(19)
(11)EP 2 922 709 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.12.2019 Bulletin 2019/49

(21)Application number: 13857513.9

(22)Date of filing:  04.10.2013
(51)Int. Cl.: 
B60B 35/00  (2006.01)
(86)International application number:
PCT/US2013/000228
(87)International publication number:
WO 2014/081444 (30.05.2014 Gazette  2014/22)

(54)

MODULAR AXLE SHAFT ASSEMBLIES FOR USE WITH RACING VEHICLES AND OTHER VEHICLES

MODULARE ACHSWELLENANORDNUNGEN ZUR VERWENDUNG MIT RENNWAGEN UND ANDEREN FAHRZEUGEN

ENSEMBLES DEMI-ARBRES MODULAIRES DESTINÉS À ÊTRE UTILISÉS AVEC DES VÉHICULES DE COURSE ET D'AUTRES VÉHICULES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 20.11.2012 US 201213681853

(43)Date of publication of application:
30.09.2015 Bulletin 2015/40

(73)Proprietor: Dziekonski, Mitchell, Z.
Stafford, TX 77497 (US)

(72)Inventor:
  • Dziekonski, Mitchell, Z.
    Stafford, TX 77497 (US)

(74)Representative: Barker Brettell LLP 
100 Hagley Road Edgbaston
Birmingham B16 8QQ
Birmingham B16 8QQ (GB)


(56)References cited: : 
EP-A1- 1 286 087
CN-Y- 201 405 676
JP-A- 2010 189 702
US-A- 4 135 766
US-B1- 6 364 779
US-B1- 6 572 199
WO-A1-2008/040781
GB-A- 172 843
US-A- 3 465 545
US-A- 6 059 378
US-B1- 6 364 779
US-B2- 7 229 137
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    CROSS REFERENCE TO RELATED APPLICATIONS



    [0001] The present application is a patent cooperation treaty (PCT) application that claims priority to U.S. Patent Application Serial No. 13/681,853, entitled "Modular Axle Shaft Assemblies For Use With Racing Vehicles And Other Vehicles," filed November 20, 2012.

    FIELD



    [0002] Embodiments usable within the scope of the present disclosure relate, generally, to configurations for vehicle axles, and more specifically to axle shaft assemblies usable with racing vehicles and other types of vehicles that can include combinations of materials selected to provide desired characteristics to the vehicle.

    BACKGROUND



    [0003] When designing racing vehicles, a key factor that plays a significant role in the performance of a vehicle is its weight. Decreasing the weight of a racing vehicle, even by a small amount, can result in improved acceleration and a greater overall top speed. One portion of racing vehicles that is often targeted for use of lighter components is the axles thereof, primarily due to the fact that conventional axles are formed from heavy, steel, tubular members.

    [0004] For example, a typical rear axle of a racing vehicle (e.g., a drive axle) will include one or multiple steel tubulars, having varying points of thickness along their length, for providing desirable suspension characteristics and impact resistance. A hub is positioned at the outer edge of each tubular, to which a wheel is secured, while some manner of engagement with the drive system (e.g., gears, splines, etc.) are formed on the inner ends of each tubular. It is possible for an entire axle assembly (e.g., the hub, shaft, and a splined connector) to be machined from a single piece of steel, though it is also possible to weld or otherwise connect separate hub and connector components to a shaft. Document WO 2008/040781 A1 discloses a prior art axle as described.

    [0005] In addition to the disadvantages inherent in their weight, steel components can be readily damaged and/or deformed, especially if subjected to a significant side impact. Due to its generally high modulus of elasticity, a steel axle that is bent through an impact will remain warped, requiring replacement.

    [0006] To attempt to address the drawbacks of conventional steel materials, use of alternate materials has been explored, including various plastics and composites, as well as alternate metals. For example, use of an axle shaft assembly formed wholly from titanium has been attempted; however, due to the fact that titanium parts cannot be readily welded and/or attached to adjacent parts, such an assembly is expensive to produce, requiring the machining of a single piece of titanium that is large enough to form both an integral hub and shaft. Additionally, while an axle assembly formed wholly from titanium is lighter and more flexible than steel counterparts, titanium splines are prone to breakage and rapid wear, even when provided with wear resistant coatings and surface treatments. Further, titanium hub connections are significantly more complex and expensive than typical steel counterparts.

    [0007] A need exists for axle shaft assemblies and methods that combine materials having low and high moduli of elasticity to provide desirable weight, suspension, impact resistance, and durability characteristics to a vehicle, while enabling a higher fatigue life.

    [0008] A need also exists for axle shaft assemblies and methods that incorporate modular components.

    [0009] Embodiments usable within the scope of the present disclosure meet these needs.

    SUMMARY



    [0010] The invention concerns an axle shaft and method for providing a vehicle with an axle shaft according to claims 1 and 8. While embodiments are described herein with specific reference to racing vehicles and rear axles thereof, it should be understood that the disclosed axle shaft assemblies can be used in place of any conventional axle and/or shaft, including front axles, rear axles, engine axles, or any other elongate portion of a vehicle intended to transmit or receive torque.

    [0011] According to the invention, an axle shaft assembly includes a first shaft having a first end, a second end, and a central portion, the first shaft being formed from a material having a modulus of elasticity adapted to provide the first shaft with a flexibility for withstanding a side impact and resisting deformation. It should be understood that the term "shaft" as used herein, can include a solid shaft or a hollow and/or tubular shaft, depending on the desired structural characteristics of the axle. For example, a solid shaft can be used when the desired weight and suspension characteristics warrant such, while a shaft could be provided with a bore to reduce the overall weight of the axle in other embodiments. In a preferred embodiment, the shaft can be formed from titanium. Titanium provides a high strength, flexible axle shaft that resists deformation, and is lighter than conventional steel components, enabling more rapid acceleration and a faster overall speed. Due to its flexibility and strength, titanium also provides a higher fatigue life. Additionally, a titanium shaft can be formed as a generally straight member (e.g., having a continuous outer diameter) while providing sufficient strength, thus avoiding the time and cost required to provide conventional steel shafts with shoulders and/or tapered regions.

    [0012] A first end member according to the invention is engaged with the first end of the shaft, and a second end member according to the invention is engaged with the second end. The end members according to the invention are formed from a second material having a modulus of elasticity greater than that of the shaft. For example, in a preferred embodiment, the end members can be formed from steel. In a further embodiment, the two end members can be formed from differing materials (e.g., differing grades/hardnesses of steel, or different metals, alloys, polymers, composites, etc.).

    [0013] According to the invention the first end member includes a splined member adapted to receive rotational force from a drive system and transfer the rotational force to the shaft. The second end member can include a hub flange adapted for attachment to a wheel, such that rotation applied by the drive system to the splined member is transferred to and rotates the wheel, via the shaft and hub flange. As such, a first shaft, splined connector, and hub flange can function as one half of a drive axle, used to rotate a wheel, while a second shaft, splined connector, and hub flange of similar configuration can be oriented in the opposing direction, such that the second splined connector can simultaneously receive rotational force from the drive system. Use of steel or similar hard/durable materials to form splined connectors and hub flanges can provide the overall axle shaft assembly with sufficient durability to withstand rotational forces without damaging the splines or similar members. In other possible embodiments, each end member can include a splined connector, e.g., for receiving and/or transferring force to and/or from objects engaged at both ends of the shaft.

    [0014] Due to the difficulties inherent in welding and/or otherwise attaching titanium components to steel components, and connecting low and high modulus components in general, in an embodiment, the first and/or second end members can be integrally and mechanically connected to the shaft using one or more mechanical connectors. For example, titanium and steel components could be threaded together, using precisely designed threads that provide a secure connection while preventing undesirable stresses on the components and the threads thereof (e.g., by withstanding shock loads and preventing fatigue in the materials).

    [0015] Use of such configurations allows the embodied axle shaft assemblies to be modular, such that end members and shafts can be interchanged and replaced, as needed, rapidly and efficiently (e.g., during a racing event).

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0016] In the detailed description of various embodiments usable within the scope of the present disclosure, presented below, reference is made to the accompanying drawings, in which:

    Figure 1A depicts a diagrammatic side view of an embodiment of a shaft usable within the scope of the present invention.

    Figure 1B depicts a diagrammatic side view of an alternate embodiment of a shaft usable within the scope of the present invention.

    Figure 2A depicts an end view of an embodiment of an end member usable within the scope of the present invention.

    Figure 2B depicts a side, cross-sectional view of the end member of Figure 2A, taken along line B of Figure 2A.

    Figure 3A depicts an end view of an embodiment of an end member usable within the scope of the present invention.

    Figure 3B depicts a side, cross-sectional view of the end member of Figure 3A, taken along line B of Figure 3A.

    Figure 4A depicts a diagrammatic side view of an embodiment of an axle shaft assembly usable within the scope of the present invention.

    Figure 4B depicts a diagrammatic side view of an alternate embodiment of an axle shaft assembly usable within the scope of the present invention.



    [0017] One or more embodiments are described below with reference to the listed Figures.

    DETAILED DESCRIPTION OF THE EMBODIMENTS



    [0018] Before describing selected embodiments of the present invention in detail, it is to be understood that the present invention is not limited to the particular embodiments described herein. The disclosure and description herein is illustrative and explanatory of one or more presently preferred embodiments and variations thereof, and it will be appreciated by those skilled in the art that various changes in the design, organization, order of operation, means of operation, equipment structures and location, methodology, and use of mechanical equivalents may be made without departing from the scope of protection as defined by the claims.

    [0019] As well, it should be understood that the drawings are intended to illustrate and plainly disclose presently preferred embodiments to one of skill in the art, but are not intended to be manufacturing level drawings or renditions of final products and may include simplified conceptual views as desired for easier and quicker understanding or explanation. As well, the relative size and arrangement of the components may differ from that shown and still operate within the spirit of the invention.

    [0020] Moreover, it will be understood that various directions such as "upper," "lower," "bottom," "top," "left," "right," "above," "below," and so forth are made only with respect to explanation in conjunction with the drawings, and that the components may be oriented differently, for instance, during transportation and manufacturing as well as operation. Because many varying and different embodiments may be made within the scope of the concepts herein taught, and because many modifications may be made in the embodiments described herein, it is to be understood that the details herein are to be interpreted as illustrative and non-limiting.

    [0021] As described above, embodiments usable within the scope of the present invention relate to axle shaft assemblies, systems, and methods that include use of a shaft (e.g., a titanium shaft having a generally constant outer diameter) that can be mechanically and/or integrally connected to end members (e.g., splined connectors and/or hub flanges), such as through use of threads or other mechanical connections. Use of a shaft formed from lightweight materials having a low modulus of elasticity (e.g., titanium) reduces the overall weight of the axle assembly while providing a high strength, flexible axle shaft able to withstand side impacts without deformation while providing favorable suspension characteristics to the vehicle. Use of end members formed from alternate materials (e.g., steel) enables portions of the axle shaft subjected to rotational/torque forces (e.g., splines and hubs) to withstand such stresses. Such axle shaft assemblies, systems, and methods, while especially useful as rear (e.g., driving) axles of racing vehicles, are usable with any type of vehicle, and with any type of axle (e.g., front/steering axles, engine axles, or any other elongate portion of a vehicle designed to receive and/or transmit torque).

    [0022] Referring now to Figure 1A, an embodiment of a shaft (10) usable within the scope of the present invention is shown. The shaft (10) includes a first end (12) and a second end (14) terminating at tapered/beveled shoulders (13, 15, respectively). The central portion of the depicted embodiment of the shaft (10) includes a tapered portion (17), which extends between a thicker region (16) proximate to the second end (14), and a thinner region (18) proximate to the first end (12). The thinner region (18) is shown having a diameter greater than that of the first end (12), such that a shoulder (19) (e.g., a tapered/beveled shoulder) is defined between the first end (12) and the thinner region (18). An additional taper/bevel (11) is shown at the meeting point between the first end (12) and the thinner region (18). Exterior threads (51) are shown at each end (12, 14) of the shaft (10), the threads (51) being one example of a mechanical connection between the shaft (10) and adjacent components.

    [0023] While shafts usable within the scope of the present invention can include any shape, dimensions, and/or materials, and can have any desired wall thickness (including being substantially solid, if desired), depending on the characteristics of the vehicle with which the shaft is used, the purpose for which the vehicle and/or shaft is used, and other similar factors, the depicted shaft (10) is formed from titanium, having a total length of about 33.0 inches. The first end (12) is shown having a length of about 1.450 inches and a diameter of about 0.750 inches. The thinner region (18) is shown having a length of about 3.850 inches and a diameter of about 1.27 inches. The thicker region (16) is shown having a length of about 28.7 inches (inclusive of the tapered portion (17)), and a diameter of about 1.43 inches. Each tapered/beveled shoulder (13, 15, 19) is shown having a taper of approximately 45 degrees, save for the additional taper/bevel (11) between the first end (12) and thinner region (18), which is shown having a taper of approximately 30 degrees. The tapered portion (17) is shown extending at an angle of approximately 15 degrees.

    [0024] Referring now to Figure 1B, an alternate embodiment of a shaft (20) usable within the scope of the present invention is shown. The depicted shaft (20) differs from the shaft shown in Figure 1A in that the depicted shaft (20) includes a generally continuous diameter. Specifically, the shaft (20) includes a first end (22) having a tapered/beveled distal edge (23), and a second end (24) having a tapered/beveled edge (25). The entirety of the central portion (26) of the shaft (20), extending from the second end (24) to a tapered/beveled shoulder (27), where the central portion (26) meets the first end (22), is shown having a constant diameter. An additional taper/bevel (21) is shown at the meeting point between the first end (22) and the central portion (26). Threads (51) are shown at each end (22, 24) of the shaft (20), identical and/or similar to the threads shown with regard to the shaft of Figure 1A. As described previously, use of high strength, flexible materials, such as titanium, enables the use of a generally straight shaft, thus avoiding the time and cost required to provide conventional steel shafts with shoulders and/or tapered regions.

    [0025] The depicted shaft (20) is shown having substantially similar dimensions to those of the shaft of Figure 1A. Specifically, the depicted embodiment is formed from titanium, having a total length of about 33.0 inches. The first end (22) is shown having a length of about 1.450 inches and a diameter of about 0.750 inches. The central portion (26) is shown having a length of about 31.550 inches and a diameter of about 1.43 inches. Each tapered/beveled shoulder (23, 25, 27) is shown having a taper of approximately 45 degrees, save for the additional taper/bevel (21) between the first end (22) and central portion (26), which is shown having a taper of approximately 30 degrees.

    [0026] Referring now to Figures 2A and 2B, an embodiment of an end member (28) usable within the scope of the present disclosure is shown. Specifically, Figure 2A depicts an end view of the end member (28), while Figure 2B depicts a side, cross-sectional view thereof, taken along line B of Figure 2A. While Figures 2A and 2B depict the end member (28) as a splined connector, engageable with an end of the shaft (10, 20, shown in Figures 1A and 1B, respectively) to receive torque from, e.g., a drive system, and transfer the torque to the shaft (e.g., via a mechanical connection therebetween), it should be understood that the depicted splined connector is only one exemplary type of end connector usable within the scope of the present invention.

    [0027] The end member (28) is shown having a generally cylindrical body (30) enclosing a bore (34) extending partially along the length thereof, and an end portion (32) extending from the body (30). A plurality of elongate splines (36) are shown formed on and/or otherwise extending from the body (30). In use, complementary splines, teeth, and/or other types of protruding members, e.g., from a drive system, can engage the spines and apply a rotational force thereto, e.g., via entry into the spaces defined between adjacent splines and application of a lateral force to one or more splines. Interior threads (53) are shown as one example of a mechanical connection usable to secure the end member (28) to adjacent components (e.g., a shaft, such as that shown in Figure 1A or 1B).

    [0028] While end members usable within the scope of the present invention can include any shape, dimensions, and/or materials, and can have any configuration necessary to adapt the axle shaft assembly to serve a desired purpose (e.g., to receive/transfer motive force), the depicted end member (28) is shown as a splined connector formed from steel and having an overall length of about 2.372 inches, and a diameter of about 1.72 inches. The bore (34) is shown having a diameter of about 0.745 inches and a depth of about 1.500 inches, terminating at a 45 degree taper (35) at the outer edge thereof.

    [0029] Referring now to Figures 3A and 3B, another embodiment of an end member (38) usable within the scope of the present invention is shown. Specifically, Figure 3A depicts an end view of the end member (38), while Figure 3B depicts a side, cross-sectional view thereof, taken along line B of Figure 3A. While Figures 3A and 3B depict the end member (38) as a hub flange, engageable with an end of the shaft (10, 20, shown in Figures 1A and 1B, respectively), and with a wheel, such that torque received from the shaft can be used to rotate the wheel, it should be understood that the depicted hub flange is only one exemplary type of end connector usable within the scope of the present invention.

    [0030] The end connector (38) is shown having a front and/or outer surface (40), and a rear and/or inner surface (42), with an axial bore (44) extending through the approximate center thereof between the outer and inner surfaces (40, 42). An interior shoulder or step defines an intermediate surface (46) such that an outer portion of the bore (44) is wider than the remainder thereof. A front face (48) of the end member (38) includes a plurality of orifices (50) for accommodating bolts and/or other similar fasteners, usable, for example, to secure a wheel or other object thereto. In use, the bore (44) can accommodate an end portion of a shaft (e.g., shaft (10) or (20) shown in Figures 1A and 2B, respectively), such as through use of a mechanical connection therebetween, enabling force received by the shaft to be transferred, via the end member (38) to an attached wheel or other object. Internal threads (53) similar and/or identical to those shown in Figure 2B, are shown as one example of a mechanical connection usable to secure the end member (38) to adjacent components (e.g., a shaft, such as that shown in Figure 1A or 1B).

    [0031] While end members usable within the scope of the present invention can include any shape, dimensions, and/or materials, and can have any configuration necessary to adapt the axle shaft assembly to serve a desired purpose (e.g., to receive/transfer motive force), the depicted end member (38) is shown as a hub flange formed from steel having an overall width of about 2.191 inches. The intermediate surface (46) is shown recessed approximately 0.433 inches from the front surface (40), while the inner edge of the bore (44) terminates at a 45-degree taper (45). The diameter of the depicted hub flange and the shape and dimensions of the orifices (50) can vary depending on the type of wheel to be engaged therewith.

    [0032] Referring now to Figure 4A, a diagrammatic side view of an embodiment of an axle shaft assembly usable within the scope of the present invention is shown. The shaft (20) is shown having a generally straight body (26) (e.g., a cylindrical body of generally constant diameter throughout its length), having the first end member (28), a splined connector, mechanically and integrally engaged with a first end thereof, and a second end member (38), a hub flange, mechanically and integrally engaged with a second end thereof. As described above, engagement between the end members (28, 38) and respective ends of the shaft (20) can be accomplished by inserting an end of the shaft (e.g., ends (22) and (24), shown in Figure 1B) into corresponding bores of the end members (28, 38) (e.g., bores (34) and (44), shown in Figures 2B and 3B, respectively), where various mechanical means of engagement, as described previously, can be used to secure the shaft (20) within the end members (28, 38). Engagement between the shaft (20) and end members (28, 38) can be reversible, such that end members and shafts can be interchangeably removed as desired in a modular fashion, enabling rapid and efficient reconfiguration of the axle shaft assembly.

    [0033] Figure 4B depicts an alternate embodiment of the axle shaft assembly in which the shaft (20) is shown engaged to substantially identical end members (28, 29), depicted as splined connectors. Such an embodiment is usable with types of axles intended to receive torque/rotational force from a first component engaged to a first splined connector at one end thereof, and to transfer the rotational force, via the second splined connector at the opposing end, to a second component.

    [0034] Embodiments usable within the scope of the present invention thereby provide axle shaft assemblies and methods that combine materials having low and high moduli of elasticity to provide desirable weight, suspension, impact resistance, and durability characteristics to a vehicle, while enabling interchangeability and modular reconfiguration of components, as desired.

    [0035] While various embodiments usable within the scope of the present invention have been described with emphasis, it should be understood that within the scope of the appended claims, the present invention can be practiced other than as specifically described herein.


    Claims

    1. An axle shaft assembly for a vehicle, the assembly comprising:

    a first shaft (10) having a first end (12), a second end (14), and a central portion (16), wherein the first shaft (10) is formed from a first material having a first modulus of elasticity for providing the first shaft (10) with a flexibility adapted to withstand shock loads associated with side impacts and resist deformation, wherein the axle shaft assembly further comprises and is characterized by a first splined end member (28) and a second splined end member (29, 38) formed from a second material having a second modulus of elasticity greater than the first modulus of elasticity;

    the first splined end member (28) engaged with the first end (12) of the first shaft (10), and wherein the first splined end member (28) is adapted to withstand a first rotational force from a drive system and transfer the first rotational force to the first shaft (10); and

    the second splined end member (29, 38) engaged with the second end (14) of the first shaft (10), and wherein the second splined end member (29, 38) is adapted to withstand the first rotational forcetransferred from the first shaft (10).


     
    2. The axle shaft assembly of claim 1, wherein the first material comprises titanium.
     
    3. The axle shaft assembly of claim 2, wherein the second material comprises steel.
     
    4. The axle shaft assembly of claim 1, wherein the first splined end member (28), the second splined end member (29, 38), or combinations thereof, is integrally or mechanically connected to the first shaft (10).
     
    5. The axle shaft assembly of claim 1, wherein the second end member (29, 38) comprises a hub flange (38) adapted for attachment to a wheel, and wherein the first shaft (10) transfers the first rotational force to the hub flange.
     
    6. The axle shaft assembly of claim 1, further comprising:

    a second shaft having a third end, a fourth end, and a central portion (16), wherein the second shaft is formed from the first material;

    a third splined member engaged with the third end of the second shaft, wherein the second splined member is formed from the second material, and wherein the second splined member is adapted to receive the first rotational force from the drive system and transfer the first rotational force to the second shaft; and

    a second hub flange engaged with the fourth end of the second shaft, wherein the second hub flange is formed from the second material, and wherein the second shaft transfers the first rotational force to the second hub flange.


     
    7. The axle shaft assembly of claim 1, wherein the first shaft (10) comprises a generally constant outer diameter between the first end (12) and the second end (14).
     
    8. A method for providing a vehicle with an axle shaft, characterized by and comprising the steps of:

    engaging a first splined end member (28) with a first end (12) of a first shaft (10), wherein the first shaft (10) is formed from a first material having a first modulus of elasticity for providing the first shaft (10) with a flexibility adapted to withstand a side impact and resist deformation, wherein the first splined end member (28) is formed from a second material having a second modulus of elasticity greater than the first modulus of elasticity, and wherein the first splined end member (28) is adapted to withstand a first rotational force;

    engaging a second splined end member (29, 38) with a second end (14) of the first shaft (10), wherein the second splined end member (29, 38) is formed from the second material, a third material having a third modulus of elasticity greater than the first modulus of elasticity, or combinations thereof, and wherein the second splined end member (29, 38) is adapted to withstand the first rotational force, a second rotational force, or combinations thereof; and

    applying a rotational force to the first splined end member (28), thereby rotating the first shaft (10) and the second splined end member (29, 38).


     
    9. The method of claim 8, wherein the first splined end member (28) is engaged with a drive system, and wherein the step of applying the rotational force to the first splined end member (28) comprises applying the rotational force to splines (36) of the first splined end member (28).
     
    10. The method of claim 9, wherein the second splined end member (29, 38) comprises a hub flange (38) adapted for attachment to a wheel, and wherein the step of applying the rotational force to the first splined end member (28) comprises transferring the rotational force from the drive system to the first shaft (10) and from the first shaft (10) to the wheel.
     
    11. The method of claim 8, further comprising the steps of:

    engaging a third splined end member with a third end of a second shaft, wherein the second shaft is formed from the first material and the third end member is formed from the second material; and

    engaging a fourth splined end member with a fourth end of the second shaft, wherein the fourth end member is formed from the second material,

    wherein the step of applying the rotational force to the first splined end member (28) further comprises applying the rotational force to the third splined end member, thereby rotating the second shaft and the fourth splined end member.


     
    12. The method of claim 8, wherein the first material comprises titanium.
     
    13. The method of claim 8, wherein the second material comprises steel.
     


    Ansprüche

    1. Achswellenanordnung für ein Fahrzeug, wobei die Anordnung Folgendes umfasst:

    eine erste Welle (10), die ein erstes Ende (12), ein zweites Ende (14) und einen mittleren Teil (16) aufweist, wobei die erste Welle (10) aus einem ersten Material gebildet ist, das einen ersten Elastizitätsmodul aufweist, um der ersten Welle (10) eine Flexibilität zu verleihen, die dafür geeignet ist, mit Seitenaufprall in Beziehung stehenden Stoßlasten standzuhalten und Verformung zu widerstehen, wobei die Achswellenanordnung außerdem Folgendes umfasst und dadurch gekennzeichnet ist: ein erstes kerbverzahntes Endteil (28) sowie ein zweites kerbverzahntes Endteil (29, 38), gebildet aus einem zweiten Material, welches einen zweiten Elastizitätsmodul aufweist, der größer als der erste Elastizitätsmodul ist;

    das erste kerbverzahnte Endteil (28), das in das erste Ende (12) der ersten Welle (10) eingreift, und wobei das erste kerbverzahnte Endteil (28) dafür geeignet ist, einer ersten Rotationskraft von einem Antriebssystem standzuhalten und die erste Rotationskraft auf die erste Welle (10) zu übertragen; und

    das zweite kerbverzahnte Endteil (29, 38), das in das zweite Ende (14) der ersten Welle (10) eingreift, und wobei das zweite kerbverzahnte Endteil (29, 38) dafür geeignet ist, der von der ersten Welle (10) übertragenen ersten Rotationskraft standzuhalten.


     
    2. Achswellenanordnung nach Anspruch 1, wobei das erste Material Titan umfasst.
     
    3. Achswellenanordnung nach Anspruch 2, wobei das zweite Material Stahl umfasst.
     
    4. Achswellenanordnung nach Anspruch 1, wobei das erste kerbverzahnte Endteil (28), das zweite kerbverzahnte Endteil (29, 38) oder Kombinationen davon an der ersten Welle (10) angeformt oder mit dieser mechanisch verbunden sind.
     
    5. Achswellenanordnung nach Anspruch 1, wobei das zweite Endteil (29, 38) einen Nabenflansch (38) umfasst, der für die Befestigung an einem Rad geeignet ist, und wobei die erste Welle (10) die erste Rotationskraft an den Nabenflansch überträgt.
     
    6. Achswellenanordnung nach Anspruch 1, ferner umfassend:

    eine zweite Welle, die ein drittes Ende, ein viertes Ende und einen mittleren Teil (16) aufweist, wobei die zweite Welle aus dem ersten Material gebildet ist;

    ein drittes kerbverzahntes Teil, das in das dritte Ende der zweiten Welle eingreift, wobei das zweite kerbverzahnte Teil aus dem zweiten Material gebildet ist, und wobei das zweite kerbverzahnte Teil dafür geeignet ist, die erste Rotationskraft vom Antriebssystem aufzunehmen und die erste Rotationskraft auf die zweite Welle zu übertragen; und

    einen zweiten Nabenflansch, der in das vierte Ende der zweiten Welle eingreift, wobei der zweite Nabenflansch aus dem zweiten Material gebildet ist, und wobei die zweite Welle die erste Rotationskraft auf den zweiten Nabenflansch überträgt.


     
    7. Achswellenanordnung nach Anspruch 1, wobei die erste Welle (10) einen generell konstanten Außendurchmesser zwischen dem ersten Ende (12) und dem zweiten Ende (14) umfasst.
     
    8. Verfahren, um ein Fahrzeug mit einer Achswelle auszustatten, gekennzeichnet durch und folgende Schritte umfassend:

    Ineinandergreifen eines ersten kerbverzahnten Endteils (28) mit einem ersten Ende (12) einer ersten Welle (10), wobei die erste Welle (10) aus einem ersten Material gebildet ist, das einen ersten Elastizitätsmodul aufweist, um der ersten Welle (10) eine Flexibilität zu verleihen, die dafür geeignet ist, mit Seitenaufprall in Beziehung stehenden Stoßlasten standzuhalten und Verformung zu widerstehen, wobei das erste kerbverzahnte Endteil (28) aus einem zweiten Material gebildet ist, welches einen zweiten Elastizitätsmodul aufweist, der größer als der erste Elastizitätsmodul ist, und wobei das erste kerbverzahnte Endteil (28) dafür geeignet ist, einer ersten Rotationskraft standzuhalten;

    Ineinandergreifen eines zweiten kerbverzahnten Endteils (29, 38) mit einem zweiten Ende (14) der ersten Welle (10), wobei das zweite kerbverzahnte Endteil (29, 38) aus dem zweiten Material, einem dritten Material, welches einen dritten Elastizitätsmodul aufweist, der größer ist als der erste Elastizitätsmodul, oder Kombinationen davon, gebildet ist, und wobei das zweite kerbverzahnte Endteil (29, 38) dafür geeignet ist, einer ersten Rotationskraft, einer zweiten Rotationskraft, oder Kombinationen davon, standzuhalten; und

    Anwenden einer Rotationskraft auf das erste kerbverzahnte Endteil (28), wobei dadurch die erste Welle (10) und das zweite kerbverzahnte Endteil (29, 38) in Drehung versetzt werden.


     
    9. Verfahren nach Anspruch 8, wobei das erste kerbverzahnte Endteil (28) mit einem Antriebssystem ineinandergreift, und wobei der Schritt der Anwendung der Rotationskraft auf das erste kerbverzahnte Endteil (28) das Anwenden der Rotationskraft auf Kerbverzahnungen (36) des ersten kerbverzahnten Endteils (28) umfasst.
     
    10. Verfahren nach Anspruch 9, wobei das zweite kerbverzahnte Endteil (29, 38) einen Nabenflansch (38) umfasst, der für die Befestigung an einem Rad geeignet ist, und wobei der Schritt der Anwendung der Rotationskraft auf das erste kerbverzahnte Endteil (28) das Übertragen der Rotationskraft vom Antriebssystem auf die erste Welle (10) und von der ersten Welle (10) auf das Rad umfasst.
     
    11. Verfahren nach Anspruch 8, außerdem die folgenden Schritte umfassend:

    Ineinandergreifen eines dritten kerbverzahnten Endteils mit einem dritten Ende einer zweiten Welle, wobei die zweite Welle aus dem ersten Material und das dritte Endteil aus dem zweiten Material gebildet ist; und

    Ineinandergreifen eines vierten kerbverzahnten Endteils mit einem vierten Ende der zweiten Welle, wobei das vierte Endteil aus dem zweiten Material gebildet ist,

    wobei der Schritt der Anwendung der Rotationskraft auf das erste kerbverzahnte Endteil (28) außerdem das Anwenden der Rotationskraft auf das dritte kerbverzahnte Endteil umfasst, wobei dabei die zweite Welle und das vierte kerbverzahnte Endteil in Drehung versetzt werden.


     
    12. Verfahren nach Anspruch 8, wobei das erste Material Titan umfasst.
     
    13. Verfahren nach Anspruch 8, wobei das zweite Material Stahl umfasst.
     


    Revendications

    1. Ensemble demi-arbre pour un véhicule, l'ensemble comprenant:

    un premier arbre (10) ayant une première extrémité (12), une deuxième extrémité (14) et une partie centrale (16), le premier arbre (10) étant formé d'un premier matériau ayant un premier module d'élasticité pour fournir au premier arbre (10) une flexibilité adaptée pour résister aux charges de choc associées aux chocs latéraux et résister à la déformation, l'ensemble demi-arbre comprenant et étant caractérisé par un premier organe d'extrémité à cannelures (28) et un deuxième organe d'extrémité à cannelures (29, 38) formés en un deuxième matériau ayant un deuxième module d'élasticité supérieur au premier module d'élasticité;

    le premier organe d'extrémité à cannelures (28) en prise avec la première extrémité (12) du premier arbre (10), et le premier organe d'extrémité à cannelures (28) étant adapté pour résister à une première force de rotation d'un système d'entraînement et transmettre la première force de rotation vers le premier arbre (10); et

    le deuxième organe d'extrémité à cannelures (29, 38) en prise avec la deuxième extrémité (14) du premier arbre (10), et le deuxième organe d'extrémité à cannelures (29, 38) étant adapté pour résister à la première force de rotation transmise par le premier arbre (10).


     
    2. Ensemble demi-arbre selon la revendication 1, dans lequel le premier matériau comprend du titane.
     
    3. Ensemble demi-arbre selon la revendication 2, dans lequel le deuxième matériau comprend de l'acier.
     
    4. Ensemble demi-arbre selon la revendication 1, dans lequel le premier organe d'extrémité à cannelures (28), le deuxième organe d'extrémité à cannelures (29, 38), ou des combinaisons de ceux-ci, sont reliés intégralement ou mécaniquement au premier arbre (10).
     
    5. Ensemble demi-arbre selon la revendication 1, dans lequel le deuxième élément d'extrémité (29, 38) comprend un flasque de moyeu (38) adapté pour être fixé à une roue, et dans lequel le premier arbre (10) transmet la première force de rotation au flasque de moyeu.
     
    6. Ensemble demi-arbre selon la revendication 1, comprenant en outre:

    un deuxième arbre ayant une troisième extrémité, une quatrième extrémité et une partie centrale (16), dans lequel le deuxième arbre est formé du premier matériau;

    un troisième élément à cannelures en prise avec la troisième extrémité du deuxième arbre, dans lequel le deuxième élément à cannelures est formé à partir du deuxième matériau, et dans lequel le deuxième élément à cannelures est adapté pour recevoir la première force de rotation du système d'entraînement et transmettre la première force de rotation vers le deuxième arbre; et

    un deuxième flasque de moyeu en prise avec la quatrième extrémité du deuxième arbre, le deuxième flasque de moyeu étant formé à partir du deuxième matériau, et le deuxième arbre transmettant la première force de rotation au deuxième flasque de moyeu.


     
    7. Ensemble demi-arbre selon la revendication 1, dans lequel le premier arbre (10) présente un diamètre extérieur généralement constant entre la première extrémité (12) et la deuxième extrémité (14).
     
    8. Procédé pour équiper un véhicule d'un demi-arbre, caractérisé par et comprenant les étapes consistant à:

    engager un premier organe d'extrémité à cannelures (28) avec une première extrémité (12) d'un premier arbre (10), le premier arbre (10) étant formé d'un premier matériau ayant un premier module d'élasticité pour fournir au premier arbre (10) une flexibilité adaptée pour résister à un choc latéral et résister à la déformation, le premier organe d'extrémité à cannelures (28) étant formé d'un deuxième matériau ayant un deuxième module d'élasticité supérieur au premier module d'élasticité, et le premier organe d'extrémité à cannelures (28) étant adapté pour supporter une première force de rotation;

    engager un deuxième organe d'extrémité à cannelures (29, 38) avec une deuxième extrémité (14) du premier arbre (10), le deuxième organe d'extrémité à cannelures (29, 38) étant formé du deuxième matériau, un troisième matériau ayant un troisième module d'élasticité supérieur au premier module d'élasticité, ou des combinaisons de ceux-ci, et le deuxième organe d'extrémité à cannelures (29, 38) étant adapté pour supporter la première force de rotation, une deuxième force de rotation ou des combinaisons de celles-ci; et

    appliquer une force de rotation au premier organe d'extrémité à cannelures (28), faisant ainsi tourner le premier arbre (10) et le deuxième organe d'extrémité à cannelures (29, 38).


     
    9. Procédé selon la revendication 8, dans lequel le premier organe d'extrémité à cannelures (28) est en prise avec un système d'entraînement, et dans lequel l'étape consistant à appliquer la force de rotation au premier organe d'extrémité à cannelures (28) consiste à appliquer la force de rotation aux cannelures (36) du premier organe d'extrémité à cannelures (28).
     
    10. Procédé selon la revendication 9, dans lequel le deuxième organe d'extrémité à cannelures (29, 38) comprend un flasque de moyeu (38) adapté pour être fixé à une roue, et dans lequel l'étape consistant à appliquer la force de rotation au premier organe d'extrémité à cannelures (28) comprend la transmission de la force de rotation du système de transmission au premier arbre (10) et du premier arbre (10) à la roue.
     
    11. Procédé selon la revendication 8, comprenant en outre les étapes consistant à:

    engager un troisième organe d'extrémité à cannelures avec une troisième extrémité d'un deuxième arbre, le deuxième arbre étant formé du premier matériau et le troisième élément d'extrémité étant formé du deuxième matériau; et

    engager un quatrième organe d'extrémité à cannelures avec une quatrième extrémité du deuxième arbre, le quatrième élément d'extrémité étant formé du deuxième matériau,

    l'étape consistant à appliquer la force de rotation au premier organe d'extrémité à cannelures (28) comprenant en outre l'application de la force de rotation au troisième organe d'extrémité à cannelures, faisant ainsi tourner le deuxième arbre et le quatrième organe d'extrémité à cannelures.


     
    12. Procédé selon la revendication 8, dans lequel le premier matériau comprend du titane.
     
    13. Procédé selon la revendication 8, dans lequel le deuxième matériau comprend de l'acier.
     




    Drawing















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description