(19)
(11)EP 2 920 991 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
01.04.2020 Bulletin 2020/14

(21)Application number: 12799654.4

(22)Date of filing:  14.11.2012
(51)International Patent Classification (IPC): 
H04W 56/00(2009.01)
H04W 92/20(2009.01)
H04W 76/14(2018.01)
(86)International application number:
PCT/SE2012/051256
(87)International publication number:
WO 2014/077745 (22.05.2014 Gazette  2014/21)

(54)

METHODS AND APPARATUSES FOR ENABLING DIRECT MODE COMMUNICATION BETWEEN USER EQUIPMENTS

VERFAHREN UND VORRICHTUNGEN ZUR AKTIVIERUNG EINER DIREKTMODUSKOMMUNIKATION ZWISCHEN BENUTZERVORRICHTUNGEN

PROCÉDÉS ET APPAREILS POUR PERMETTRE UNE COMMUNICATION EN MODE DIRECT ENTRE DES ÉQUIPEMENTS UTILISATEURS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
23.09.2015 Bulletin 2015/39

(73)Proprietor: Telefonaktiebolaget LM Ericsson (publ)
164 83 Stockholm (SE)

(72)Inventors:
  • FODOR, Gabor
    165 52 Hässelby (SE)
  • BELLESCHI, Marco
    171 66 Solna (SE)

(74)Representative: Ericsson 
Patent Development Torshamnsgatan 21-23
164 80 Stockholm
164 80 Stockholm (SE)


(56)References cited: : 
WO-A1-2011/116815
US-A1- 2011 258 327
US-A1- 2011 258 313
  
  • Gábor Fodor: "Design Aspects of Network Assisted Device-to-Device Communications", , 1 May 2011 (2011-05-01), pages 2-9, XP055059107, Retrieved from the Internet: URL:http://www.ericsson.com/res/docs/2012/ design-aspects-of-network-assisted-device- to-device-communications.pdf [retrieved on 2013-04-10]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present disclosure relates generally to a first user equipment and a first radio network node and methods therein. In particular, it relates to apparatuses and methods for enabling communication between a first user equipment and a second user equipment over a, Device-to-Device, D2D, radio link in mobile radio network.

BACKGROUND



[0002] A mobile radio network covers a geographical area which is divided into cell areas, wherein each cell area being generally served by a radio network node. A radio network node may be a Radio Base Station (RBS), also sometimes referred to as e.g. "eNB", "eNodeB", or BTS (Base Transceiver Station) depending on which part of the technology needs to be referred. A radio network node or RBS may provide radio coverage to one or more cells. Further, each radio network node may support different communication technologies e.g. Time Division Duplex, TDD, Frequency Division Duplex, FDD. The radio network nodes communicate with user equipments (UEs) also referred to as mobile stations, mobile terminals, wireless terminals, mobile telephones, cellular telephones or smartphones situated within its radio network cell. Other examples of UEs are laptops, notebooks, tablets, handheld devices. All of those having wireless communication capabilities. In addition, a radio mobile communication may be performed between two or more UEs, two or more radio network nodes or two or more radio network core nodes. All of the above-mentioned pieces form part of a radio mobile network.

[0003] When the communication is performed between two user equipments, each of these equipments communicates within a frequency band or channel allocated to one operator in a radio network. The frequency band may be a whole spectrum chunk whilst a channel may be a subset of the spectrum resources of the frequency band used for resource management purposes.

[0004] Furthermore, the frequency bands in Long Term Evolution (LTE) may operate in both paired and unpaired spectrum, requiring flexibility in the duplex arrangement.

[0005] The 3rd Generation Partnership Project (3GPP) provides LTE and "System Architecture Evolution" (SAE) and defines Evolved Packet System (EPS). EPS consists of the evolved Radio Access Network (EUTRAN) and the Evolved Packet Core (EPC).

[0006] In this disclosure, a radio network core node may relate to nodes in the evolved packet core (EPC). These nodes may be Mobility Management Entity (MME), Serving Gateway (SGW), Packet Data Network (PDN) Gateway (PGW) or Home Subscriber Server (HSS) and in the 3GPP LTE, the radio network nodes may be directly connected to one or more network core nodes.

[0007] Other radio mobile networks that may be used in this disclosure are e.g. Global System for Mobile Communications (GSM), the GSM-evolved Universal Mobile Telecommunications System (UMTS) and UMTS based on Wideband Code Division Multiple Access (WCDMA) for mobile systems, HSPA, WiMax.

[0008] Document US 2011/0 258 327 A1 may be construed to disclose a technique in which there is stored a database of registration information associating UEs with cells under control of different network operators. In response to an inquiry from a first network operator that a first UE desires direct communications with a second UE, the registration information is used to coordinate between the first network operator and the second network operator to facilitate establishment of a direct communication link between the first UE and the second UE. The facilitating is enhancing the inquiry/page by adding a cell ID of the first UE's cell and adding pre-allocated radio resources in the first UE's cell for use by the second UE in responding to the page, and determining a single network which is not highly loaded and which can allocate resources for the D2D communications and directing one or both UEs to that single network.

[0009] Document "Design Aspects of Network Assisted Device-to-Device Communications", Gabor Fodor et.al., IEEE Communications Magazine, May 2011, may be construed to disclose a technique pertaining to the 3GPP Long Term Evolution system as a baseline for D2D design. Solutions are provided that allow cellular devices and D2D pairs to share spectrum resources and thereby increase the spectrum and energy efficiency of traditional cellular networks.

[0010] In terms of 3GPP LTE network, a UE can transmit or receive information from this network by searching and selecting an appropriate serving cell, obtaining basic system information and performing random access. By doing this, a UE can obtain synchronization, system parameters and access to system resources. Device-to-Device communication

[0011] D2D communication allows exploiting the proximity between D2D-capable user equipments. This involves lower power consumption, lower end-end delays and eventually higher data rates that make D2D technology suitable for bandwidth-demanding services such as video streaming, gaming applications and fast data transfer between devices. In addition, D2D is implicitly tailored for proximity-based social networking services and information broadcasting applications.

[0012] There are many aspects where D2D communications may take place and some of them are shown in figure 1.

[0013] There are those that communicate with licensed spectrum and others with unlicensed spectrum. Various ad hoc and personal area networking technologies utilize unlicensed spectrum bands such as the industrial, scientific and medical bands which are available for short range communications, including Bluetooth™ and Wi-Fi™ Direct.

[0014] On the other hand, D2D communication with licensed spectrum has only recently been proposed and studied. According to this concept, UEs in the proximity of each other can exchange information over a direct link rather than transmitting and receiving signals through a radio base station (eNB) or radio network node. The problem associated with these techniques is that the UEs need to be situated within a radio cell (here also referred as to a radio network) and cannot cross boundaries into other operator licensed/unlicensed frequency bands. This is because at present there are no available inter-operator licensed/unlicensed frequency bands. Furthermore, the allocation of those frequency bands would require lengthy standardization and regulatory processes.

[0015] Establishing a direct D2D communication assisted by a network infrastructure such as 3GPP LTE is possible to improve the utilization of cellular spectrum resources and to reduce the energy consumption of user equipments. The assistance may involve neighboring discovery, resource allocation, power control and mode selection policies. The potential gains of D2D communications are equally attractive in cellular networks operated in paired as well as unpaired frequency bands. In the 3GPP LTE system, for example, the FDD and TDD modes are specified in the same set of specifications for both the UE and the eNB. In other words, the D2D communication based on LTE is generally supported in cellular networks operated in either of the duplexing modes. However, existing logical interfaces e.g. X2 Interface do not allow communication between radio network nodes (eNBs) belonging to different operators or radio networks with different duplexing modes. One solution would be for a UE in an operator or radio network to roam into the neighboring radio network or other operator in order to enable D2D communication with a UE in that network. However national roaming is generally not allowed due to regulatory reasons. In addition, a D2D-capable UE that performs roaming could suffer from limited connection due to the potential high distance from the radio network nodes of other radio networks.

SUMMARY



[0016] It is an object of the present technology to address at least some of the problems and issues outlined above. According to the disclosure, there are provided methods, apparatuses, computer programs and computer program products according to the independent claims. Developments are set forth in the dependent claims.

BRIEF DESCRIPTION OF DRAWINGS



[0017] Embodiments will now be described in more detail with reference to the accompanying drawings, in which:

Fig. 1 is illustrating a D2D communication scenario according to the prior art.

Fig 2 depicts a D2D communication scenario according to a possible embodiment.

Fig. 3 shows a logical interface in a possible embodiment.

Fig. 4 is a signaling diagram illustrating an example of a procedure when a logical interface is used, according to an embodiment.

Fig. 5 is a signaling diagram illustrating an example of a procedure when a D2D communication between UEs is established, according to an embodiment.

Fig. 6 is a flowchart showing the method steps of a radio network node, according to an embodiment.

Fig. 7 is a flowchart showing the method steps of a user equipment, according to an embodiment.

Fig.8 is a block diagram illustrating a user equipment in more detail, according to further possible embodiments.

Fig.9 is a block diagram illustrating a radio network node in more detail, according to further possible embodiments.

Fig. 10 is a block diagram illustrating a computer program product in more detail, according to further possible embodiments.


DETAILED DESCRIPTION



[0018] Briefly described, embodiments of a D2D communication between UEs, each in different radio networks with different or same duplexing modes and methods therein are provided hereby. TDD/FDD, FDD/FDD, TDD/TDD are examples of duplexing modes.

[0019] Figure 2 shows two radio networks 210, 270. Each radio network comprises a radio network node 220, 280, which may be a radio base station, referred here to as an eNB and a respective UE 230,290. In order for a D2D radio link 250 to be established across the borders of a radio network, a radio network node connection 260 is first established between eNBs 220, 280. This is achieved by establishing a logical interface between eNBs 220, 280.

[0020] One of the exemplifying embodiments is a method in a first radio network node serving a first user equipment in a first mobile radio network for enabling a Device-to-Device, D2D, communication over a radio link with a second user equipment served by a second radio network node in a second radio network, the method comprising: establishing a connection with the second radio network node; receiving a request from the first user equipment for enabling the communication with the second user equipment; sending a first message comprising information related to the first user equipment to the second radio network node to be used by the second radio network node for configuration of the second user equipment in response to the received request and via the established connection; receiving a second message comprising information related to the second user equipment from the second radio network node to be used by the first radio network node for configuration of the first user equipment in response to the first message and via the established connection; sending to the first user equipment a third message comprising the received information related to the second user equipment and a command to transmit a beacon for enabling the communication with the second user equipment.

[0021] The connection established in this method according to an embodiment is described in detail with reference to the scenario and signaling diagram in figures 3 and 4.

[0022] In figure 3, it is shown a connection which makes use of a logical interface to exchange information between eNBs. There is a first eNB (hereafter referred to as eNB-A) 320 in a radio network A 310, which first communicates with a first radio network core node 330 which in turn exchanges information with a second network core node 350 connected to a second eNB (hereafter referred to as eNB-B) 380 in a radio network B 370. Each radio network 310,370 may use a different or same duplexing mode 225, 285 (e.g. Time Division Duplex, TDD or Frequency Division Duplex, FDD).

[0023] As shown in the signaling diagram of figure 4, the eNB-A 420 sends a 1: D2D INTER-OP CONFIG message to the first network core node 430 such as EPC-A or MME-A to register those UEs that are involved in D2D traffic and to communicate this information further to the HSS for charging purposes. In e.g. MME-A UEs content ID and/or service ID profile may be registered. This is advantageous when UEs goes in idle mode for example.

[0024] The D2D INTER-OP CONFIG message may contain a list of UEs capable of using a D2D radio link over D2D and the type of content or service the UEs are available to share with others. The message further comprises the address of eNB-A 420 and its position. As stated above, along with UEs identity, such information (e.g. service ID and/or content ID) may be stored in the MME-A.

[0025] Alternatively, the D2D INTER-OP CONFIG message sent by the eNB-A 420 does not contain the request for an inter-operator connection. The D2D INTER-OP CONFIG message sent by the eNB-A 420 may contain the identity of a specific content and/or service. Upon reception of the D2D INTER-OP CONFIG message, the EPC-A or MME-A is configured to compare the ID of a specific content and/or service contained in the message with the contents and/or services available in the tracking area. In case that such contents and/or services cannot be provided within the tracking area, the EPC-A (or the MME) may generate a D2D INTER-OP REQUEST message.

[0026] Further, the first radio network core node 430, in this case we refer to EPC-A, informs SGW-A (not shown in figure 4) about the request of eNB-A 420 through an interface. This interface may be, by way of an example, an S11-interface.

[0027] Since SGW-A has a list of neighboring E-UTRAN and EPC that are controlled by other radio networks, SGW-A is able to communicate the address of eNB-A 420 through an interface to the second radio network core node 450 (referred here as to EPC-B). The EPC-B may be a PDNGW-B and the interface may be, by way of example, an S8- interface, which is normally used for the inter-PLMN communication (Public Land Mobile Network).

[0028] The EPC-B 450 does not only have the information received by SGW-A related to the address and position of eNB-A,420 but also the information contains the addresses and Tunnel End-point Information (TEID) of the eNB-B 480 as well as other eNBs controlled by the radio network B. This is shown as a 2:D2D INTER-OP REQUEST message.

[0029] Accordingly, a message 3: D2D INTER-OP SETUP is sent to the eNB-B 480 so the eNB-B 480 is provided with the information needed by eNB-A 420 to establish an IP connectivity with eNB-B 480 as well as with other eNBs in a radio network B.

[0030] Upon receiving the message, the eNB-B 480 sends to the EPC-B 450 an acknowledgement 4: D2D INTER-OP SETUP ACK confirming having the needed information.
Alternatively, the D2D INTER-OP SETUP message may be a paging message towards eNBs in the tracking area controlled by EPC-B 450. Such paging message may contain for example the content ID and/or service ID required by eNB-A. Only UEs that are amenable to provide the desired content ID and/or service ID reply to the paging message. Consequently, the D2D inter-operator setup follows the previous statements, i.e. the eNB-B 480 sends to the EPC-B 450 an acknowledgement 4: D2D INTER-OP SETUP ACK message confirming having the needed information. This way UEs in Idle mode may be triggered.

[0031] On this basis, the EPC-B transmits this information to the EPC-A 430 so the EPC-A 430 is able to provide eNB-A 420 with all information needed to establish an IP connectivity with eNB-B 480. This is shown as a 5: D2D INTER_OP SETUP message and 6: INTER-OPCONFIG ACK message.

[0032] Once the connection between the eNBs is established, a communication over a D2D radio link between UE-A and UE-B may be configured. However, it may occur that a request from the UE-A is sent to the eNB-A before a connection between the eNBs is established. In this case, the request may trigger the eNB-A to start an IP- connectivity with eNB-B.

[0033] In some cases, the eNB-B may be informed by the EPC-A or MME-A that there are no UEs available in the tracking area to provide a specific type of content/service. Consequently, the EPC-A or MME-A may trigger the setup of an IP-connectivity with eNB-B. For example this may occur for in those cases in which the eNB-A is informed by the MME that there are no UEs available in the tracking area to provide that specific type of content/service ID. As such the MME (or the eNB) may trigger this feature, i.e. the setup of an inter-operator D2D attempt.

[0034] Figure 5 shows a signaling diagram describing the steps either after the connection between the eNBs is established or just after a request from the UE to establish a connection with another UE is sent.

[0035] The signaling diagram first shows how the UE-A 530 sends a 1: D2DREQUEST message to eNB-A 520 to share any content/service with other UEs that are capable of establishing a D2D-radio link with the UE-A 530. The eNB-A 520 enables D2D discovery within its cell or radio network by searching for D2D-capable UEs and also requests D2D service to neighboring cells potentially served by different radio networks or operators.

[0036] The eNB-A 520 further transmits to eNB-B 580 an 2: INTER-OPD2DREQUEST message which contains information about the type of service to share, related information about UE-A 530 (such as C-RNTI, shortMAC-I, position, etc.), beacon with Physical Resource Block, PRB, information and information related to radio network A or operator A (e.g. bands and time slots used for D2D communications). The message may further comprise information on one or more PRBs that will be used by UE-A for communicating with the UE-B over a D2D radio link.

[0037] The eNB-B 580 receives the message 2 with the provided information and enables a D2D discovery within its cell to select UEs which are able to perform a D2D communication via a D2D radio link. Those selected UEs in the radio network B need also to provide the type of content/service requested by UE-A. In this particular case, eNB-B 580 performs an admission control policy to check whether UE-B 590 can actually be involved in D2D communication, e.g. by checking the amount resources available, the position of UE-A 530 and/or UE-B 590, the subscription plan of UE-B 590, etc.

[0038] The eNB-B 580 sends thereafter a 3: INTER-OP_D2D_REQUESTACK message to eNB-A 520 indicating information related to UE-B 590 (e.g. C-RNTI, shortMAC-I, etc.) and information related to the radio network B (e.g. frequency bands and time slots used for D2D communications). The 3:
InterOP_D2D_RequestACK message may further comprise information about one or more PRBs that are used by UE-B when communicating with UE-A over a D2D-radio link.

[0039] In addition, the eNB-B 580 further sends a 4: D2DENABLEREQUEST message to UE-B 590 for indicating the information related to UE-A 530 (e.g. C-RNTI, shortMAC-I, etc.), information related to network A or operator A (such as frequency bands, LTE PRB and time slots used for D2D communications), and the command to start listening for beacon messages from UE-A530. The 4: D2DENABLEREQUEST message may further indicate information on one or more PRBs that are used by UE-A 530 when communicating over a D2D-radio link.

[0040] The eNB-A 520 sends to the UE-A 530 a 5: D2D BEACON ON message which is a command to start a beacon. The message 5 also indicates one or more PRBs for the beacon. The indicated PRB/PRBs is/are selected according to the received information from the eNB-B 580, which allows the UE-A 530 to send a beacon capable of being listened or detected by the UE-B 590. The 5: D2D BEACON ON may further comprise information on the PRBs that the UE-B will use when enabling a D2D communication. If the UE-A receives this information before sending a beacon, the UE-A may use it to prevent a whole scanning of the frequency band or channel in radio network B and only limit it to the frequency range referred in the PRBs in order to reduce battery consumption.

[0041] In response to the message 5: D2D BEACON ON from the eNB-A 520, the UE-A 530 sends to the UE-B 590 a beacon which comprises the PLMN-identity and cell identity of the eNB-A 520, i.e. information on the operative frequency of the eNB-A. The transmission of the beacon is illustrated in figure 5 by 6: BEACON. The information comprised in the beacon may further comprise one or more PRBs which the UE-A 530 will use for a D2D transmission. These PRBs normally lie in the frequency band of the radio network A (or radio operator A).

[0042] As previously explained, the eNB-B 580 sends to the UE-B 590 a command for listening for a frequency band belonging to the radio network A. When the UE-A 530 sends the beacon message 6, the UE-B 590 decodes it by means of prior art methods. The UE-B 590 further compares the information from the beacon with the information previously sent by the eNB-B 580 related to UE-A 530 in order to uniquely recognize or authenticate UE-A 530 as well as to configure its D2D receiver.

[0043] A 7: D2D BEACON DETECTED message is then sent by the UE-B 590 in the frequency band B using the PRB specified in either the 4: D2D ENABLE REQUEST or the 2: INTER-OPD2D REQUEST enabling UE-A to carry out a D2D transmission. The message from the UE-B 590 is then received by the UE-A 530 if it arrives within a limited amount of time. If, after this limited amount of time, the message has not been received by the UE-A 530, the UE-A 530 resends the beacon and the procedure is repeated.

[0044] Upon receiving the message from the UE-B 590, the UE-A 530 starts the synchronization with the UE-B 590, since eNB-A 520 and eNB-B 580 are not synchronized since they belong to different radio networks. The synchronization involves for the UE-A 530 to send a D2D Synch-message in the frequency band A back to the UE-B 590 comprising timing correction for transmission to be used in the frequency band B. After UE-B 590 has sent the 7: D2DBEACON DETECTED message, it starts listening, for a limited amount of time, on frequency band A for the 8: D2DSYNCH message sent by the UE-A 530. If the 8: D2DSYNCH message is received, UE-B 590 replies back to the UE-A 530 in the frequency band B with an acknowledgement 9: D2DSYNCHACK that comprising timing correction for transmission to be used in frequency band A. In order to reduce the battery consumption of the user equipments, a solution is to prevent UE-A 530 from scanning the whole frequency band B and consequently preventing UE-B 590 from scanning the whole frequency band A when synchronizing. This is possible when information on PRBs that are used by UE-A 530 and UE-B 590 for enabling a D2D communication are exchanged at an early stage, e.g. in the INTER-OP D2D REQUEST 2 and in the INTER-OP D2D REQUEST ACK 3.

[0045] At this stage, when the synchronization is over, the communication over D2D radio link is enabled between UE-A 530 and UE-B 590. Each of the UEs, UE-A 530 and UE-B 590, is transmitting information in the frequency band A and the frequency band B, respectively.

[0046] According to another embodiment, wherein the method in a radio network node is shown as a flowchart in figure 6.

[0047] The radio network node, eNB-A 220 which serves a user equipment UE-A in a radio network A, establishes 621 first a connection with another radio network node, eNB-B 280 which serves a user equipment UE-B in a radio network B. This connection may use a logical interface such as shown in figures 3 and 4. The eNB-A receives 622 a request from UE-A to enable a D2D communication over a radio link to UE-B 290.The D2D-radio link may use a hybrid TDD/FDD duplexing. The eNB-A further sends 623 to the eNB-B via the established connection a first message including information related to the UE-A, such as C-RNTI, shortMAC-I, position, information about the type of service and/or content to share, beacon with PRB information and information related to radio network A or operator A (e.g. bands and time slots used for D2D communications). This first message is then received by the eNB-B in which the included information is forwarded to the UE-B for its configuration. The first message may further comprise information on one or more PRBs that is/are used by UE-A for communicating with the UE-B over a D2D radio link. In the case, these PRBs are received by the eNB-B, the eNB-B forwards those to the UE-B for facilitating the synchronization with UE-A.

[0048] The next step involves receiving 624 a second message from the eNB-B related to UE-B comprising information such as C-RNTI, shortMAC-I and information related to the radio network B (e.g. frequency bands and time slots used for D2D communications). The second message may further comprise information about one or more PRBs that are used by UE-B when communicating with UE-A over a D2D-radio link.

[0049] As a last step, the eNB-A 220 sends 625 a third message to the UE-A comprising the received information from the second message described in the previous step and further sends a command to transmit a beacon capable of being listened or detected by the UE-B 290. The information of this third message is used for configuring UE-A to be enabled for receiving/sending data via a D2D-radio link. The configuration of the D2D radio link comprises setting time and frequency.

[0050] Once the beacon is detected by the UE-B and a synchronization between the UEs is carried out, the D2D communication over a radio link is enabled

[0051] Further, the method in a radio network node wherein the establishing of the connection may comprise sending a first configuration message towards the second radio network node 280 comprising information related to the first radio network node 220 and receiving from the second radio network node 280 a second configuration message comprising information related to the second radio network node 280. Further, the connection to be established according to the provided method/radio network node may use a logical interface.

[0052] Further, the method in a radio network node wherein the establishing of the connection 260 may perform in response to the receiving of the request from the first user equipment 230. In certain cases, it may be advantageous to be able to start the procedure of establishing a connection between the radio network nodes with a request from a user equipment because it may avoid further delays in establishing a D2D communication.

[0053] In some cases, the radio network node may be informed by the EPC-A or MME-A that there are no UEs available in the tracking area to provide a specific type of content/service. Consequently, the EPC-A or MME-A may trigger the setup of an IP-connectivity with radio network node.

[0054] Further, the method in a radio network node wherein the first message and the second message, each may further comprise information on one or more PRBs that are used by UE-A and UE-B respectively.

[0055] According to another exemplifying embodiment is illustrated as a flowchart in figure 7, wherein a method in a first user equipment 230 served by a first radio network node 220 in a first mobile radio network 210 for enabling a Device-to-Device, D2D, communication over a radio link 250 with a second user equipment 290 served by a second radio network node 280, in a second radio network 270, the method comprising sending a request to the first radio network node 220 for enabling the communication with the second user equipment 290; receiving from the first radio network node 220 a first message comprising information related to the second user equipment 290 and a command to send a beacon to the second user equipment 290 in response to the sent request; sending a beacon comprising information related to the first radio network node (220); receiving from the second user equipment 290 a second message indicating that the second user equipment 290 is capable of engaging in a D2D radio link in response to the sent beacon; and synchronizing with the second user equipment 290 upon receiving the second message to initiate the communication.

[0056] Further, the method in a user equipment wherein synchronizing may comprise receiving a time correction from the second user equipment 290 operating in a second frequency band or channel and sending a time correction to the second user equipment 290 operating in a first frequency band or channel.

[0057] Further, the D2D radio link 150 in the method in a user equipment or radio network node may use a hybrid TDD/FDD duplexing. This will allow saving bandwidth and at the same time it will allow the end-user to experience an interference-controlled environment.

[0058] In step 701 the UE-A 230 sends a request to eNB-A 220 to share any content/service with other UEs that are capable of establishing a D2D-radio link. In this case UE-A requests to enable a D2D communication to UE-B.

[0059] A first message from eNB-A is then received 702 by UE-A related to UE-B comprising information such as C-RNTI, shortMAC-I from the eNB-B and information related to the radio network B (e.g. frequency bands and time slots used for D2D communications). The first message may further comprise information about one or more PRBs that are used by UE-B when communicating with UE-A over a D2D-radio link. These PRBs facilitate the synchronization between the user equipments so the scanning of each frequency band is narrower.

[0060] The UE-A further receives a command from the eNB-A to transmit a beacon. In order to transmit the beacon so UE-B can detect it, the UE-A needs information related to UE-B such as the frequency bands or channel of its radio network B for enabling a communication over a D2D-radio link. This information is normally included in the first message.

[0061] In step 703, the UE-A sends a beacon as commanded by the eNB-A. The beacon comprises e.g. the PLMN-identity and cell identity of the eNB-A. The information may further comprise one or more PRBs which the UE-A 230 will use for a D2D transmission. If a message from the UE-B is not received within a predetermined time, then the UE-A needs to resend 904 the beacon.

[0062] In step 705, the UE-A receives a second message from UE-B indicating that the UE-B is capable of engaging in a D2D radio link.

[0063] A synchronization between UE-A and UE-B is then carried out.

[0064] For instance, the UE-B starts listening on frequency A for a limited amount of time upon sending to the UE-A the acknowledgement of the beacon. At the same time UE-A starts listening on frequency B for receiving the acknowledgement. As soon as UE-A receives the acknowledgement, the UE-A sends a synchronization message on its own frequency A comprising time correction for transmission on frequency B. As shown in step 706, if the synchronization message is not received within a limited amount of time, the UE-A resends the beacon to UE-B, otherwise the UE-B replies back to the UE-A with a message containing timing correction for transmission on frequency A. This message from UE-B is sent on its own frequency B.

[0065] When the synchronization is ready, the communication over D2D radio link with the UE-B can be initiated. The D2D radio link may use hybrid TDD/FDD duplexing.

[0066] In figure 8, a block diagram of an example of a user equipment 830 according to an embodiment is depicted. In this embodiment, there is a first user equipment 830 served by a first radio network node 220 in a first mobile radio network 210 for enabling a Device-to-Device, D2D over radio link 250 communication with a second user equipment 290 served by a second radio network node 280 in a second mobile radio network 270 comprising a transmitter for sending a request to the first radio network node 220 for enabling the communication with the second user equipment 290; a receiver for receiving from the first radio network node 220 a first message comprising information related to the second user equipment 290 and a command to send a beacon to the second user equipment 290 in response to the sent request; wherein the transmitter is further sending a beacon comprising information related to the first radio network node 220; and the receiver is further receiving from the second user equipment 290 a second message indicating that the second user equipment 290 is capable of engaging in a D2D radio link in response to the sent beacon; a synchronizer for synchronizing with the second user equipment 290 upon receiving the second message to initiate the communication.

[0067] The user equipment 830 comprises a memory 805, a processor 806, an arrangement 800 and further functionalities 804. The arrangement 800 further comprises a transmitter 801, a receiver 802 and a synchronizer 803. All of these parts are adapted to function according to the embodiment and methods described in figures 6 and 7.

[0068] Further, the configuration of the D2D radio link in the user equipment may comprise setting time and frequency.

[0069] Further, the beacon sent by the user equipment may comprise identification and information on the operative frequency of the first radio network node 120.

[0070] Figure 9 illustrates a block diagram of a radio network node 920 such as a radio base station. The first radio network node 920 serving a first user equipment 230, in a first mobile radio network 210, for enabling a Device-to-Device, D2D, over radio link 250 communication between the first user equipment 230 and a second user equipment 290 served by a second radio network node 280 in a second radio network 270, and the first radio network node 220 comprising a processing unit for establishing a connection 260 with the second radio network node; a receiver for receiving a request from the first user equipment 230 for enabling the communication with the second user equipment 290; a transmitter for sending a first message comprising information related to the first user equipment 230 to the second radio network node 280 to be used by the second radio network node 280 for configuration of the second user equipment 290 in response to the received request and via the established connection 260; wherein the receiver is further receiving a second message comprising information related to the second user equipment 290 from the second radio network node 280 to be used by the first radio network node 220 for configuration of the first user equipment 230 in response to the first message and via the established connection 260; and the transmitter is further sending to the first user equipment 230 a third message comprising the received information related to the second user equipment 290 and a command to transmit a beacon for enabling the communication with the second user equipment 290.

[0071] In this exemplifying embodiment, the radio network node 920 comprises a memory 905, a receiver (RX) 911 and a transmitter (TX) 912. In this particular case, the RX 911 and the TX 912 are adapted to function in accordance with the different tasks carried out by the processing unit 906. All of these parts are adapted to function according to the embodiment and methods described in figures 5-6. As seen in figure 9, there are further functionalities 907 in this radio network node which will not be described here in further detail, such as antenna, decoder, audio interface, power supply, decoder and encoder to mention some of them. The radio signal transmitted from the radio network node reaches a receiver 902 in a user equipment that may also transmit back a radio link to the radio network node 920 using a transmitter 901 and thereby creating a radio network communication.

[0072] Figure 10 schematically shows an embodiment of an arrangement 1000 in a radio network node, which also can be an alternative way of disclosing e.g. an embodiment of the arrangement 800 in a user equipment illustrated in figure 8. Comprised in the arrangement 1000 are here a processor 1006, e.g. with a DSP (Digital Signal Processor). The processor 1006 may be a single unit or a plurality of units to perform different actions of procedures described herein. The arrangement 1000 may also comprise an input unit 1002 for receiving signals from other entities, and an output unit 1004 for providing signal(s) to other entities. The input unit 1002 and the output unit 1004 may be arranged as an integrated entity.

[0073] Furthermore, the arrangement 1000 comprises at least one computer program product 1008 in the form of a non-volatile memory, e.g. an EEPROM (Electrically Erasable Programmable Read-Only Memory), a flash memory and a hard drive. The computer program product 1008 comprises a computer program 1010, which comprises readable code means, which when executed in one or more processing units such as the processor 1006 in the arrangement 1000 causes the arrangement and/or the network node to perform the actions e.g. of the procedure described earlier in conjunction with figure 8.

[0074] The computer program 1010 may be configured as a computer program code structured in computer program modules. Hence, in an exemplifying embodiment, the code means in the computer program 1010 of the arrangement 1000 comprises an identifying a processing module 1001 for establishing a connection 260 with the second radio network node. The computer program further comprises a receiving module 1002 for receiving a request from the first user equipment for enabling the communication with the second user equipment 290. The computer program 1010 further comprises a transmitting module 1003 for sending a first message comprising information related to the first user equipment 230 to the second radio network node 280 for configuration of the second user equipment 290 in response to the received request and via the established connection. The receiving module 1002 of the computer program 1010 further receives a second message comprising information related to the second user equipment 290 from the second radio network node 280 to be used by the first user equipment 230 in response to the first message and via the established connection 260. The transmitting module 1003 further sends to the first user equipment 230 a third message comprising the received information related to the second user equipment 290 and a command to transmit a beacon for enabling the communication with the second user equipment 290. The computer program 1010 further comprises other modules 1004 for providing other desired functionalities.

[0075] The modules 1001-1004 could perform the actions of the flowchart illustrated in figure 6, to emulate the arrangement in a network node illustrated in figure 9. In other words, when the different modules 1001-1004 are executed in the processing unit 1006, they may correspond to the receiver, the transmitter and the processing unit of figure 9.

[0076] Although the code means in the embodiment disclosed above in conjunction with figure 10 are implemented as computer program modules which when executed in the processing unit causes the arrangement and/or network node to perform the actions described above in the conjunction with figures mentioned above, at least one of the code means may in alternative embodiments be implemented at least partly as hardware circuits.

[0077] The processor may be a single CPU (Central processing unit), but could also comprise two or more processing units. For example, the processor may include general purpose microprocessors; instruction set processors and/or related chips sets and/or special purpose microprocessors such as ASICs (Application Specific Integrated Circuit). The processor may also comprise board memory for caching purposes. The computer program may be carried by a computer program product connected to the processor. The computer program product may comprise a computer readable medium on which the computer program is stored. For example, the computer program product may be a flash memory, a RAM (Random-access memory) ROM (Read-Only Memory) or an EEPROM, and the computer program modules described above could in alternative embodiments be distributed on different computer program products in the form of memories within the network node.

[0078] In a similar manner, an exemplifying embodiment comprising computer program modules could be described for the arrangement in a user equipment illustrated in figure 6.

[0079] It is to be understood that the choice of interacting units or modules, as well as the naming of the units within this disclosure are only for exemplifying purpose, and nodes suitable to execute any of the methods described above may be configured in a plurality of alternative ways in order to be able to execute the suggested procedure actions.

[0080] It should also be noted that the units or modules described in this disclosure are to be regarded as logical entities and not with necessity as separate physical entities.

[0081] The arrangement 1000 could be implemented e.g. by one or more of: a processor or a micro-processor and adequate software stored in a memory, a Programmable Logic Device (PLD) or other electronic component(s) or processing circuit(s) configured to perform the actions mentioned above.


Claims

1. A method in a first radio network node (220) serving a first user equipment, UE, (230) in a first mobile radio network (210) for enabling a Device-to-Device, D2D, communication over a radio link (250) with a second UE (290) served by a second radio network node (280) in a second radio network (270), the method comprising:

establishing (621) a connection (260) with the second radio network node;

receiving (622) a request from the first UE (230) for enabling the communication with the second UE (290);

sending (623) a first message comprising information related to the first UE (230) to the second radio network node (280) to be used by the second radio network node (280) for configuration of the second UE (290) in response to the received request and via the established connection (260);

receiving (624) a second message comprising information related to the second UE (290) from the second radio network node (280) to be used by the first radio network node (220) for configuration of the first UE (230) in response to the first message and via the established connection (260);

sending (625) to the first UE (230) a third message comprising the received information related to the second UE (290) and a command to transmit a beacon for enabling the communication with the second UE (290),

wherein the first message and second message, each further comprises information on one or more Physical Resource Blocks, PRBs, that are used by the first UE (230) and the second UE (290), respectively.


 
2. The method according to claim 1, wherein:

the first radio network node is a first evolved nodeB, eNB, (520), and

establishing the connection comprises sending a first D2D INTER-OP CONFIG message towards a first network core node (430) comprising information related to the first radio network node (420), the information related to the first radio network node (220) comprising a list of UEs capable of using the D2D radio link over D2D, the type of content or service the UEs are available to share with others, and the address and the position of first radio network node, and receiving from the first core network node (430) an INTER-OP CONFIG ACK message confirming that a second eNB (480) has all information needed to establish an Internet Protocol, IP, connectivity with the second eNB (480).


 
3. The method according to claim 1 or 2, wherein the D2D radio link (250) uses a hybrid Time Division Duplex/Frequency Division Duplex, TDD/FDD, duplexing.
 
4. A method in a first user equipment, UE, (230, 530) served by a first radio network node (220, 520) in a first mobile radio network (210) for enabling a Device-to-Device, D2D, communication over a radio link (250) with a second UE (290, 590) served by a second radio network node (280, 580), in a second radio network (270), the method comprising:

sending (701) a request to the first radio network node (220, 520) for enabling the communication with the second UE (290, 590);

receiving (702) from the first radio network node (220, 520) a first message comprising information related to the second UE (290, 590) and a command to send a beacon to the second UE (290, 590) in response to the sent request;

sending (703) a beacon comprising information related to the first radio network node (220, 520), the information related to the first radio network node comprising one or more Physical Resource Blocks, PRBs, which the first UE (530) will use for a D2D transmission;

receiving (705) from the second UE (290, 590) a second message indicating that the second UE (290, 590) is capable of engaging in a D2D radio link in response to the sent beacon;

synchronizing (706) with the second UE (290, 590) upon receiving the second message to initiate the communication,

wherein the request is to share any content/service with second UE (590) that is capable of establishing a D2D-radio link with the first UE (530),

wherein the first message indicates one or more PRBs for the beacon, and

wherein the second message is received in a second frequency band using a specified PRB enabling the first UE to carry out a D2D transmission, wherein the first UE transmits information on a first frequency band and the second UE transmits information on the second frequency band.


 
5. The method claimed in claim 4, wherein synchronizing comprises receiving a time correction from the second UE (290, 590) operating in the second frequency band or channel and sending a time correction to the second UE (290, 590) from the first UE operating in the first frequency band or channel.
 
6. The method according claim 4 or 5, wherein the D2D radio link (250) uses a hybrid Time Division Duplex/Frequency Division Duplex, TDD/FDD, duplexing.
 
7. A first user equipment, UE, (230, 530) served by a first radio network node (220) in a first mobile radio network (210) for enabling a Device-to-Device, D2D over radio link (250) communication with a second UE (290, 590) served by a second radio network node (280, 580) in a second mobile radio network (270) comprising:

a transmitter (801) configured to send a request to the first radio network node (220, 520) for enabling the communication with the second UE (290);

a receiver (802) configured to receive from the first radio network node (220, 520) a first message comprising information related to the second UE (290, 509) and a command to send a beacon to the second UE (290, 509) in response to the sent request;

wherein the transmitter (801) is further configured to send a beacon comprising information related to the first radio network node (220, 520), the information related to the first radio network node comprising one or more Physical Resource Blocks, PRBs, which the first UE (530) will use for a D2D transmission; and

the receiver (802) is further configured to receive from the second UE (290, 590) a second message indicating that the second UE (290, 590) is capable of engaging in a D2D radio link in response to the sent beacon;

a synchronizer (803) configured to synchronize with the second UE (290, 590) upon receiving the second message to initiate the communication,

wherein the request is to share any content/service with second UE (590) that is capable of establishing a D2D-radio link with the first UE,

wherein the first message indicates one or more PRBs for the beacon, and

wherein the second message is received in a second frequency band using a specified PRB enabling the first UE to carry out a D2D transmission, wherein the first UE transmits information on a first frequency band and the second UE transmits information on the second frequency band.


 
8. The first UE (230) claimed in claim 7, wherein, in the synchronizing operation, the synchronizer is configured to:

- receive a time correction from the second UE (290) operating in a second frequency band or channel and

- send a time correction to the second UE (290) from the first UE operating in a first frequency band or channel.


 
9. The first UE according to claim 7 or 8, wherein the D2D radio link (250) uses a hybrid Time Division Duplex/Frequency Division Duplex, TDD/FDD, duplexing.
 
10. A first radio network node (220) serving a first user equipment, UE, (230), in a first mobile radio network (210), for enabling a Device-to-Device, D2D, over radio link (250) communication between the first UE (230) and a second UE (290) served by a second radio network node (280) in a second radio network (270), and the first radio network node (220) comprising:

a processing unit (906) configured to establish a connection (260) with the second radio network node;

a receiver (911) configured to receive a request from the first UE (230) for enabling the communication with the second UE (290);

a transmitter (912) configured to send a first message comprising information related to the first UE (230) to the second radio network node (280) to be used by the second radio network node (280) for configuration of the second UE (290) in response to the received request and via the established connection (260);

wherein the receiver (911) is further configured to receive a second message comprising information related to the second UE (290) from the second radio network node (280) to be used by the first radio network node (220) for configuration of the first UE (230) in response to the first message and via the established connection (260); and

the transmitter (912) is further configured to send to the first UE (230) a third message comprising the received information related to the second UE (290) and a command to transmit a beacon for enabling the communication with the second UE (290),

wherein the first message sent by the transmitter (512) and second message received by the receiver (511), each further comprises information on one or more PRBs that are used by the first UE (230) and the second UE (290) respectively.


 
11. The first radio network node (220) according to claim 10, wherein the first radio network node is a first evolved nodeB, eNB, (520) and wherein, in the operation of establishing the connection, the transmitter is further configured to:

- send a first D2D INTER-OP CONFIG message towards a first network core node (430) comprising information related to the first radio network node (420), the information related to the first radio network node (220) comprising a list of UEs capable of using the D2D radio link over D2D, the type of content or service the UEs are available to share with others, and the address and the position of first radio network node, and

- receive from the first core network node (430) an INTER-OP CONFIG ACK message confirming that a second eNB (480) has all information needed to establish an Internet Protocol, IP, connectivity with the second eNB (480).


 
12. The first radio network node (220) according to claim 10 or 11, wherein the D2D radio link (250) uses a hybrid Time Division Duplex/Frequency Division Duplex, TDD/FDD, duplexing.
 
13. A computer program comprising computer readable code means, which when run in one or more processing units, causes the host arrangement according to claim 10 to perform the procedure according to claim 1.
 
14. A computer program product comprising the computer program according to claim 13.
 
15. A computer program comprising computer readable code means, which when run in one or more processing units, causes the host arrangement according to claim 7 to perform the procedure according to claim 4.
 
16. A computer program product comprising the computer program according to claim 15.
 


Ansprüche

1. Verfahren in einem ersten Funknetzwerkknoten (220), der eine erste Benutzereinrichtung, UE, (230) in einem ersten Mobilfunknetzwerk (210) versorgt, zur Ermöglichung einer Gerät-zu-Gerät, D2D,-Kommunikation über eine Funkverbindung (250) mit einer zweiten UE (290), die von einem zweiten Funknetzwerkknoten (280) in einem zweiten Funknetzwerk (270) versorgt wird, wobei das Verfahren umfasst:

Herstellen (621) einer Verbindung (260) mit dem zweiten Funknetzwerkknoten;

Empfangen (622) einer Anforderung von der ersten UE (230) zum Ermöglichen der Kommunikation mit der zweiten UE (290);

Senden (623) einer ersten Nachricht an den zweiten Funknetzwerkknoten (280) mit Informationen in Bezug auf die erste UE (230), die vom zweiten Funknetzwerkknoten (280) zur Konfiguration der zweiten UE (290) verwendet werden sollen, in Reaktion auf die empfangene Anforderung und über die hergestellte Verbindung (260);

Empfangen (624) einer zweiten Nachricht vom zweiten Funknetzwerkknoten (280) mit Informationen in Bezug auf die zweite UE (290), die vom ersten Funknetzwerkknoten (220) zur Konfiguration der ersten UE (230) verwendet werden sollen, in Reaktion auf die erste Nachricht und über die hergestellte Verbindung (260) ;

Senden (625) einer dritten Nachricht an die erste UE (230) mit den empfangenen Informationen in Bezug auf die zweite UE (290) und einem Befehl zum Senden eines Bakens zum Ermöglichen der Kommunikation mit der zweiten UE (290),

wobei die erste Nachricht und die zweite Nachricht ferner jeweils Informationen über einen oder mehrere physikalische Ressourcenblöcke, PRBs, umfassen, die von der ersten UE (230) bzw. der zweiten UE (290) verwendet werden.


 
2. Verfahren nach Anspruch 1, wobei:

der erste Funknetzwerkknoten ein erster evolvierter Knoten B, eNB, (520) ist, und

das Herstellen der Verbindung ein Senden einer ersten D2D-INTER-OP-CONFIG-Nachricht an einen ersten Kernnetzwerkknoten (430) mit Informationen in Bezug auf den ersten Funknetzwerkknoten (420), wobei die Informationen in Bezug auf den ersten Funknetzwerkknoten (220) eine Liste von UEs, die zum Verwenden der D2D-Funkverbindung über D2D imstande sind, den Typ von Inhalt oder Dienst, den die UEs zum Teilen mit anderen zur Verfügung haben, und die Adresse und die Position des ersten Funknetzwerkknotens umfassen, und Empfangen einer INTER-OP-CONFIG-ACK-Nachricht mit der Bestätigung, dass ein zweiter eNB (480) alle Informationen aufweist, die zum Herstellen einer Internetprotokoll, IP,-Konnektivität mit dem zweiten eNB (480) erforderlich sind, vom ersten Kernnetzwerkknoten (430) umfasst.


 
3. Verfahren nach Anspruch 1 oder 2, wobei die D2D-Funkverbindung (250) ein hybrides Zeitduplex/Frequenzduplex, TDD/FDD,-Duplexverfahren verwendet.
 
4. Verfahren in einer ersten Benutzereinrichtung, UE, (230, 530), die von einem ersten Funknetzwerkknoten (220, 520) in einem ersten Mobilfunknetzwerk (210) versorgt wird, zur Ermöglichung einer Gerät-zu-Gerät, D2D,-Kommunikation über eine Funkverbindung (250) mit einer zweiten UE (290, 590), die von einem zweiten Funknetzwerkknoten (280, 580) in einem zweiten Funknetzwerk (270) versorgt wird, wobei das Verfahren umfasst:

Senden (701) einer Anforderung zum Ermöglichen der Kommunikation mit der zweiten UE (290, 590) an den ersten Funknetzwerkknoten (220, 520);

Empfangen (702) vom ersten Funknetzwerkknoten (220, 520) einer ersten Nachricht mit Informationen in Bezug auf die zweite UE (290, 590) und einem Befehl zum Senden eines Bakens an die zweite UE (290, 590) in Reaktion auf die gesendete Anforderung;

Senden (703) eines Bakens mit Informationen in Bezug auf den ersten Funknetzwerkknoten (220, 520), wobei die Informationen in Bezug auf den ersten Funknetzwerkknoten einen oder mehrere physikalische Ressourcenblöcke, PRBs, umfassen, welche die erste UE (530) für eine D2D-Übertragung verwendet;

Empfangen (705) einer zweiten Nachricht von der zweiten UE (290, 590) mit der Angabe, dass die zweite UE (290, 590) zum Anschluss an eine D2D-Funkverbindung imstande ist, in Reaktion auf den gesendeten Baken;

Synchronisieren (706) mit der zweiten UE (290, 590) bei Empfang der zweiten Nachricht zum Initiieren der Kommunikation,

wobei die Anforderung zum Teilen jeglichen Inhalts/Dienstes mit der zweiten UE (590) ist, die zum Herstellen einer D2D-Funkverbindung mit der ersten UE (530) imstande ist,

wobei die erste Nachricht einen oder mehrere PRBs für den Baken angibt, und

wobei die zweite Nachricht in einem zweiten Frequenzband empfangen wird, das einen spezifizierten PRB verwendet, der die erste UE zum Durchführen einer D2D-Übertragung befähigt, wobei die erste UE Informationen über ein erstes Frequenzband sendet, und die zweite UE Informationen über das zweite Frequenzband sendet.


 
5. Verfahren nach Anspruch 4, wobei das Synchronisieren ein Empfangen einer Zeitkorrektur von der zweiten UE (290, 590), die im zweiten Frequenzband oder -kanal funktioniert, und Senden einer Zeitkorrektur an die zweite UE (290, 590) von der ersten UE umfasst, die im ersten Frequenzband oder -kanal funktioniert.
 
6. Verfahren nach Anspruch 4 oder 5, wobei die D2D-Funkverbindung (250) ein hybrides Zeitduplex/Frequenzduplex, TDD/FDD,-Duplexverfahren verwendet.
 
7. Erste Benutzereinrichtung, UE, (230, 530), die von einem ersten Funknetzwerkknoten (220) in einem ersten Mobilfunknetzwerk (210) versorgt wird, zum Ermöglichen von Gerät-zu-Gerät, D2D-Kommunikation über eine Funkverbindung (250) mit einer zweiten UE (290, 590), die von einem zweiten Funknetzwerkknoten (280, 580) in einem zweiten Mobilfunknetzwerk (270) versorgt wird, umfassend:

einen Sender (801), der zum Senden einer Anforderung zum Ermöglichen der Kommunikation mit der zweiten UE (290) an den ersten Funknetzwerkknoten (220, 520) konfiguriert ist;

einen Empfänger (802), der so konfiguriert ist, dass er vom ersten Funknetzwerkknoten (220, 520) eine erste Nachricht mit Informationen in Bezug auf die zweite UE (290, 509) und einem Befehl zum Senden eines Bakens an die zweite UE (290, 509) in Reaktion auf die gesendete Anforderung empfängt;

wobei der Sender (801) ferner zum Senden eines Bakens mit Informationen in Bezug auf den ersten Funknetzwerkknoten (220, 520) konfiguriert ist, wobei die Informationen in Bezug auf den ersten Funknetzwerkknoten einen oder mehrere physikalische Ressourcenblöcke, PRBs, umfassen, welche die erste UE (530) für eine D2D-Übertragung verwendet; und

der Empfänger (802) ferner so konfiguriert ist, dass er eine zweite Nachricht mit der Angabe, dass die zweite UE (290, 590) zum Anschluss an eine D2D-Funkverbindung imstande ist, von der zweiten UE (290, 590) in Reaktion auf den gesendeten Baken empfängt;

einen Synchronisator (803), der zum Synchronisieren mit der zweiten UE (290, 590) bei Empfang der zweiten Nachricht zum Initiieren der Kommunikation konfiguriert ist,

wobei die Anforderung zum Teilen jeglichen Inhalts/Dienstes mit der zweiten UE (590) ist, die zum Herstellen einer D2D-Funkverbindung mit der ersten UE imstande ist,

wobei die erste Nachricht einen oder mehrere PRBs für den Baken angibt, und

wobei die zweite Nachricht in einem zweiten Frequenzband empfangen wird, das einen spezifizierten PRB verwendet, der die erste UE zum Durchführen einer D2D-Übertragung befähigt, wobei die erste UE Informationen über ein erstes Frequenzband sendet, und die zweite UE Informationen über das zweite Frequenzband sendet.


 
8. Erste UE (230) nach Anspruch 7, wobei der Synchronisator beim Synchronisiervorgang konfiguriert ist zum:

- Empfangen einer Zeitkorrektur von der zweiten UE (290), die in einem zweiten Frequenzband oder - kanal funktioniert, und

- Senden von der ersten UE, die in einem ersten Frequenzband oder -kanal funktioniert, einer Zeitkorrektur an die zweite UE (290).


 
9. Erste UE nach Anspruch 7 oder 8, wobei die D2D-Funkverbindung (250) ein hybrides Zeitduplex/Frequenzduplex, TDD/FDD,-Duplexverfahren verwendet.
 
10. Erster Funknetzwerkknoten (220), der eine erste Benutzereinrichtung, UE, (230) in einem ersten Mobilfunknetzwerk (210) versorgt, zum Ermöglichen einer Gerät-zu-Gerät, D2D,-Kommunikation über eine Funkverbindung (250) zwischen der ersten UE (230) und einer zweiten UE (290), die von einem zweiten Funknetzwerkknoten (280) in einem zweiten Funknetzwerk (270) versorgt wird, wobei der erste Funknetzwerkknoten (220) umfasst:

eine Verarbeitungseinheit (906), die zum Herstellen einer Verbindung (260) mit dem zweiten Funknetzwerkknoten konfiguriert ist;

einen Empfänger (911), der zum Empfangen einer Anforderung von der ersten UE (230) zum Ermöglichen der Kommunikation mit der zweiten UE (290) konfiguriert ist;

einen Sender (912), der so konfiguriert ist, dass er an den zweiten Funknetzwerkknoten (280) eine erste Nachricht mit Informationen in Bezug auf die erste UE (230), die vom zweiten Funknetzwerkknoten (280) zur Konfiguration der zweiten UE (290) verwendet werden sollen, in Reaktion auf die empfangene Anforderung und über die hergestellte Verbindung (260) sendet;

wobei der Empfänger (911) ferner so konfiguriert ist, dass er vom zweiten Funknetzwerkknoten (280) eine zweite Nachricht mit Informationen in Bezug auf die zweite UE (290), die vom ersten Funknetzwerkknoten (220) zur Konfiguration der ersten UE (230) verwendet werden sollen, in Reaktion auf die erste Nachricht und über die hergestellte Verbindung (260) empfängt; und

der Sender (912) ferner so konfiguriert ist, dass er eine dritte Nachricht mit den empfangenen Informationen in Bezug auf die zweite UE (290) und einem Befehl zum Senden eines Bakens zum Ermöglichen der Kommunikation mit der zweiten UE (290) an die erste UE (230) sendet,

wobei die erste Nachricht, die vom Sender (512) gesendet wird, und die zweite Nachricht, die vom Empfänger (511) empfangen wird, ferner jeweils Informationen über einen oder mehrere PRBs umfassen, die von der ersten UE (230) bzw. der zweiten UE (290) verwendet werden.


 
11. Erster Funknetzwerkknoten (220) nach Anspruch 10, wobei der erste Funknetzwerkknoten ein erster evolvierter Knoten B, eNB, (520) ist, und wobei der Sender beim Vorgang des Herstellens der Verbindung ferner konfiguriert ist zum:

- Senden einer ersten D2D-INTER-OP-CONFIG-Nachricht an einen ersten Kernnetzwerkknoten (430) mit Informationen in Bezug auf den ersten Funknetzwerkknoten (420), wobei die Informationen in Bezug auf den ersten Funknetzwerkknoten (220) eine Liste von UEs, die zum Verwenden der D2D-Funkvberbindung über D2D imstande sind, den Typ von Inhalt oder Dienst, den die UEs zum Teilen mit anderen zur Verfügung haben, und die Adresse und die Position des ersten Funknetzwerkknotens umfassen, und

- Empfangen einer INTER-OP-CONFIG-ACK-Nachricht vom ersten Kernnetzwerkknoten (430) mit der Bestätigung, dass ein zweiter eNB (480) alle Informationen aufweist, die zum Herstellen einer Internetprotokoll, IP,-Konnektivität mit dem zweiten eNB (480) erforderlich sind.


 
12. Erster Funknetzwerkknoten (220) nach Anspruch 10 oder 11, wobei die D2D-Funkverbindung (250) ein hybrides Zeitduplex/Frequenzduplex, TDD/FDD,-Duplexverfahren verwendet.
 
13. Computerprogramm, umfassend computerlesbare Codemittel, die bei Ausführung auf einer oder mehreren Verarbeitungseinheiten die Hostanordnung nach Anspruch 10 zum Durchführen der Prozedur nach Anspruch 1 veranlassen.
 
14. Computerprogrammprodukt, umfassend das Computerprogramm nach Anspruch 13.
 
15. Computerprogramm, umfassend computerlesbare Codemittel, die bei Ausführung auf einer oder mehreren Verarbeitungseinheiten die Hostanordnung nach Anspruch 7 zum Durchführen der Prozedur nach Anspruch 4 veranlassen.
 
16. Computerprogrammprodukt, umfassend das Computerprogramm nach Anspruch 15.
 


Revendications

1. Procédé dans un premier nœud de réseau radio (220) desservant un premier équipement d'utilisateur, UE, (230) dans un premier réseau radio mobile (210) pour permettre une communication de dispositif à dispositif, D2D, sur une liaison radio (250) avec un deuxième UE (290) desservi par un deuxième nœud de réseau radio (280) dans un deuxième réseau radio (270), le procédé comprenant :

l'établissement (621) d'une connexion (260) avec le deuxième nœud de réseau radio ;

la réception (622) d'une demande en provenance du premier UE (230) pour permettre la communication avec le deuxième UE (290) ;

l'envoi (623) d'un premier message comprenant des informations relatives au premier UE (230) au deuxième nœud de réseau radio (280) à utiliser par le deuxième nœud de réseau radio (280) pour une configuration du deuxième UE (290) en réponse à la demande reçue et par l'intermédiaire de la connexion établie (260) ;

la réception (624) d'un deuxième message comprenant des informations relatives au deuxième UE (290) en provenance du deuxième nœud de réseau radio (280) à utiliser par le premier nœud de réseau radio (220) pour une configuration du premier UE (230) en réponse au premier message et par l'intermédiaire de la connexion établie (260) ;

l'envoi (625) au premier UE (230) d'un troisième message comprenant les informations reçues relatives au deuxième UE (290) et une commande pour transmettre une balise pour permettre la communication avec le deuxième UE (290),

dans lequel chacun du premier message et du deuxième message comprend en outre des informations sur un ou plusieurs blocs de ressources physiques, PRB, qui sont utilisés respectivement par le premier UE (230) et le deuxième UE (290).


 
2. Procédé selon la revendication 1, dans lequel :

le premier nœud de réseau radio est un premier nœud B évolué, eNB, (520), et

l'établissement de la connexion comprend l'envoi d'un premier message D2D INTER-OP CONFIG vers un premier nœud de réseau central (430) comprenant des informations relatives au premier nœud de réseau radio (420), les informations relatives au premier nœud de réseau radio (220) comprenant une liste d'UE capables d'utiliser la liaison radio D2D sur une communication D2D, le type de contenu ou de service que les UE sont disponibles pour partager avec d'autres, et l'adresse et la position du premier nœud de réseau radio, et la réception, en provenance du premier nœud de réseau central (430), d'un message INTER-OP CONFIG ACK confirmant qu'un deuxième eNB (480) a toutes les informations nécessaires pour établir une connectivité de protocole Internet, IP, avec le deuxième eNB (480).


 
3. Procédé selon la revendication 1 ou 2, dans lequel la liaison radio D2D (250) utilise un duplexage hybride à duplex par répartition dans le temps/duplex par répartition de fréquence, TDD/FDD.
 
4. Procédé dans un premier équipement d'utilisateur, UE, (230, 530) desservi par un premier nœud de réseau radio (220, 520) dans un premier réseau radio mobile (210) pour permettre une communication de dispositif à dispositif, D2D, sur une liaison radio (250) avec un deuxième UE (290, 590) desservi par un deuxième nœud de réseau radio (280, 580) dans un deuxième réseau radio (270), le procédé comprenant :

l'envoi (701) d'une demande au premier nœud de réseau radio (220, 520) pour permettre la communication avec le deuxième UE (290, 590) ;

la réception (702), en provenance du premier nœud de réseau radio (220, 520), d'un premier message comprenant des informations relatives au deuxième UE (290, 590) et une commande pour envoyer une balise au deuxième UE (290, 590) en réponse à la demande envoyée ;

l'envoi (703) d'une balise comprenant des informations relatives au premier nœud de réseau radio (220, 520), les informations relatives au premier nœud de réseau radio comprenant un ou plusieurs blocs de ressources physiques, PRB, que le premier UE (530) utilise pour une transmission D2D ;

la réception (705), en provenance du deuxième UE (290, 590), d'un deuxième message indiquant que le deuxième UE (290, 590) est capable de participer à une liaison radio D2D en réponse à la balise envoyée ;

la synchronisation (706) avec le deuxième UE (290, 590) à la réception du deuxième message pour lancer la communication,

dans lequel la demande est pour partager un contenu/service avec le deuxième UE (590) qui est capable d'établir une liaison radio D2D avec le premier UE (530),

dans lequel le premier message indique un ou plusieurs PRB pour la balise, et

dans lequel le deuxième message est reçu dans une deuxième bande de fréquences en utilisant un PRB spécifié permettant au premier UE d'effectuer une transmission D2D, dans lequel le premier UE transmet des informations sur une première bande de fréquences et le deuxième UE transmet des informations sur la deuxième bande de fréquences.


 
5. Procédé selon la revendication 4, dans lequel la synchronisation comprend la réception d'une correction de temps en provenance du deuxième UE (290, 590) fonctionnant dans la deuxième bande de fréquences ou dans un deuxième canal et l'envoi d'une correction de temps au deuxième UE (290, 590) depuis le premier UE fonctionnant dans la première bande de fréquences ou dans un premier canal.
 
6. Procédé selon la revendication 4 ou 5, dans lequel la liaison radio D2D (250) utilise un duplexage hybride à duplex par répartition dans le temps/duplex par répartition de fréquence, TDD/FDD.
 
7. Premier équipement d'utilisateur, UE, (230, 530) desservi par un premier nœud de réseau radio (220) dans un premier réseau radio mobile (210) pour permettre une communication de dispositif à dispositif, D2D, sur une liaison radio (250) avec un deuxième UE (290, 590) desservi par un deuxième nœud de réseau radio (280, 580) dans un deuxième réseau radio mobile (270), comprenant :

un émetteur (801) configuré pour l'envoi d'une demande au premier nœud de réseau radio (220, 520) pour permettre la communication avec le deuxième UE (290) ;

un récepteur (802) configuré pour la réception, en provenance du premier nœud de réseau radio (220, 520), d'un premier message comprenant des informations relatives au deuxième UE (290, 509) et une commande pour envoyer une balise au deuxième UE (290, 509) en réponse à la demande envoyée ;

dans lequel l'émetteur (801) est en outre configuré pour l'envoi d'une balise comprenant des informations relatives au premier nœud de réseau radio (220, 520), les informations relatives au premier nœud de réseau radio comprenant un ou plusieurs blocs de ressources physiques, PRB, que le premier UE (530) utilise pour une transmission D2D ; et

le récepteur (802) est en outre configuré pour la réception, en provenance du deuxième UE (290, 590), d'un deuxième message indiquant que le deuxième UE (290, 590) est capable de participer à une liaison radio D2D en réponse à la balise envoyée ;

un synchroniseur (803) configuré pour la synchronisation avec le deuxième UE (290, 590) à la réception du deuxième message pour lancer la communication,

dans lequel la demande est pour partager un contenu/service avec le deuxième UE (590) qui est capable d'établir une liaison radio D2D avec le premier UE,

dans lequel le premier message indique un ou plusieurs PRB pour la balise, et

dans lequel le deuxième message est reçu dans une deuxième bande de fréquences en utilisant un PRB spécifié permettant au premier UE d'effectuer une transmission D2D, dans lequel le premier UE transmet des informations sur une première bande de fréquences et le deuxième UE transmet des informations sur la deuxième bande de fréquences.


 
8. Premier UE (230) selon la revendication 7, dans lequel, dans l'opération de synchronisation, le synchroniseur est configuré pour :

- la réception d'une correction de temps en provenance du deuxième UE (290) fonctionnant dans une deuxième bande de fréquences ou dans un deuxième canal ; et

- l'envoi d'une correction de temps au deuxième UE (290) depuis le premier UE fonctionnant dans une première bande de fréquences ou dans un premier canal.


 
9. UE selon la revendication 7 ou 8, dans lequel la liaison radio D2D (250) utilise un duplexage hybride à duplex par répartition dans le temps/duplex par répartition de fréquence, TDD/FDD.
 
10. Premier nœud de réseau radio (220) desservant un premier équipement d'utilisateur, UE, (230) dans un premier réseau radio mobile (210), pour permettre une communication de dispositif à dispositif, D2D, sur une liaison radio (250) entre le premier UE (230) et un deuxième UE (290) desservi par un deuxième nœud de réseau radio (280) dans un deuxième réseau radio (270), et le premier nœud de réseau radio (220) comprenant :

une unité de traitement (906) configurée pour l'établissement d'une connexion (260) avec le deuxième nœud de réseau radio ;

un récepteur (911) configuré pour la réception d'une demande en provenance du premier UE (230) pour permettre la communication avec le deuxième UE (290) ;

un émetteur (912) configuré pour l'envoi d'un premier message comprenant des informations relatives au premier UE (230) au deuxième nœud de réseau radio (280) à utiliser par le deuxième nœud de réseau radio (280) pour une configuration du deuxième UE (290) en réponse à la demande reçue et par l'intermédiaire de la connexion établie (260) ;

dans lequel le récepteur (911) est en outre configuré pour la réception d'un deuxième message comprenant des informations relatives au deuxième UE (290) en provenance du deuxième nœud de réseau radio (280) à utiliser par le premier nœud de réseau radio (220) pour une configuration du premier UE (230) en réponse au premier message et par l'intermédiaire de la connexion établie (260) ; et

l'émetteur (912) est en outre configuré pour l'envoi au premier UE (230) d'un troisième message comprenant les informations reçues relatives au deuxième UE (290) et une commande pour transmettre une balise pour permettre la communication avec le deuxième UE (290),

dans lequel chacun du premier message envoyé par l'émetteur (512) et du deuxième message reçu par le récepteur (511) comprend en outre des informations sur un ou plusieurs PRB qui sont utilisés respectivement par le premier UE (230) et le deuxième UE (290).


 
11. Premier nœud de réseau radio (220) selon la revendication 10, dans lequel le premier nœud de réseau radio est un premier nœud B évolué, eNB, (520), et dans lequel, dans l'opération d'établissement de la connexion, l'émetteur est en outre configuré pour :

- l'envoi d'un premier message D2D INTER-OP CONFIG vers un premier nœud de réseau central (430) comprenant des informations relatives au premier nœud de réseau radio (420), les informations relatives au premier nœud de réseau radio (220) comprenant une liste d'UE capables d'utiliser la liaison radio D2D sur une communication D2D, le type de contenu ou de service que les UE sont disponibles pour partager avec d'autres, et l'adresse et la position du premier nœud de réseau radio, et

- la réception, en provenance du premier nœud de réseau central (430), d'un message INTER-OP CONFIG ACK confirmant qu'un deuxième eNB (480) a toutes les informations nécessaires pour établir une connectivité de protocole Internet, IP, avec le deuxième eNB (480).


 
12. Premier nœud de réseau radio (220) selon la revendication 10 ou 11, dans lequel la liaison radio D2D (250) utilise un duplexage hybride à duplex par répartition dans le temps/duplex par répartition de fréquence, TDD/FDD.
 
13. Programme informatique comprenant des moyens de code lisibles par ordinateur qui, lorsqu'ils sont exécutés dans une ou plusieurs unités de traitement, amènent l'agencement hôte selon la revendication 10 à effectuer la procédure selon la revendication 1.
 
14. Produit de programme informatique comprenant le programme informatique selon la revendication 13.
 
15. Programme informatique comprenant des moyens de code lisibles par ordinateur qui, lorsqu'ils sont exécutés dans une ou plusieurs unités de traitement, amènent l'agencement hôte selon la revendication 7 à effectuer la procédure selon la revendication 4.
 
16. Produit de programme informatique comprenant le programme informatique selon la revendication 15.
 




Drawing



































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description