

    [0002] Conventional fire suppression systems typically include sprinklers or spray nozzles positioned strategically within an area where fire protection is desired, such as inside a building. The sprinklers remain inactive most of the time. Existing methods for detecting a fire may depend on the type of fire suppression system used. For example, detection in a dry pipe system may be based on the air flow or rate of change in pressure, and detection in wet pipe systems may be based on fire or smoke detection or activation of the spray nozzles as a direct result of the heat present. Conventional fire suppression systems fail to quickly and accurately detect the location of a fire. As a result, systems are over-designed to compensate for the slowness and inaccuracy of the system. Such over-designing adds significant cost to the system because additional and more costly components, such as larger diameter pipe for example, are included in the system.

    [0003] US 4821805 discloses a fire detection system having at least two fire-detecting sensors that are movable in horizontal and vertical directions to locate a fire.

    [0004] US 4694172 discloses a radiation-responsivbe system for measuring the distance to a fire.

    BRIEF DESCRIPTION OF THE INVENTION



    [0005] According to one embodiment of the invention, a fire suppression system is provided including at least one spray head. A drive source is coupled to the at least one spray head by a supply line. The supply line delivers an extinguishing medium to the at least one spray head. The system also includes at least three fire location sensors arranged at known fixed positions and configured to detect waves emitted during a fire condition. A control unit is operably coupled to the drive source and the at least three fire location sensors such that the output of the fire location sensors is transmitted to the control unit for analysis. The control unit includes a timer for each of the at least three fire location sensors, the timer being configured to determine a time at which each fire location sensor detects a wave. The control unit determines a position of the fire based on the known positions of the at least three fire location sensors, data collected by the at least three of fire location sensors adjacent the fire, and the time at which each fire location sensor detects a wave. Each of the at least three fire location sensors provides a signal to the control unit based on the detected wave.

    [0006] According to another embodiment of the invention, a method for determining a location of a fire in a building having a fire suppression system is provided including detecting a wave emitted by the fire at at least three fire location sensors. The at least three fire location sensors are arranged at known fixed positions. The output of the at least three fire location sensors is transmitted to a control unit for analysis. The control unit is operably coupled to the fire location sensors, and includes a timer for each of the at least three fire location sensors. The timer determines a time at which each fire location sensor detects a wave. A distance between each of the at least three fire location sensors and the fire is calculated, and a position of the fire is determined based on the known location of the fire location sensors, data collected by the at least three fire location sensors, and the time at which each fire location sensor detects a wave. Each of the at least three fire location sensors provides a signal to the control unit based on the detected wave.

    [0007] These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.

    BRIEF DESCRIPTION OF THE DRAWING



    [0008] The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:

    FIG. 1 is a schematic diagram of a fire suppression system according to an embodiment of the invention; and

    FIG. 2 is a schematic diagram of a portion of a fire suppression system according to an embodiment of the invention; and

    FIG. 3 is a detailed view of the fire suppression system of FIG. 2.


    DETAILED DESCRIPTION OF THE INVENTION



    [0009] Referring now to FIG. 1, an exemplary fire suppression system 10 including a drive source 20 and a plurality of spray heads 40 is illustrated. In one embodiment, the spray heads 40 include nozzles with small openings arranged to spray an aqueous liquid mist. The spray heads 40 of the fire suppression system 10 may be positioned in the same general area of a building as the drive source 20, or alternatively, may be separated from the drive source 20 by a barrier, such as a wall for example. A supply line 15 extends from the drive source 20 to the plurality of spray heads 40 to supply an extinguishing medium thereto. In one embodiment, the extinguishing medium used in the system 10 is water. The drive source 20 may include a pump and a motor for operating the pump and is connected to an extinguishing medium source 25, such as a pipeline network or a tank. A control unit 50 is operably coupled to the drive source 20 to activate the drive source 20 when a fire has been detected.

    [0010] The supply line 15, including branch supply lines 15a and 15b leading to the spray heads 40, may be filled with a gas, for example an incombustible gas such as nitrogen or air. The gas prevents the supply line 15 and the branch supply lines 15a, 15b from freezing. Instead of filling the entire supply line 15 including the branch supply lines 15a and 15b with gas, it is possible to fill only the portion of the supply line 15 closest to the spray heads 40. In such instances, the end of the supply line 15 adjacent the drive source 20 includes a liquid. The portion of the supply line 15 that includes a gas is separated from the portion of the supply line 15 having a liquid by a control valve 17 to prevent mixing of the gas and the liquid. The control valve 17 may be a solenoid control valve, a pilot valve, or any other type of valve having a control mechanism for opening the valve. The control valve 17 may be located at any position along supply line 15 between the drive source 20 and the spray heads 40. The control valve 17 is operably coupled to the control unit 50, such that when the drive source 20 is active, the control unit 50 opens the control valve 17 to allow extinguishing medium to flow to the spray heads 40.

    [0011] As illustrated, the system 10 may include a gas compressor 30 connected to the supply line 15 by an output pipe 37. The gas compressor 30 is used to initially fill the supply line 15 and to refill the supply line 15 to a desired pressure when necessary. The gas compressor 30 is also used to maintain a standby pressure in the supply line 15 when the drive source 20 is inoperative. If the standby pressure decreases with time to a level below a predetermined threshold, such as due to leaks in the system 10 for example, the gas compressor 30 increases the pressure within the supply line 15. The fire suppression system 10 may also include one or more fire detectors 45, located in the vicinity of the spray heads 40 to detect a fire condition. Exemplary fire detectors 45 include smoke detectors, temperature sensors, infrared or other light detectors which are used to sense a fire condition and generate an electrical signal indicative thereof. Such signals are transmitted to the control unit 50 to activate the fire suppression system 10. The fire suppression system 10 described herein is exemplary and other fire suppression systems, such as "wet pipe" systems for example are also within the scope of this invention.

    [0012] The fire suppression system 10 also includes a plurality of fire location sensors 70. In one embodiment, the fire location sensors 70 are optical sensors configured to detect the infrared radiation emitted by a fire. In another embodiment, the fire location sensors 70 are acoustic sensors configured to detect the noise emitted by a fire. The fire location sensors may be located independently from the remainder of the system 10, or alternatively may be integrated into another component of the system 10, such as the fire detectors 45 or the spray heads 40 for example.

    [0013] Referring now to FIG. 2, the plurality of fire location sensors 70 in a fire suppression system 10 are coupled to a control unit 50 such that the output of the fire location sensors 70 is transmitted to the control unit 50 for analysis. Because the control unit 50 is coupled to each of the plurality of fire location sensors 70, the control unit 50 may be used as a reference to synchronize the fire location sensors 70. In one embodiment, the position of each fire location sensor 70 is known, and the control unit 50 includes a processor 52 configured to store the position of each fire location sensor 70 within the system 10. For example, the position of each of the plurality of fire location sensors 70 may be correlated with the building structure, or may be identified relative to the control unit 50 using a global positioning system. The position of at least one of the fire location sensors 70 is known absolutely. The position of the remainder of the plurality of fire location sensors 70 may be known either absolutely, or alternatively, may be known relative to the fire location sensor 70 having a known absolute position. Each of the fire location sensors 70 is configured to generate a signal based on data recorded by the sensor 70 indicative of the sensor's location relative to the fire.

    [0014] When a fire event, illustrated by star 80, occurs in a building including the fire suppression system 10, the light and crackling of the flames emit waves detectable by the fire location sensors 70 positioned near the fire 80. The fire location sensors 70 may be configured to detect sound or light waves having a wavelength within a limited range. The detection range may be optimized to detect wavelengths characteristic to most common fire hazards. In one embodiment, the fire location sensors 70 may be configured to detect light waves having a wavelength between 100 nanometers and 5 micrometers.

    [0015] As illustrated in FIG. 3, the distance of each fire location sensor 70 from the fire source 80 may be graphically represented by a sphere (shown in 2D) having a radius equal to the distance calculated based on the measured intensity. Because the fire source 80 is located at the intersection of these spheres, the information from multiple fire location sensors 70 is necessary to accurately determine the position of the fire 80. In one embodiment, a multilateration algorithm is stored within the processor 52 of the control unit 50 such that the respective distances of the fire location sensors 70 from the fire 80 and the stored position of each of the fire location sensors 70 in the building is used to accurately determine the position of the fire 80. The multilateration algorithm may be adapted to calculate either a three-dimensional or a two-dimensional location of the fire 80. To calculate a three-dimensional position, the distance information from at least four fire locations sensors 70 is input into the multilateration algorithm. Alternatively, by assuming that each of the plurality of fire location sensors 70 is arranged at the same, known height, the multilateration algorithm may be simplified to a two-dimensional calculation. This simplified multilateration algorithm uses the input from at least three fire location sensors 70, as well as the stored position information of the at least three fire location sensors 70 to accurately determine the position of the fire 80.

    [0016] The control unit 50 determines an accurate location of the fire 80 based on the time it takes for a pulse emitted by the fire 80 to reach each of the nearby fire location sensors 70. The control unit 50 is configured to measure the time at which each fire location sensor 70 detects a pulse of light or sound emitted by the fire 80. When each of the fire location sensors 70 measures a first wave, indicating the occurrence of a fire, the control unit 50 stores the time at which the wave was detected by that respective sensor 70. For example, sensor B may detect the wave .8 seconds after sensor A detects the wave because sensor B is a further distance from the fire 80 than sensor A. The control unit 50 then calculates the difference in time it takes for a wave emitted by the fire 80 to reach multiple pair of sensors 70. For example, the control unit 50 may calculate the time difference between sensors A and B, the time difference between sensors B and C, and the time difference between sensors C and D.

    [0017] The time difference calculated between a pair of sensors 70 as well as the known location of each of the pair of sensors 70 may be input into a known time difference of arrival (TDOA) algorithm. The TDOA algorithm generates a graphical representation of possible locations of the fire 80 based on the information from that pair of sensors 70. Similar to the multilateration algorithm, the TDOA algorithm may be adapted to perform either a two-dimensional or a three-dimensional calculation. By using four pairs of sensors 70 including four sensors 70 at unique positions, four distinct hyperboloids are generated by the TDOA algorithm. The four hyperboloids will intersect at a unique point in space that accurately defines the three-dimensional position of the fire 80. The control unit 50 will determine the intersection point of these hyperboloids and identify that point as the location of the fire. In the simplified algorithm, the height of each of the plurality of fire location sensors 70 within the building is assumed to be substantially identical. Using the information from at least three pairs including three sensors 70 at unique positions, the two-dimenstional TDOA algorithm generates a hyperbola, rather than a hyperboloid, of possible locations of the fire 80 for each pair of sensors 70. The location of the fire 80 is determined by the intersection of these hyperbolas.

    [0018] While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the scope of the invention as defined by the claims. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.


    Claims

    1. A fire suppression system (10) comprising:

    at least one spray head (40);

    a drive source (20) coupled to the at least one spray head by a supply line (15,15a,15b) that delivers an extinguishing medium to the at least one spray head;

    at least three fire location sensors (70) fixedly arranged at known locations configured to detect waves emitted during a fire condition; and

    a control unit (50) operably coupled to the drive source and the plurality of fire location sensors such that the output of the fire location sensors is transmitted to the control unit for analysis, wherein the control unit includes a timer for each of the at least three fire location sensors, the timer being configured to determine a time at which each fire location sensor detects a wave; and wherein the control unit determines a position of the fire condition based on the known location of the fire location sensors, data collected by the at least three fire location sensors, and the time at which each fire location sensor detects a wave;

    wherein each of the at least three fire location sensors provides a signal to the control unit based on the detected wave.


     
    2. The fire suppression system according to claim 1, wherein the at least three fire location sensors are integrally formed with a plurality of fire detectors.
     
    3. The fire suppression system according to claim 1, wherein the at least three fire location sensors are optical sensors.
     
    4. The fire suppression system according to claim 1, wherein the at least three fire location sensors are acoustic sensors.
     
    5. The fire suppression system according to claim 1, wherein the control unit stores the location of the at least three of fire location sensors.
     
    6. The fire suppression system according to claim 5, wherein the control unit includes a processor configured to execute a multilateration algorithm.
     
    7. A method for determining a location of a fire in a building having a fire suppression system (10) comprising:

    detecting a wave emitted by the fire at at least three fire location sensors (70), each of which is arranged at a known fixed position;

    transmitting the output of the at least three fire location sensors to a control unit for analysis, wherein the control unit is operably coupled to the fire location sensors and includes a timer for each of the at least three fire location sensors;

    determining, using the timer, a time at which each fire location sensor detects a wave;

    calculating a distance between each of the at least three fire location sensors and the fire; and

    determining a position of the fire based on the known location of the fire location sensors, data collected by the at least three fire location sensors, and the time at which each fire location sensor detects a wave;

    wherein each of the at least three fire location sensors (70) provides a signal to a control unit (50) based on the detected wave.


     
    8. The method according to claim 7, wherein the position of each of the plurality of fire location sensors in the building is stored within the control unit (50).
     


    Ansprüche

    1. Brandlöschsystem (10), umfassend:

    mindestens einen Sprühkopf (40);

    eine Antriebsquelle (20), die über eine Versorgungsleitung (15, 15a, 15b) mit dem mindestens einen Sprühkopf verbunden ist und ein Löschmittel an den mindestens einen Sprühkopf abgibt;

    mindestens drei Brandort-Sensoren (70), die fest an bekannten Stellen angeordnet und so konfiguriert sind, dass sie während eines Brandzustands ausgesendete Wellen detektieren; und

    eine Steuereinheit (50), die betriebsmäßig mit der Antriebsquelle und der Vielzahl von Brandort-Sensoren gekoppelt ist, so dass die Ausgabe der Brandort-Sensoren zur Analyse an die Steuereinheit übertragen wird, wobei die Steuereinheit einen Zeitgeber für jeden der mindestens drei Brandort-Sensoren einschließt, wobei der Zeitgeber so konfiguriert ist, dass er eine Zeit bestimmt, zu der jeder Brandort-Sensor eine Welle detektiert; und wobei die Steuereinheit eine Position des Brandzustands auf der Grundlage des bekannten Orts der Brandort-Sensoren, der von den mindestens drei Brandort-Sensoren erfassten Daten und der Zeit, zu der jeder Brandort-Sensor eine Welle detektiert, bestimmt;

    wobei jeder der mindestens drei Brandort-Sensoren auf der Grundlage der detektierten Welle ein Signal an die Steuereinheit bereitstellt.


     
    2. Brandlöschsystem nach Anspruch 1, wobei die mindestens drei Brandort-Sensoren mit einer Vielzahl von Brandmeldern integriert sind.
     
    3. Brandlöschsystem nach Anspruch 1, wobei die mindestens drei Brandort-Sensoren optische Sensoren sind.
     
    4. Brandlöschsystem nach Anspruch 1, wobei die mindestens drei Brandort-Sensoren akustische Sensoren sind.
     
    5. Brandlöschsystem nach Anspruch 1, wobei die Steuereinheit den Standort der mindestens drei Brandort-Sensoren speichert.
     
    6. Brandlöschsystem nach Anspruch 5, wobei die Steuereinheit einen Prozessor einschließt, der zur Ausführung eines Multilaterationsalgorithmus konfiguriert ist.
     
    7. Verfahren zur Bestimmung des Ortes eines Brandes in einem Gebäude, das ein Brandlöschsystem (10) aufweist, umfassend:

    Detektieren einer von dem Brand ausgesendete Welle an mindestens drei Brandort-Sensoren (70), von denen jeder an einer bekannten festen Position angeordnet ist;

    Übertragen des Ausgangssignals der mindestens drei Brandort-Sensoren an eine Steuereinheit zur Analyse, wobei die Steuereinheit betriebsmäßig mit den Brandort-Sensoren gekoppelt ist und einen Zeitgeber für jeden der mindestens drei Brandort-Sensoren einschließt;

    Bestimmen, unter Verwendung des Zeitgebers, des Zeitpunkts, zu dem jeder Brandort-Sensor eine Welle detektiert;

    Berechnen eines Abstands zwischen jedem der mindestens drei Brandort-Sensoren und dem Brand; und

    Bestimmen einer Position des Brandes auf der Grundlage des bekannten Standorts der Brandort-Sensoren, der von den mindestens drei Brandort-Sensoren erfassten Daten und der Zeit, zu der jeder Brandort-Sensoren eine Welle detektiert;

    wobei jeder der mindestens drei Brandort-Sensoren (70) auf der Grundlage der detektierten Welle ein Signal an eine Steuereinheit (50) bereitstellt.


     
    8. Verfahren nach Anspruch 7, wobei die Position jedes der Vielzahl von Brandort-Sensoren im Gebäude innerhalb der Steuereinheit (50) gespeichert wird.
     


    Revendications

    1. Système d'extinction d'incendie (10) comprenant :

    au moins une tête de pulvérisation (40) ;

    une source d'entraînement (20) couplée à l'au moins une tête de pulvérisation par une conduite d'alimentation (15, 15a, 15b) qui délivre un moyen d'extinction à l'au moins une tête de pulvérisation ;

    au moins trois capteurs de localisation d'incendie (70) disposés de manière fixe en des emplacements connus configurés pour détecter des ondes émises pendant un état d'incendie ; et

    une unité de commande (50) couplée fonctionnellement à la source d'entraînement et à la pluralité de capteurs de localisation d'incendie de telle sorte que la sortie des capteurs de localisation d'incendie soit transmise à l'unité de commande pour analyse, dans lequel l'unité de commande inclut une minuterie pour chacun des au moins trois capteurs de localisation d'incendie, la minuterie étant configurée pour déterminer un temps auquel chaque capteur de localisation d'incendie détecte une onde ; et dans lequel l'unité de commande détermine une position de l'état d'incendie sur la base de la localisation connue des capteurs de localisation d'incendie, de données collectées par les au moins trois capteurs de localisation d'incendie et du temps auquel chaque capteur de localisation d'incendie détecte une onde ;

    dans lequel chacun des au moins trois capteurs de localisation d'incendie fournit un signal à l'unité de commande sur la base de l'onde détectée.


     
    2. Système d'extinction d'incendie selon la revendication 1, dans lequel les au moins trois capteurs de localisation d'incendie sont formés d'un seul tenant avec une pluralité de détecteurs d'incendie.
     
    3. Système d'extinction d'incendie selon la revendication 1, dans lequel les au moins trois capteurs de localisation d'incendie sont des capteurs optiques.
     
    4. Système d'extinction d'incendie selon la revendication 1, dans lequel les au moins trois capteurs de localisation d'incendie sont des capteurs acoustiques.
     
    5. Système d'extinction d'incendie selon la revendication 1, dans lequel l'unité de commande stocke l'emplacement des au moins trois des capteurs de localisation d'incendie.
     
    6. Système d'extinction d'incendie selon la revendication 5, dans lequel l'unité de commande inclut un processeur configuré pour exécuter un algorithme de multilatération.
     
    7. Procédé pour déterminer une localisation d'un incendie dans un bâtiment présentant un système d'extinction d'incendie (10), comprenant les étapes consistant à :

    détecter une onde émise par l'incendie au niveau d'au moins trois capteurs de localisation d'incendie (70), dont chacun est disposé dans une position fixe connue ;

    transmettre la sortie des au moins trois capteurs de localisation d'incendie à une unité de commande pour analyse, dans lequel l'unité de commande est couplée fonctionnellement aux capteurs de localisation d'incendie et inclut une minuterie pour chacun des au moins trois capteurs de localisation d'incendie ;

    déterminer, à l'aide de la minuterie, un temps auquel chaque capteur de localisation d'incendie détecte une onde ;

    calculer une distance entre chacun des au moins trois capteurs de localisation d'incendie et l'incendie ; et

    déterminer une position de l'incendie sur la base de la localisation connue des capteurs de localisation d'incendie, de données collectées par les au moins trois capteurs de localisation d'incendie, et du temps auquel chaque capteur de localisation d'incendie détecte une onde ;

    dans lequel chacun des au moins trois capteurs de localisation d'incendie (70) fournit un signal à une unité de commande (50) sur la base de l'onde détectée.


     
    8. Procédé selon la revendication 7, dans lequel la position de chacun de la pluralité de capteurs de localisation d'incendie dans le bâtiment est stockée dans l'unité de commande (50).
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description