(19)
(11)EP 2 932 034 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.06.2020 Bulletin 2020/25

(21)Application number: 12821090.3

(22)Date of filing:  27.12.2012
(51)International Patent Classification (IPC): 
E21B 47/024(2006.01)
(86)International application number:
PCT/US2012/071851
(87)International publication number:
WO 2014/105025 (03.07.2014 Gazette  2014/27)

(54)

DETERMINING GRAVITY TOOLFACE AND INCLINATION IN A ROTATING DOWNHOLE TOOL

BESTIMMUNG DER WERKZEUGSTIRNFLÄCHE GEGENÜBER DER SCHWERKRAFT UND WERKZEUGNEIGUNG BEI EINEM DREHENDEN BOHRLOCHWERKZEUG

DETERMINATION DE L'ORIENTATION DE LA FACE D'OUTIL PAR RAPPORT À LA GRAVITÉ ET DE L'INCLINAISON POUR UN OUTIL ROTATIF DE FONDS DE PUITS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
21.10.2015 Bulletin 2015/43

(73)Proprietor: Halliburton Energy Services Inc.
Houston, Texas 77032 (US)

(72)Inventor:
  • LOZINSKY, Clint, P.
    Houston, Texas 77031 (US)

(74)Representative: Jennings, Michael John et al
A.A. Thornton & Co. 10 Old Bailey
London EC4M 7NG
London EC4M 7NG (GB)


(56)References cited: : 
WO-A1-2007/014446
GB-A- 2 432 176
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The present disclosure relates generally to well drilling operations and, more particularly, to systems and methods for determining gravity toolface and inclination in a rotating downhole tool.

    [0002] In certain subterranean operations it may be beneficial to determine the rotational orientation and inclination of a downhole tool position in a borehole. In drilling operations that require steering the drill bit to a particular target, knowing the inclination and orientation of the drill bit may be essential. A gravity toolface measurement may be used to determine the rotational orientation of a downhole tool relative to the high side of a borehole. Accelerometers may be used for gravity toolface and inclination measurements, but any rotation of the tool during the measurement process may skew the measurements. This is particularly problematic in rotary steerable drilling systems, where electronics are located in a rotating portion of the drilling assembly. Current methods for correcting the rotational skew in the measurements typically require up to six accelerometers disposed in multiple radial and or axial locations along a tool.

    [0003] WO2007/014446 A1 discloses an orientation sensing apparatus and a method for determining an orientation. The apparatus includes an orientation sensor device and a rotation sensor device and generates a set of corrected orientation data using rotation data from the rotation sensor device.

    [0004] GB 2432176 A discloses a steering tool comprising a shaft and a housing, with sensor sets that each include at least one accelerometer and a shaft rotation rate sensor to derive an aggregate rotation rate.

    SUMMARY



    [0005] Aspects of the present invention provide systems and a method as set out in the claims of this patent specification.

    FIGURES



    [0006] Some specific exemplary embodiments of the disclosure may be understood by referring, in part, to the following description and the accompanying drawings.

    Figure 1 is a diagram illustrating a drilling system, according to aspects of the present disclosure.

    Figure 2 is a diagram illustrating an example downhole tool, which is not claimed.

    Figure 3 is a diagram illustrating a downhole tool, according to aspects of the present disclosure.

    Figure 4 is a diagram illustrating a system, according to aspects of the present disclosure.


    DETAILED DESCRIPTION



    [0007] The present disclosure relates generally to well drilling operations and, more particularly, to systems and methods for determining gravity toolface and inclination in a rotating downhole tool. In one aspect, the systems and methods have more favorable geometric feasibility than a conventional solution requiring six accelerometers.

    [0008] Illustrative embodiments of the present disclosure are described in detail herein. In the interest of clarity, not all features of an actual implementation may be described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the specific implementation goals, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of the present disclosure.

    [0009] Embodiments of the present disclosure may be applicable to drilling operations that include horizontal, vertical, deviated, multilateral, u-tube connection, intersection, bypass (drill around a mid-depth stuck fish and back into the well below), or otherwise nonlinear wellbores in any type of subterranean formation. Embodiments may be applicable to injection wells, and production wells, including natural resource production wells such as hydrogen sulfide, hydrocarbons or geothermal wells; as well as borehole construction for river crossing tunneling and other such tunneling boreholes for near surface construction purposes or borehole u-tube pipelines used for the transportation of fluids such as hydrocarbons. Embodiments described below with respect to one implementation are not intended to be limiting.

    [0010] Embodiments of various systems and methods for determining gravity toolface and inclination are described herein. An embodiment may comprise a downhole tool and a sensor assembly disposed in a radially offset location within the downhole tool. The sensor assembly comprises three accelerometers and an angular rate sensing device. A processor is in communication with the sensor assembly and is coupled to at least one memory device.

    [0011] The memory device contains a set of instruction that, when executed by the processor, cause the processor to receive an output from the sensor assembly, to determine at least one of a centripetal acceleration and a tangential acceleration of the downhole tool based, at least in part, on the output, and to determine at least one of a gravity toolface and inclination of the downhole tool using at least one of the centripetal acceleration and the tangential acceleration.

    [0012] Another system which is not claimed for determining gravity toolface and inclination may also comprise a downhole tool. A first sensor assembly may be disposed in a first radially offset location within the downhole tool. The first sensor assembly may comprise a first accelerometer and a second accelerometer. A second sensor assembly may be disposed in a second radially offset location within the downhole tool. The second sensor assembly may comprise a third accelerometer and a fourth accelerometer. A processor may be in communication with the first sensor assembly and the second sensor assembly, and coupled to at least one memory device. The memory device may contain a set of instruction that, when executed by the processor, cause the processor to receive a first output from the first sensor assembly and a second output from the second sensor assembly, determine at least one of a centripetal acceleration and a tangential acceleration of the downhole tool based, at least in part, on the first output and the second output, and determine at least one of a gravity toolface and inclination of the downhole tool using at least one of the centripetal acceleration and the tangential acceleration.

    [0013] Fig. 1 is a diagram illustrating a drilling system 100, according to aspects of the present disclosure. The drilling system 100 includes rig 101 at the surface 111 and positioned above borehole 103 within a subterranean formation 102. Rig 101 may be coupled to a drilling assembly 104, comprising drill string 105 and bottom hole assembly (BHA) 106. The BHA 106 may comprise a drill bit 109, steering assembly 108, and an MWD apparatus 107. A control unit 114 at the surface may comprise a processor and memory device, and may communicate with elements of the BHA 106, in MWD apparatus 107 and steering assembly 108. The control unit 114 may receive data from and send control signals to the BHA 106. Additionally, at least one processor and memory device may be located downhole within the BHA 106 for the same purposes. The steering assembly 108 may comprise a rotary steerable drilling system that controls the direction in which the borehole 103 is being drilled, and that is rotated along with the drill string 105 during drilling operations. In certain embodiments, the steering assembly 108 may angle the drill bit 109 to drill at an angle from the borehole 104. Maintaining the axial position of the drill bit 109 relative to the borehole 104 may require knowledge of the rotational position of the drill bit 109 relative to the borehole. A gravity toolface measurement may be used to determine the rotational orientation of the drill bit 113/steering assembly 108.

    [0014] According to aspects of the present disclosure, a sensor assembly may be incorporated into the drilling assembly 109 to determine both the gravity tool face and inclination of the drilling assembly during drilling operations, while the drilling assembly is rotating. The sensor assembly described herein is not limited to determining the gravity toolface and inclination of a steering assembly, and may be used in a variety of downhole operations. In certain embodiments, the sensor assembly may be disposed within a downhole tool, such as the MWD assembly 107 or the steering assembly 108. Fig. 2 is a diagram illustrating a cross-section of an example downhole tool 200 which is not claimed comprising two sensor assemblies. In the example shown, downhole tool 200 may include two sensor assemblies 205 and 206 positioned at diametrically opposite, radially offset locations 201 and 202, respectively, from the longitudinal axis 204 of the downhole tool 200. The downhole tool 200 may include an internal bore 203 through which drilling fluid may pass during drilling operations. The sensor assemblies 205 and 206 may be located at radially offset locations 201 and 202, respectively, within the outer tubular structure of downhole tool 200.

    [0015] In the example shown, each of the sensor assemblies 205 and 206 may incorporate two accelerometers. Sensor assembly 205 may comprise a first accelerometer 220 oriented to sense components in a first direction 222, which may be aligned with an x-axis in an x-y plane. Sensor assembly 205 may comprise a second accelerometer 225 oriented to sense components in a second direction 227, which may be aligned with an y-axis in an x-y plane, perpendicular to the first direction 222. Sensor assembly 206 may comprise a third accelerometer 230 oriented to sense components in a third direction 232, which may be aligned with an x-axis in an x-y plane, opposite the first direction 222. Sensor assembly 206 may also comprise a fourth accelerometer 235 oriented to sense components in a fourth direction 237, which may be aligned with an y-axis in an x-y plane, perpendicular to the third direction 232 and opposite the second direction 227.

    [0016] Each of the accelerometers 220, 225, 230 and 235 may sense components in the corresponding directions. When the downhole tool is not rotating, these sensed components may be used directly to determine the gravity tool face and inclination of the downhole tool 200, relative to the direction of gravity g. When the downhole tool is rotating, however, the rotational forces acting on the downhole tool 200 may skew the sensed components. These forces may include centripetal acceleration r and tangential acceleration a. Accordingly, the sensed components may need to be adjusted to eliminate the effects of the centripetal acceleration r and tangential acceleration a.

    [0017] The sensed components from the accelerometer configuration shown in Fig. 2 may be used to determine the centripetal acceleration r and tangential acceleration a of the downhole tool 200 and to determine the gravity toolface and inclination of the downhole tool 200. As will be appreciated by one of ordinary skill in the art in view of this disclosure, existing techniques may utilize as many as six accelerometers disposed in as many as three separate locations within a downhole tool. The configuration shown in Fig. 2 may be advantageous both due to the reduced number of accelerometers and to the limited number of locations in which the accelerometers must be placed. This may reduce the cost and complexity of the downhole tool 200.

    [0018] As described above, the sensed components may be used to determine centripetal acceleration r and tangential acceleration a, as well as the gravity toolface and inclination of the downhole tool. In certain embodiments, the values may be determined using equations (1)-(6) below. For the purposes of equations (1)-(6), the sensed component of accelerometer 220 may be referred to as x, the sensed component of accelerometer 225 may be referred to as y, the sensed component of accelerometer 230 may be referred to as x2, and the sensed component of accelerometer 235 may be referred to as y2. The angle Θ may correspond to the gravity toolface of the downhole tool.









    [0019] Each of the sensed components may be a function of gravity g, the gravity toolface Θ, as well as one of the centripetal acceleration r and tangential acceleration a. Because the sensed components are known, they may be used to determine the centripetal acceleration r and tangential acceleration a using equations (5) and (6), which may be derived from equations (1)-(4).





    [0020] As will be appreciated by one of ordinary skill in the art in view of this disclosure, once the values for centripetal acceleration r and tangential acceleration a are calculated, the gravity toolface Θ may be determined using any of equations (1)-(4).

    [0021] Figure 3 is a diagram illustrating downhole tool 300, according to aspects of the present disclosure. In contrast to the downhole tool 200, the downhole tool 300 comprises a single sensor assembly 302 at a single radially offset location 301 relative to the longitudinal axis 304 of the downhole tool 300. Like downhole tool 200, downhole tool 300 may include an internal bore 303 through which drilling fluid may be pumped, and the sensor assembly 302 may be positioned in an outer tubular structure of downhole tool 300. As will be appreciated by one of ordinary skill in the art in view of this disclosure, the downhole tool 300 may be advantageous by reducing the number of sensor assemblies to one, requiring only a single radially offset location 301, which may further reduce the cost and complexity of the downhole tool 300.

    [0022] The sensor assembly 302 may comprise three accelerometers 330, 340, and 350, as well as an angular rate sensing device, such as gyroscope 360. The first accelerometer 330 may be oriented to sense components in a first direction 332, which may be aligned with an x-axis in an x-y plane. The second accelerometer 340 may be oriented to sense components in a second direction 342, which may be aligned with a y-axis in an x-y plane, perpendicular to the first direction 332. The third accelerometer 350 may be oriented to sense components in a third direction 352, which may be aligned with a z-axis perpendicular to the x-y plane. The gyroscope 360 may sense angular velocity 362, which corresponds to the angular velocity ω of the downhole tool 300. In certain embodiments, only two accelerometers may be used, with the two accelerometers being aligned in a plane. The sensed component in a third direction, perpendicular to the plane may be derived using geometric equations.

    [0023] The accelerometers may be intended to be aligned within the directions and planes described above, but practically, they may be slightly misaligned. In certain embodiments, the accelerometers may be computationally corrected for misalignment to increase the accuracy of the resulting measurements. Each of the accelerometers 330, 340, and 350 may be corrected for misalignment in the other two orthogonal axis, as well as for tangential and centripetal acceleration. For example, accelerometer 330 may be corrected for misalignment relative to the y-axis and the z-axis, and with respect to the tangential acceleration a and the centripetal acceleration r.

    [0024] As described above, each of the accelerometers 330, 340, and 350 may sense components in the corresponding directions. Like in downhole tool 200, the sensed components may be used to determine the gravity toolface Θ and inclination of the downhole tool, using equations (9) and (10) below. Unlike downhole tool 200, the centripetal acceleration r and tangential acceleration a may be determined using an angular velocity measured by the gyroscope 360, using equations (7) and (8), instead of sensed components from accelerometers. For the purposes of equations (7)-(10), the sensed component of accelerometer 330 may be referred to as x, the sensed component of accelerometer 340 may be referred to as y, the angular speed measured by gyroscope 360 may be referred to as ω, the angle Θ may correspond to the gravity toolface of the downhole tool 300, and radius may be the radial distance of the angular rate sensing device 360 from a longitudinal axis 304 of the downhole tool300.





    [0025] As will be appreciated by one of ordinary skill in the art in view of this disclosure, the centripetal acceleration r in equation (7) may be a function of the angular speed co and the radius of the downhole tool 300, and may be calculated directly from the output of the gyroscope 360. Likewise, the tangential acceleration a may be a function of the difference in angular speed of the downhole tool at two different times. Accordingly, the tangential acceleration a may also be calculated directly from the gyroscope 360, provided two angular speed measurements are taken at a known time interval. Once the centripetal acceleration r and tangential acceleration a are determined, the gravity tool face may be determined using equations (9) and (10).





    [0026] In certain embodiments, each of the sensor assemblies described herein may be implemented on a single printed circuit board (PCB), to reduce the wiring/connections necessary. For example, sensor assemblies 205 and 206 from Fig. 2 may be implemented on two separate circuit boards that communication with a single common computing device that will be described below. Likewise, sensor assembly 302 may be implemented on a single PCB that incorporates a three-axis accelerometer package as well as an angular rate sensing device, such as a gyroscope. In certain embodiments, the angular rate sensing device may comprise a gyroscope implanted in a single integrated circuit (IC) chip that can be incorporated into a PCB. This may reduce the overall design complexity and sensor assembly size within the downhole tools.

    [0027] In certain embodiments, as can be seen in Fig. 4, determining the centripetal acceleration r, tangential acceleration a, gravity toolface, and inclination may be performed at a computing device 402 coupled to the sensor assemblies 401. The computing device may comprise at least one processor 402a and at least one memory device 402b coupled to the processor 402a. The computing device 402 may be in communication with each sensor assembly 401 within a downhole tool. In certain embodiments, the computing device 402 may be implemented within the downhole tool, or at some other location downhole. In certain other embodiments, the computing device 402 may be located at the surface and communicate with the sensor assemblies 401 via a telemetry system. The computing device 402 may receive power from a power source 403, which may be separate from or integrated within the computing device. In certain embodiments, the power source 403 may comprise a battery pack or generator disposed downhole that provides power to electronic equipment located within the drilling assembly.

    [0028] The memory device 402b may contain a set of instruction that, when executed by the processor, cause the processor to receive an output from the sensor assembly 401. The output may comprise sensed components and measurements from the sensor assembly 401. In certain embodiments, the processor may also signal the sensor assembly to generate the output. Once received at the processor 402a, the processor may determine the centripetal acceleration r and tangential acceleration a. The processor 402a may then determine the gravity toolface and inclination using the determined centripetal acceleration r and tangential acceleration a. As will be appreciated by one of ordinary skill in the art in view of this disclosure, the specific equations used, and the instructions included within the memory device, to determine the centripetal acceleration r, tangential acceleration a, gravity toolface and inclination may depend on the sensor assembly configuration within the downhole tool.

    [0029] In certain embodiments, at least one digital filter may be implemented within the computing device 402 to account for vibration at a drilling assembly while measurements are being taken. For example, the computing device 402 and processor 402a may digitally filter the sensed components received from sensor assembly. These filtered sensed components may then be used to calculate tangential acceleration a and the centripetal acceleration r. In certain other embodiments, the digital filtering may be performed on the calculated tangential acceleration a and the centripetal acceleration r rather than on the sensed components before the calculation is performed.

    [0030] In certain embodiments, the computing device 402 may transmit the gravity toolface and inclination to a steering control 404. The steering control 404 may then alter the steering assembly, including altering the direction or rotation of the steering assembly based on the gravity toolface and inclination. In certain embodiments, the steering control 404 may be implemented within the computing device 402, with the memory 402b containing a set of instructions that controls the steering of a drilling assembly. In other embodiments, the steering control 404 may be located at the surface or at a separate location downhole, and the computing device 402 may communicate with the steering control via a wire or a telemetry system.

    [0031] Therefore, the present disclosure is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee. The indefinite articles "a" or "an," as used in the claims, are defined herein to mean one or more than one of the element that it introduces.


    Claims

    1. A system for determining gravity toolface and inclination, comprising:
    a downhole tool (200) comprising an internal bore through which a drilling fluid passes during a drilling operation in a bore hole, the downhole tool further comprising:

    a sensor assembly (302) disposed at a single radially offset location (301) within the downhole tool relative to a longitudinal axis (304) of the downhole tool,

    wherein the sensor assembly comprises a three-axis accelerometer package and an angular rate sensing device, wherein the three-axis accelerometer package comprises three accelerometers, and wherein the angular rate sensing device is configured to sense an angular velocity of the downhole tool;

    a processor in communication with the sensor assembly, wherein the processor is coupled to at least one memory device containing a set of instructions that, when executed by the processor, cause the processor to

    receive an output from the sensor assembly;

    determine at least one of a centripetal acceleration and a tangential acceleration of the downhole tool based, at least in part, on the output; and

    determine at least one of a gravity toolface and inclination of the downhole tool using at least one of the centripetal acceleration and the tangential acceleration.


     
    2. The system of claim 1, wherein the three accelerometers comprise:

    a first accelerometer oriented to sense a first component in a first direction within a plane;

    a second accelerometer oriented to sense a second component in a second direction within the plane, wherein the second direction is perpendicular to the first direction; and

    a third accelerometer oriented to sense a third component in a third direction perpendicular to the plane.


     
    3. The system of claim 1, wherein:

    the centripetal acceleration is determined using the following equation:

    where r corresponds to the centripetal acceleration, w corresponds to an angular speed output of the angular rate sensing device, and radius corresponds to a radial distance of the angular rate sensing device from a longitudinal axis of the downhole tool; and

    the tangential acceleration is determined using the following equation:

    where a corresponds to the tangential acceleration, ω2 corresponds to an angular speed output of the angular rate sensing device at time t2, ω1 corresponds to an angular speed output of the angular rate sensing device at time t1, and radius corresponds to a radius of the downhole tool; and preferably

    wherein the gravity toolface Θ is determined using at least one of the following equations:



    with x corresponding to the sensed first component from the first accelerometer, y corresponding to the sensed second component from the second accelerometer; g corresponding to the force of gravity, a corresponding to the tangential acceleration, and r corresponding to the centripetal acceleration.


     
    4. The system of any one of claims 2 - 3, wherein the output comprises:

    the sensed first component from the first accelerometer;

    the sensed second component from the second accelerometer;

    the sensed third component from the third accelerometer; and

    an angular speed from the angular rate sensing device.


     
    5. The system of any of the preceding claims, wherein the sensor assembly is implemented on a single printed circuit board (PCB), the angular rate sensing device comprises a gyroscope, and preferably wherein the gyroscope is implemented in a single integrated circuit chip coupled to the PCB.
     
    6. A method for determining gravity toolface and inclination of a downhole tool, the downhole tool comprising:

    an internal bore through which a drilling fluid passes during a drilling operation in a bore hole, the downhole tool, and

    a sensor assembly disposed at a single radially offset location (301) within the downhole tool and relative to a longitudinal axis of the downhole tool, wherein the sensor assembly comprises a three-axis accelerometer package and an angular rate sensing device, wherein the three-axis accelerometer package comprises three accelerometers, and wherein the angular rate sensing device is configured to sense an angular velocity of the downhole tool; and

    the method comprising:

    positioning the downhole tool within the borehole;

    receiving an output from the sensor assembly;

    determining at least one of a centripetal acceleration and a tangential acceleration of the downhole tool based, at least in part, on an output of the sensor assembly; and

    determining at least one of a gravity toolface and an inclination of the downhole tool using at least one of the centripetal acceleration and the tangential acceleration.


     
    7. The method of claim 6, further comprising altering a steering assembly based, at least in part, on at least one of the gravity toolface and the inclination of the downhole tool.
     
    8. The method of claim 6, wherein the at least three accelerometers comprise:

    a first accelerometer oriented to sense a first component in a first direction within a plane;

    a second accelerometer oriented to sense a second component in a second direction within the plane, wherein the second direction is perpendicular to the first direction; and

    a third accelerometer oriented to sense a third component in a third direction perpendicular to the plane.


     
    9. The method of claim 8, wherein:

    the centripetal acceleration is determined using the following equation:

    where r corresponds to the centripetal acceleration, w corresponds to an angular speed output of the angular rate sensing device, and radius corresponds to a radial distance of the angular rate sensing device from a longitudinal axis of the downhole tool;

    the tangential acceleration is determined using the following equation:

    where a corresponds to the tangential acceleration, ω2 corresponds to an angular speed output of the angular rate sensing device at time t2, ω1 corresponds to an angular speed output of the angular rate sensing device at time t1, and radius corresponds to a radius of the downhole tool; and

    the gravity toolface Θ is determined using at least one of the following equations:



    with x corresponding to the sensed first component from the first accelerometer, y corresponding to the sensed second component from the second accelerometer; g corresponding to the force of gravity, a corresponding to the tangential acceleration, and r corresponding to the centripetal acceleration.


     
    10. The method of any one of claims 8 - 9, wherein the output received from the sensor assembly comprises:

    the sensed first component from the first accelerometer;

    the sensed second component from the second accelerometer;

    the sensed third component from the third accelerometer; and

    an angular speed from the angular rate sensing device.


     
    11. The method of any one of claims 6 - 10, wherein the sensor assembly is implemented on a single printed circuit board (PCB), the angular rate sensing device comprises a gyroscope, and preferably wherein the gyroscope is implemented in a single integrated circuit chip coupled to the PCB.
     


    Ansprüche

    1. System zur Bestimmung einer Werkzeugstirnfläche gegenüber der Schwerkraft und Werkzeugneigung, das Folgendes umfasst:
    ein Bohrlochschneidwerkzeug (200), das eine innere Bohrung umfasst, durch die ein Bohrfluid während eines Bohrvorgangs in einem Bohrloch läuft, wobei das Bohrlochschneidwerkzeug ferner Folgendes umfasst:

    eine Sensoranordnung (302), die an einer einzelnen radial versetzten Stelle (301) innerhalb des Bohrlochschneidwerkzeugs relativ zu einer Längsachse (304) des Bohrlochschneidwerkzeugs angeordnet ist, wobei die Sensoranordnung ein Dreiachsen-Beschleunigungsmesserpaket und eine Winkelratenerfassungsvorrichtung umfasst, wobei das Dreiachsen-Beschleunigungsmesserpaket drei Beschleunigungsmesser umfasst und wobei die Winkelratenerfassungsvorrichtung dazu konfiguriert ist, eine Winkelgeschwindigkeit des Bohrlochschneidwerkzeugs zu erfassen;

    einen Prozessor in Kommunikation mit der Sensoranordnung, wobei der Prozessor an mindestens eine Speichervorrichtung gekoppelt ist, die einen Satz von Anweisungen enthält, die, wenn sie durch den Prozessor ausgeführt werden, den Prozessor zu Folgendem veranlassen:
    Empfangen einer Ausgabe von der Sensoranordnung;

    Bestimmen von mindestens einer zentripetalen Beschleunigung und einer tangentialen Beschleunigung des Bohrlochschneidwerkzeugs mindestens teilweise auf Grundlage von der Ausgabe; und

    Bestimmen von mindestens einer Werkzeugstirnfläche gegenüber der Schwerkraft und Werkzeugneigung des Bohrlochschneidwerkzeugs unter Verwendung von mindestens einer der zentripetalen Beschleunigung und der tangentialen Beschleunigung.


     
    2. System nach Anspruch 1, wobei die drei Beschleunigungsmesser Folgendes umfassen:

    einen ersten Beschleunigungsmesser, der dazu ausgerichtet ist, eine erste Komponente in einer ersten Richtung innerhalb einer Ebene zu erfassen;

    einen zweiten Beschleunigungsmesser, der dazu ausgerichtet ist, eine zweite Komponente in einer zweiten Richtung innerhalb der Ebene zu erfassen, wobei die zweite Richtung senkrecht zu der ersten Richtung ist; und

    einen dritten Beschleunigungsmesser, der dazu ausgerichtet ist, eine dritte Komponente in einer dritten Richtung senkrecht zu der Ebene zu erfassen.


     
    3. System nach Anspruch 1, wobei:

    die zentripetale Beschleunigung unter Verwendung der folgenden Gleichung bestimmt ist:

    wobei r der zentripetalen Beschleunigung entspricht, ω einer Winkelgeschwindigkeitsausgabe der Winkelratenerfassungsvorrichtung entspricht und Radius einer radialen Entfernung der Winkelratenerfassungsvorrichtung von einer Längsachse des Bohrlochschneidwerkzeugs entspricht; und

    die tangentiale Beschleunigung unter Verwendung der folgenden Gleichung bestimmt ist:

    wobei a der tangentialen Beschleunigung entspricht, ω2 einer Winkelgeschwindigkeitsausgabe der Winkelratenerfassungsvorrichtung bei Zeitpunkt t2 entspricht, ω1 einer Winkelgeschwindigkeitsausgabe der Winkelratenerfassungsvorrichtung bei Zeitpunkt t1 entspricht und Radius einem Radius des Bohrlochschneidwerkzeugs entspricht; und vorzugsweise

    wobei die Werkzeugstirnfläche gegenüber der Schwerkraft θ unter Verwendung von mindestens einer der folgenden Gleichungen bestimmt ist:



    wobei x der erfassten ersten Komponente von dem ersten Beschleunigungsmesser entspricht, y der erfassten zweiten Komponente von dem zweiten Beschleunigungsmesser entspricht; g der Schwerkraft entspricht, a der tangentialen Beschleunigung entspricht und r der zentripetalen Beschleunigung entspricht.


     
    4. System nach einem der Ansprüche 2-3, wobei die Ausgabe Folgendes umfasst:

    die erfasste erste Komponente von dem ersten Beschleunigungsmesser;

    die erfasste zweite Komponente von dem zweiten Beschleunigungsmesser;

    die erfasste dritte Komponente von dem dritten Beschleunigungsmesser; und

    eine Winkelgeschwindigkeit von der Winkelratenerfassungsvorrichtung.


     
    5. System nach einem der vorhergehenden Ansprüche, wobei die Sensoranordnung auf einer einzelnen Leiterplatte (printed circuit board - PCB) umgesetzt ist, die Winkelratenerfassungsvorrichtung ein Gyroskop umfasst und vorzugsweise wobei das Gyroskop in einem einzelnen integrierten Schaltungschip umgesetzt ist, der an die PCB gekoppelt ist.
     
    6. Verfahren zum Bestimmen einer Werkzeugstirnfläche gegenüber der Schwerkraft und einer Werkzeugneigung eines Bohrlochschneidwerkzeugs, wobei das Bohrlochschneidwerkzeug Folgendes umfasst:

    eine innere Bohrung, durch die ein Bohrfluid während eines Bohrvorgangs in einem Bohrloch läuft, das Bohrlochschneidwerkzeug, und

    eine Sensoranordnung, die an einer einzelnen radial versetzten Stelle (301) innerhalb des Bohrlochschneidwerkzeugs und relativ zu einer Längsachse des Bohrlochschneidwerkzeugs angeordnet ist, wobei die Sensoranordnung ein Dreiachsen-Beschleunigungsmesserpaket und eine Winkelratenerfassungsvorrichtung umfasst, wobei das Dreiachsen-Beschleunigungsmesserpaket drei Beschleunigungsmesser umfasst und wobei die Winkelratenerfassungsvorrichtung dazu konfiguriert ist, eine Winkelgeschwindigkeit des Bohrlochschneidwerkzeugs zu erfassen; und

    wobei das Verfahren Folgendes umfasst:

    Positionieren des Bohrlochschneidwerkzeugs innerhalb des Bohrlochs;

    Empfangen einer Ausgabe von der Sensoranordnung;

    Bestimmen von mindestens einer von einer zentripetalen Beschleunigung oder einer tangentialen Beschleunigung des Bohrlochschneidwerkzeugs mindestens teilweise auf Grundlage von einer Ausgabe der Sensoranordnung; und

    Bestimmen von mindestens einer Werkzeugstirnfläche gegenüber der Schwerkraft und einer Werkzeugneigung des Bohrlochschneidwerkzeugs unter Verwendung von mindestens einer der zentripetalen Beschleunigung und der tangentialen Beschleunigung.


     
    7. Verfahren nach Anspruch 6, das ferner ein Ändern einer Steueranordnung mindestens teilweise auf Grundlage von mindestens einer der Werkzeugstirnfläche gegenüber der Schwerkraft und der Werkzeugneigung des Bohrlochschneidwerkzeugs umfasst.
     
    8. Verfahren nach Anspruch 6, wobei die mindestens drei Beschleunigungsmesser Folgendes umfassen:

    einen ersten Beschleunigungsmesser, der dazu ausgerichtet ist, eine erste Komponente in einer ersten Richtung innerhalb einer Ebene zu erfassen;

    einen zweiten Beschleunigungsmesser, der dazu ausgerichtet ist, eine zweite Komponente in einer zweiten Richtung innerhalb der Ebene zu erfassen, wobei die zweite Richtung senkrecht zu der ersten Richtung ist; und

    einen dritten Beschleunigungsmesser, der dazu ausgerichtet ist, eine dritte Komponente in einer dritten Richtung senkrecht zu der Ebene zu erfassen.


     
    9. Verfahren nach Anspruch 8, wobei:

    die zentripetale Beschleunigung unter Verwendung der folgenden Gleichung bestimmt ist:

    wobei r der zentripetalen Beschleunigung entspricht, ω einer Winkelgeschwindigkeitsausgabe der Winkelratenerfassungsvorrichtung entspricht und Radius einer radialen Entfernung der Winkelratenerfassungsvorrichtung von einer Längsachse des Bohrlochschneidwerkzeugs entspricht;

    die tangentiale Beschleunigung unter Verwendung der folgenden Gleichung bestimmt ist:

    wobei a der tangentialen Beschleunigung entspricht, ω2 einer Winkelgeschwindigkeitsausgabe der Winkelratenerfassungsvorrichtung bei Zeitpunkt t2 entspricht, ω1 einer Winkelgeschwindigkeitsausgabe der Winkelratenerfassungsvorrichtung bei Zeitpunkt t1 entspricht und Radius einem Radius des Bohrlochschneidwerkzeugs entspricht; und

    die Werkzeugstirnfläche gegenüber der Schwerkraft θ unter Verwendung von mindestens einer der folgenden Gleichungen bestimmt ist:



    wobei x der erfassten ersten Komponente von dem ersten Beschleunigungsmesser entspricht, y der erfassten zweiten Komponente von dem zweiten Beschleunigungsmesser entspricht; g der Schwerkraft entspricht, a der tangentialen Beschleunigung entspricht und r der zentripetalen Beschleunigung entspricht.


     
    10. Verfahren nach einem der Ansprüche 8-9, wobei die Ausgabe, die von der Sensoranordnung empfangen ist, Folgendes umfasst:

    die erfasste erste Komponente von dem ersten Beschleunigungsmesser;

    die erfasste zweite Komponente von dem zweiten Beschleunigungsmesser;

    die erfasste dritte Komponente von dem dritten Beschleunigungsmesser; und

    eine Winkelgeschwindigkeit von der Winkelratenerfassungsvorrichtung.


     
    11. Verfahren nach einem der Ansprüche 6-10, wobei die Sensoranordnung auf einer einzelnen Leiterplatte (PCB) umgesetzt ist, wobei die Winkelratenerfassungsvorrichtung ein Gyroskop umfasst und vorzugsweise wobei das Gyroskop in einem einzelnen integrierten Schaltungschip umgesetzt ist, der an die PCB gekoppelt ist.
     


    Revendications

    1. Système de détermination d'une face d'outil gravitaire et d'une inclinaison, comprenant :
    un outil de fond de puits (200) comprenant un alésage interne que traverse un fluide de forage pendant une opération de forage dans un puits de forage, l'outil de fond de puits comprenant en outre :

    un ensemble de capteurs (302) disposé à un emplacement unique décalé radialement (301) à l'intérieur de l'outil de fond de puits par rapport à un axe longitudinal (304) de l'outil de fond de puits, dans lequel l'ensemble de capteurs comprend un boîtier d'accéléromètres à trois axes et un dispositif de détection de vitesse angulaire, dans lequel le boîtier d'accéléromètres à trois axes comprend trois accéléromètres, et dans lequel le dispositif de détection de vitesse angulaire est conçu pour détecter une vitesse angulaire de l'outil de fond de puits ;

    un processeur en communication avec l'ensemble de capteurs, dans lequel le processeur est couplé à au moins un dispositif de mémoire contenant un ensemble d'instructions qui, lorsqu'elles sont exécutées par le processeur, amènent le processeur à recevoir une sortie provenant de l'ensemble de capteurs ;

    à déterminer au moins l'une parmi une accélération centripète et une accélération tangentielle de l'outil de fond de puits en fonction, au moins en partie, de la sortie ; et

    à déterminer au moins l'une parmi une face d'outil gravitaire et une inclinaison de l'outil de fond de puits en utilisant au moins l'une parmi l'accélération centripète et l'accélération tangentielle.


     
    2. Système selon la revendication 1, dans lequel les trois accéléromètres comprennent :

    un premier accéléromètre orienté pour détecter une première composante dans une première direction à l'intérieur d'un plan ;

    un deuxième accéléromètre orienté pour détecter une deuxième composante dans une deuxième direction à l'intérieur du plan, dans lequel la deuxième direction est perpendiculaire à la première direction ; et

    un troisième accéléromètre orienté pour détecter une troisième composante dans une troisième direction perpendiculaire au plan.


     
    3. Système selon la revendication 1, dans lequel :

    l'accélération centripète est déterminée à l'aide de l'équation suivante :

    où r correspond à l'accélération centripète, ω correspond à une sortie de vitesse angulaire du dispositif de détection de vitesse angulaire et le rayon correspond à une distance radiale du dispositif de détection de vitesse angulaire par rapport à un axe longitudinal de l'outil de fond de puits ; et

    l'accélération tangentielle est déterminée à l'aide de l'équation suivante :

    où a correspond à l'accélération tangentielle, ω2 correspond à une sortie de vitesse angulaire du dispositif de détection de vitesse angulaire à l'instant t2, ω1 correspond à une sortie de vitesse angulaire du dispositif de détection de vitesse angulaire à l'instant t1 et le rayon correspond à un rayon de l'outil de fond de puits ; et de préférence

    dans lequel la face d'outil gravitaire θ est déterminée en utilisant au moins l'une des équations suivantes :



    avec x correspondant à la première composante détectée du premier accéléromètre, y correspondant à la deuxième composante détectée du deuxième accéléromètre ; g correspondant à la force de gravité, a correspondant à l'accélération tangentielle et r correspondant à l'accélération centripète.


     
    4. Système selon l'une quelconque des revendications 2 et 3, dans lequel la sortie comprend :

    la première composante détectée du premier accéléromètre ;

    la deuxième composante détectée du deuxième accéléromètre ;

    la troisième composante détectée du troisième accéléromètre ; et

    une vitesse angulaire du dispositif de détection de vitesse angulaire.


     
    5. Système selon l'une quelconque des revendications précédentes, dans lequel l'ensemble de capteurs est mis en œuvre sur une carte de circuit imprimé (PCB) unique, le dispositif de détection de vitesse angulaire comprend un gyroscope, et de préférence dans lequel le gyroscope est mis en œuvre dans un microcircuit intégré unique couplé à la PCB.
     
    6. Procédé de détermination de la face d'outil gravitaire et de l'inclinaison d'un outil de fond de puits, l'outil de fond de puits comprenant :

    un alésage interne que traverse un fluide de forage pendant une opération de forage dans un puits de forage, l'outil de fond de puits, et

    un ensemble de capteurs disposé à un emplacement unique décalé radialement (301) à l'intérieur de l'outil de fond de puits et par rapport à un axe longitudinal de l'outil de fond de puits, dans lequel l'ensemble de capteurs comprend un boîtier d'accéléromètres à trois axes et un dispositif de détection de vitesse angulaire, dans lequel le boîtier d'accéléromètres à trois axes comprend trois accéléromètres, et dans lequel le dispositif de détection de vitesse angulaire est conçu pour détecter une vitesse angulaire de l'outil de fond de puits ; et

    le procédé comprenant :

    le positionnement de l'outil de fond de puits à l'intérieur du puits de forage ;

    la réception d'une sortie provenant de l'ensemble de capteurs ;

    la détermination d'au moins l'une parmi une accélération centripète et une accélération tangentielle de l'outil de fond de puits en fonction, au moins en partie, d'une sortie de l'ensemble de capteurs ; et

    la détermination d'au moins l'une parmi une face d'outil gravitaire et une inclinaison de l'outil de fond de puits en utilisant au moins l'une parmi l'accélération centripète et l'accélération tangentielle.


     
    7. Procédé selon la revendication 6, comprenant en outre la modification d'un ensemble de direction en fonction, au moins en partie, d'au moins l'une parmi la face d'outil gravitaire et l'inclinaison de l'outil de fond de puits.
     
    8. Procédé selon la revendication 6, dans lequel les au moins trois accéléromètres comprennent :

    un premier accéléromètre orienté pour détecter une première composante dans une première direction à l'intérieur d'un plan ;

    un deuxième accéléromètre orienté pour détecter une deuxième composante dans une deuxième direction à l'intérieur du plan, dans lequel la deuxième direction est perpendiculaire à la première direction ; et

    un troisième accéléromètre orienté pour détecter une troisième composante dans une troisième direction perpendiculaire au plan.


     
    9. Procédé selon la revendication 8, dans lequel :

    l'accélération centripète est déterminée à l'aide de l'équation suivante :

    où r correspond à l'accélération centripète, ω correspond à une sortie de vitesse angulaire du dispositif de détection de vitesse angulaire, et le rayon correspond à une distance radiale du dispositif de détection de vitesse angulaire par rapport à un axe longitudinal de l'outil de fond de puits ;

    l'accélération tangentielle est déterminée à l'aide de l'équation suivante :

    où a correspond à l'accélération tangentielle, ω2 correspond à une sortie de vitesse angulaire du dispositif de détection de vitesse angulaire à l'instant t2, ω1 correspond à une sortie de vitesse angulaire du dispositif de détection de vitesse angulaire à l'instant t1, et le rayon correspond à un rayon de l'outil de fond de puits ; et

    la face d'outil gravitaire θ est déterminée en utilisant au moins l'une des équations suivantes :



    avec x correspondant à la première composante détectée du premier accéléromètre, y correspondant à la deuxième composante détectée du deuxième accéléromètre ; g correspondant à la force de gravité, a correspondant à l'accélération tangentielle et r correspondant à l'accélération centripète.


     
    10. Procédé selon l'une quelconque des revendications 8 et 9, dans lequel la sortie provenant de l'ensemble de capteurs comprend :

    la première composante détectée du premier accéléromètre ;

    la deuxième composante détectée du deuxième accéléromètre ;

    la troisième composante détectée du troisième accéléromètre ; et

    une vitesse angulaire du dispositif de détection de vitesse angulaire.


     
    11. Procédé selon l'une quelconque des revendications 6 à 10, dans lequel l'ensemble de capteurs est mis en œuvre sur une carte de circuit imprimé (PCB) unique, le dispositif de détection de vitesse angulaire comprend un gyroscope, et de préférence dans lequel le gyroscope est mis en œuvre dans un microcircuit intégré unique couplé à la PCB.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description