(19)
(11)EP 2 934 036 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.06.2018 Bulletin 2018/26

(21)Application number: 13828601.8

(22)Date of filing:  30.07.2013
(51)International Patent Classification (IPC): 
H04W 24/04(2009.01)
H04W 84/18(2009.01)
(86)International application number:
PCT/CN2013/080379
(87)International publication number:
WO 2014/023172 (13.02.2014 Gazette  2014/07)

(54)

SYSTEM AND METHOD FOR MANAGING CWSN COMMUNICATION DATA BASED ON GUI INTERACTION

SYSTEM UND VERFAHREN ZUR VERWALTUNG VON CWSN-KOMMUNIKATIONSDATEN BASIERT AUF EINER GUI INTERAKTION

SYSTÈME ET PROCÉDÉ DE GESTION DE DONNÉES DE COMMUNICATION DE RÉSEAU CWSN SUR LA BASE D'UNE INTERACTION GUI


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 07.08.2012 CN 201210279260

(43)Date of publication of application:
21.10.2015 Bulletin 2015/43

(73)Proprietor: GTI International Semiconductor Technology Co. Ltd
Beijing 100176 (CN)

(72)Inventors:
  • WANG, Yu
    Beijing 100176 (CN)
  • LIAO, Yuan
    Beijing 100176 (CN)
  • LU, Haibo
    Beijing 100176 (CN)

(74)Representative: Roman, Alexis 
Cabinet Roman 35 rue Paradis B.P. 30064
13484 Marseille Cedex 20
13484 Marseille Cedex 20 (FR)


(56)References cited: : 
WO-A1-2008/153275
CN-A- 102 821 414
CN-U- 202 261 821
US-A1- 2002 050 932
US-A1- 2009 092 113
CN-A- 101 232 417
CN-U- 202 218 272
CN-U- 202 353 825
US-A1- 2008 007 396
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the Invention



    [0001] The present invention relates to the technical field of wireless sensor network and cloud computing, in particular to a system and method for managing CWSN (Cloud Wireless Sensor Network) communication data based on GUI (graphical user interface).

    Background of the Invention



    [0002] Wireless sensor network is a wireless network with the main aim of information collection. A plurality of wireless devices (such as wireless sensors, Zigbee sensors, etc.) are included in the wireless sensor network and transmit the collected information to a data center through wireless communication protocol (also known as wireless communication method).

    [0003] In general, the wireless devices in the wireless sensor network are divided into three categories in accordance with their functions: node and relay, base station and data center. The node is mainly configured for information collection and transmitting the collected information to the base station wirelessly. Sometimes the node needs to transmit the information to the base station through multi-hop, thus it needs wireless device to function as relay in the wireless sensor network. The base station is mainly configured for receiving the information from the node and the relay and sending the information to the data center in a wireless or wire way. The definition of node, relay and base station is not strict. For example, the node may have the function of the relay and the relay or the base station may have the function of the node.

    [0004] When the number of the wireless devices in the wireless sensor network is relatively large, the control and maintenance of the network becomes a problem. The existing wireless network generally informs the system administrator of the operation condition of the network in the form of text. The system administrator needs to examine a plurality of text files, datasheets and so on. Due to this reason, it needs professional company or team to maintain the networks, and it is difficult for the users to control and maintain the network by themselves.

    [0005] US2009/092113A1 discloses methods, apparatuses and systems directed to , or facilitating, the graphical display of status information in wireless network management systems.

    [0006] US2008/007396A1 discloses methods for displaying a node map indicating communication links between portable nodes on a GUI and adjusting the GUI characteristics according to individual network node statues of a sensor network.

    [0007] US2002/050932A1 discloses methods for showing sensor and connection status data on a GUI in a hazard monitoring system.

    [0008] WO2008/153275A1 discloses methods for real time monitoring and control of a wireless sensor network.

    Summary of the Invention



    [0009] The object of the present invention is to provide a system and method for managing cloud wireless sensor network with GUI. It can not only dynamically manage the operation condition of the wireless sensor network, but also allow directly monitoring, controlling and maintaining the wireless sensor network through the dynamic interface and performing the operation of establishing and modifying the network path and data collection and so on.

    [0010] In order to achieve the aim of the present invention, a system for managing cloud wireless sensor network with GUI according to claim 1, as well as a method according to claim 9 are provided. Further details are provided by the appended dependent claims. The beneficial effect of the invention is that according to the system and method for managing CWSN (Cloud Wireless Sensor Network) communication data with GUI (namely a graphical user interface) of present invention, by generating a dynamic interface mainly in graphics, it can make the information of the sensor network clear and the user can easily know the operation condition, connection condition and the strength of the wireless signal in the sensor network and can also easily find the mal-functional wireless device in the network. Further, the user can directly control the sensor network, establish the communication path, modify the communication path and set the parameters of the wireless device through the interface. As the present invention reduces the difficulty of maintenance and monitor of the network, the user can directly control and maintain the network without intervene of any professional team or outside company.

    Brief Description of the Drawings



    [0011] 

    Fig. 1 is a schematic diagram of the system for managing CWSN (Cloud Wireless Sensor Network) communication data based on GUI;

    Fig. 2 is a schematic diagram of the structure of the node and the relay;

    Fig. 3 is a schematic diagram of the structure of the base station;

    Fig. 4 is a schematic diagram of the topology of the wireless sensor network;

    Fig. 5 is a schematic diagram of the structure of the cloud server in accordance with the embodiments of the present invention;

    Fig. 6 is a schematic diagram of the structure of the client software module;

    Fig. 7 is an embodiment for implementing the wireless network topology in Fig. 4 by using "graphviz" program;

    Fig. 8 is a schematic diagram of the dynamic interface in accordance with the embodiments of the present invention;

    Fig. 9 is a schematic diagram of the format of the data package transmitted from the node or the relay to the based station;

    Fig. 10 is a flow chart showing an implemental way for processing the data in the data package in accordance with the embodiments of the present invention;

    Fig. 11 is a schematic diagram of the format of the data package transmitted from the cloud server to the based station;

    Fig. 12 is a schematic diagram of the wireless device list in accordance with the embodiments of the present invention;

    Fig. 13 is a schematic diagram of the "edge" list in accordance with the embodiments of the present invention; and

    Fig. 14 is a schematic diagram of the "edge" list modified by the communication path in the embodiments of the present invention.


    Preferred Embodiments of the Present Invention



    [0012] In order to make the object, the technical solution and the advantage of the present invention to be clearer, the implementations of the system and method for managing CWSN (Cloud Wireless Sensor Network) communication data with GUI (graphical interaction interface) in accordance the present invention are further described as below in details with the drawings. It should be understood that the embodiments as recited herein are only for interpreting the present invention and do not intend to make any limitations thereto.

    [0013] The system for managing CWSN (Cloud Wireless Sensor Network) communication data based on GUI (graphical user interface) in accordance with an embodiment of the present invention comprises one or more wireless sensor networks, one or more cloud servers and client software modules.

    [0014] Fig. 1 is a schematic diagram of the system for managing CWSN (Cloud Wireless Sensor Network) communication data based on GUI (graphical interaction interface) in accordance with an embodiment of the present invention, the system comprising:
    1. 1) A wireless sensor network which comprises at least one wireless device. The wireless device comprises at least one base station, at least one node and/or at least one relay. The wireless sensor network is configured to collect sensor data and to transmit the sensor data and the operation status of the device to the cloud server.
      The sensor data collected by the node or the relay is transmitted to the base station via wireless communication protocols and is forwarded to the cloud server by the base station via an Ethernet.
      The node and the relay also transmit their own operation status to the base station in addition to the sensor data and the base station forwards the same to the cloud server.
      The operation status includes the status of the battery, the status of the communication connections, the received signal strength, the operation status of the sensor and so on.
      The signal processing module of the node and the relay acquires the status information of the battery through the battery module, acquires the status of the communication path and the strength information of the received signal through the RF communication module and acquires the operation information of the sensor through the sensor module.
    2. 2) The cloud server is configured for receiving the sensor data and the operation status of the wireless sensor network from the base station in the wireless sensor network, processing the sensor data and storing the sensor data in a database, managing the operation of the wireless sensor network, managing the operation of the base station, the relay and the node in the wireless sensor network and supporting and controlling the client software module.
    3. 3) The client software module is configured to display the operation status of sensor network, to control and modify the operation status of the sensor network.


    [0015] The operation status of the sensor network is transmitted to the client software module via the Ethernet by the cloud server, and the client software module may transmit the operation instruction of a user to the cloud server via the Ethernet. The cloud server may support one or more client software modules at the same time.

    [0016] The user comprises the administrator of the wireless network and the client with authority. The user may manage and control the wireless network through the client software module.

    [0017] Fig. 2 is a schematic diagram of the structure of the node and the relay. The structure of the node and that of the relay is the same with the difference in that the node may be used for collecting the sensor data while the relay may be used as relay. In the present system, the relay can be used for collecting the sensor data.

    [0018] The node and relay both comprise a signal processing module, a sensor module and a radio frequency (RF) communication module. The core of the node and relay is the signal processing module.

    [0019] The hardware of the signal processing module is a signal processing device such as a microcontroller unit (MCU) or a central processing unit (CPU).
    1. 1) The signal processing module is used for controlling the sensor module through a serial port such as I2C, SPI or UART and for requesting sensor data from the sensor module, receiving the sensor data and processing the sensor data.
      The signal processing module is also configured to obtain operation status of the sensor module and to modify the operation status of the sensor through the serial port.
      The sensor module comprises a sensor device for collecting sensor data such as temperature, humidity and carbon monoxide
    2. 2) The signal processing module is also configured to control the RF communication module through a serial port such as I2C, SPI or UART and to wirelessly receive or transmit data package through the RF communication module.


    [0020] The signal processing module can also obtain operation status of the RF communication module and can also modify the operation status of the RF communication module through the serial port.

    [0021] The RF communication module comprises RF communication chip, the RF communication chip may wirelessly communicate with each other when adopting the same physical layer communication protocol.

    [0022] The signal processing module may modify the physical layer communication protocol through the serial port.

    [0023] Further, the node and the relay further comprise a memory such as RAM and ROM for performing signal processing and computing.

    [0024] The node and the relay further comprise a mass storage device such as a flash memory (FLASH) or any other type of disk for storing the sensor data and operating information of the device which includes the communication protocol information.

    [0025] The node and the relay further comprise a power supply module. The power module comprises a battery and a battery power management chip and/or comprises a DC power supply import (such as 5V or 12 V) and a DC power management chip.

    [0026] Fig.3 is a schematic diagram of the structure of the base station. The base station comprises a base station signal processing module, a base station sensor module and an Ethernet communication module. The core of the base station is the base signal processing module.

    [0027] The hardware of the signal processing module is a signal processing device such as a microcontroller unit (MCU) or a central processing unit (CPU).
    1. 1) The base station signal processing module is configured for controlling the sensor module/the base station sensor module through serial port such as I2C, SPI or UART and for requesting sensor data from the sensor module/the base station sensor module, receiving the sensor data and processing the sensor data.
      The base station signal processing module can also obtain operation status of the sensor module/the base station sensor module and modify the operation status of the sensor module /the base station sensor module through the serial port.
      The sensor module/the base station sensor module comprise a sensor device for collecting sensor data such as temperature, humidity and carbon monoxide.
    2. 2) The base station signal processing module is configured for controlling the Ethernet communication module through a serial port such as I2C, SPI or UART and may transmit/ receive data package to/from the cloud server through the Ethernet communication module.


    [0028] The Ethernet communication module comprises an Ethernet communication chip and an Ethernet interface for communicating with the devices including but not limited to the cloud server in the Ethernet via Ethernet standard communication protocol.

    [0029] Further, the base station comprises a memory such as RAM and ROM for performing signal processing and computing.

    [0030] The base station further comprises a mass storage device such as a flash memory (FLASH) or any other type of disk for storing the sensor data and operating information of the device which includes the communications protocol information.

    [0031] The base station further comprises a power supply module. The power module comprises a battery and a battery power management chip and/or comprises a DC power supply import (such as 5V or 12 V) and a DC power management chip.

    [0032] Fig. 4 is a schematic diagram of the network topology of the wireless sensor network. In the schematic diagram, each circle represents a wireless device and each wireless device has a unique ID number. The lines with arrows represent the communication connections between the wireless devices.

    [0033] As shown in Fig.4, the wireless sensor network comprises a base station (00) and a plurality of nodes and relays (01 to 07). Only the base station can communicate with the cloud server via the Ethernet communication module while all wireless devices wirelessly communicate with each other through the RF communication module. In the network, each node or relay has a communication path to the base station. For example, the node 07 is connected with the base station 00 through the relay 04 and 01. The node 07 is a child node of the relay 04, while the relay 04 is a father node of the node 07. The communication connections between the nodes and the relays are stored in the mass storage devices thereof and can be modified by the signal processing module/the base station signal processing module.

    [0034] Fig. 5 is a schematic diagram of the structure of the cloud server in the present invention. The cloud server comprises a WSN (Wireless Sensor Network) communication management module, a WSN transmission module, a database, a database transmission module and an interface transmission module, wherein:
    The WSN communication management module (referred as the communication management module) is the core of the cloud server and is used for processing and storing sensor data, managing the operation of the sensor network and managing the client interface.

    [0035] The first primary function of the communication management module is to process and store the sensor data. After the communication management module receiving the data package transmitted by the base station (Fig. 9 shows the format of the data package) through the WSN transmission module, the communication management module parses out "the first wireless device ID" and "sensor information" and transmits the same to the database through the database transmission module if "data package type" in the data package equals to 0.

    [0036] The second function of the communication management module is to manage the operation of the sensor network. The wireless device list is stored in the memory of the communication management module and the format of the data in the list is "wireless device ID, wireless device type, wireless device feature 1, wireless device feature 2, ...". The wireless device features include the status of the battery, the status of the wireless device, the status of the sensor, channel number, transmission speed, transmission power and so on. The communication management module has stored default wireless device features, thus the wireless device list does not need to include the default feature. For example, the wireless device in Fig. 4 can be described with the wireless device list in Fig.12.

    [0037] A communication connection (referred as "edge") of each pair of father node and child node is also stored in the memory of the communication management module. The expression of "edge" is "(father node ID, child node ID, RSSI)". RSSI is "received signal strength indication (RSSI)" in the data package in Fig.9 and is updated each time a data package is received. For example, the wireless network in Fig.4 can be described with the "edge" list in Fig.13. In Fig. 13, RSSI is represented by 0-9 with 0 representing the weakest received signal and 9 representing the strongest received signal.

    [0038] The communication management module performs the management of the wireless sensor network by using the wireless device lists and the "edge" list (communication connection list). The communication management module may find a communication path from any first wireless device to any second wireless device. Each time the communication management module receives a data package from the base station, the communication management module updates the wireless device list and the "edge" list in accordance with the content of the data package.

    [0039] The communication management module may store the wireless device lists and the "edge" list in the database. Each time the wireless device lists and the "edge" list are updated, the communication management module transmits the updated lists to the database.

    [0040] The database is configured to store the sensor data.

    [0041] The WSN transmission module is used for the communication between the communication management module and the base station in the wireless sensor network and for exchanging data packages between the communication management module and base station via Ethernet TCP / IP communication protocol.

    [0042] The database transmission module is used for the communication between the communication management module and the database and for exchanging data packages between the communication management module and database via Ethernet TCP / IP communication protocol.

    [0043] The interface transmission module is used for the communication between the communication management module and the client software module and for exchanging data packages from the communication management module and the client software module via Ethernet TCP / IP communication protocol.

    [0044] The third function of the communication management module is to manage the client interface. The client software module displays the network topology of the wireless sensor network on a display with dynamic graphics and allows a user to modify the communication connections and parameters of the wireless sensor network through the interface. The basis by which the communication management module and the client software module communicate with each other is the wireless device list and the "edge" list. After the wireless device list or the "edge" list is updated (in accordance with the data package from the base station), the communication management module transmits the updated content to all client software modules. When a user modifies any parameter of the wireless sensor network through the client software module, the client software module transmits the modified information to the communication management module.

    [0045] Fig. 6 is a schematic diagram of the structure of the client software module. The interface transmission module in the cloud server in Fig. 5 is used for the communication between the client software module and the cloud server and for exchanging data packages between the client software module and the cloud server by using Ethernet TCP / IP communication protocol.

    [0046] The client software module parses the data package transmitted from the cloud server, manages and updates the wireless device list and the "edge" list and displays the same. When the user performs operation in the interface, the client software module can convert the operation instruction into data compatible with the wireless device list and the "edge" list and then transmits the data to the cloud server through the cloud server transmission module.

    [0047] The client software module comprises an image generation module and an interface management module.

    [0048] The image generation module is configured to display the network topology of the wireless sensor network on a display with dynamic graphics. The implementing method is to convert the wireless device list and the "edge" list into a format acceptable to the drawing program. The present invention does not limit the use of certain drawing program and many drawing program can achieve the function of displaying the dynamic graphic interface as long as there is provided the wireless device list and the "edge" list. For example, the "graphviz" program in Fig. 7 can achieve the wireless network topology diagram of Fig.4.

    [0049] The interface management module is configured to parse the data package from the cloud server, to manage and update the wireless device list and the "edge" list, to convert the operation instruction into data compatible the wireless device list and the "edge" list after the user performing operation in the interface and then transmit the data to the cloud server.

    [0050] When the wireless device list and the "edge" list are updated, the image generation module updates the drawing program and thus the graphics of the interface is updated according to the change in the state of the network, and thus achieving a dynamic interface.

    [0051] The program in Fig. 7 is a relatively simple instant and the dynamic interface of the present invention may be incorporated more functions with more complicated codes, but the principle is the same. For example, Fig. 8 is a screenshot which is the dynamic interface of the present invention. The interface in Fig.8 also represents the structure of the sensor network shown in Fig.4 and the dynamic graphics interface includes:
    1. 1. name of each wireless device in the wireless device list;
    2. 2. connection between the wireless devices (namely, the "edge" list);
    3. 3. the width of the lines representing the RSSI in the "edge" list, which is achieved by using the "width" function in the drawing program. Of course, RSSI can also be achieved by the length of the connection ("len"), or by the color of the connection ("color");
    4. 4. if RSSI = 0, then marking "x" on the child node which indicates that the commination connection with the child node is unreliable;
    5. 5. the features of the wireless devices in the wireless device list displaying beside the wireless device such as "battery=low" and "fault code=2" shown in Fig.12.


    [0052] The user can easily know real-time operation status of the network and the occurred problems by operation of the client software module. Thus the dynamic interface allows the user to perform real-time maintenance of the network.

    [0053] Based on the same inventive concept, the embodiment of the present invention further provides a method for managing cloud wireless sensor network with GUI, comprising following steps:

    At first, collecting sensor data and packaging the sensor data and operation status of a node or relay into a data package and transmitting the same to the base station;

    Fig. 9 is a schematic diagram of the format of the data package transmitted to the based station from the node and the relay. A first portion of the data package is the communication path and includes following contents:

    1. 1. "next wireless device ID": the ID of the next wireless device to process the data package;
    2. 2. "first wireless device ID": the ID of the wireless device at the start point of the communication path;
    3. 3. "second wireless device ID": the ID of the first relay in the communication path;
    4. 4. "...": the IDs of other relays in the communication path;
    5. 5. "last wireless device ID": the ID of the wireless device at the termination point of the data package;
    6. 6. "termination symbol": the symbol of the termination of the communication path.



    [0054] The wireless device ahead of a particular wireless device in the communication path is a father node of said particular wireless device and the wireless device behind the particular wireless device is its child node. For example, the father node of the second wireless device is the first wireless device and the child node of the second wireless device is the third wireless device.

    [0055] The data package further incudes following contents if it is transmitted to the base station by the node or the relay:
    1. "data package type" and "content data": the wireless device receiving the data package processes the data package in accordance with the data package type. The data package type includes but is not limited to:
    data package typemeaning of the typecontent data
    0 normal data package received signal strength indication (RSSI) plus data
    1 acknowledge package (acknowledge of receiving the data package) received signal strength indication (RSSI)
    2 task acknowledge package (acknowledge of performing the task) 0: task finished
      1: task failed
    3 failing to contact with the child node (i.e. cannot receive the response package from the child node) the ID of the child node and the times of trying to contact
    4 low battery alarm received signal strength indication (RSSI)
    5 wireless device fault 0-3
    6 reporting the hardware parameter hardware parameter data

    In above table, the received signal strength indication (RSSI) is provided by the RF communication module. If the RSSI is too low, the error code rate of the data package will increase. Therefore the cloud sensor network uses the RSSI to measure the channel quality.
    In the above table, when there is a fault in a wireless device, the value of the content data may be 0 (not serious), 1, 2 or 3 (serious) in accordance with the seriousness of the fault.
    In above table, the hardware parameter data refers to predetermined hardware parameter of the signal processing module, the RF communication module and the power supply management module in the wireless device.
    2. "status of the sensor module" and "sensor information": the status of the sensor module includes but is not limited to:
    status of the sensor modulemeaning of the statussensor information
    0 sensor operates normally sensor data
    2 task acknowledge package 0: task finished
        1: task failed
    5 sensor fault 0-3
    6 reporting the hardware parameter hardware parameter data


    [0056] In the above table, when there is a fault in the sensor module, the value of the sensor information may be 0 (not serious), 1, 2 or 3 (serious) in accordance with the seriousness of the fault.

    [0057] In above table, the hardware parameter data refers to predetermined hardware parameter of the sensor module.

    [0058] Secondly, the base station forwards the data package received from the node or the relay to the cloud server via the Ethernet. The data in the data package is processed by the cloud server.

    [0059] In the present invention, the base station forwards the data package received from the node or the relay to the cloud server via the Ethernet, the data in the data package is processed by the cloud server. This method has an advantage of reducing the complication of the base station. The base station does not need to store the communication path, and the cloud server stores the communication path from the base station to each relay or node.

    [0060] As illustrated in Fig. 10, the abovementioned steps comprises following steps:
    The wireless device receives a data package and parses out the communication path therein.

    [0061] Parsing the instruction belongs to prior art and thus will not be described in details in the embodiments of the preset invention.

    [0062] The wireless device looks for "next wireless device ID" in the communication path.The wireless device stops processing the communication path instruction if the ID of the wireless device itself is different from "next wireless device ID", and the method ends and returns.

    [0063] If the ID of the wireless device itself is identical with "next wireless device ID", then the wireless device is a relay or termination point in the communication path. The wireless device transmits an acknowledge package to its father node. The format of the acknowledge package is the same as that shown in Fig.9 with following contents: "next wireless device ID"= father node ID, "first wireless device ID"= wireless device ID, "last wireless device ID"= father node ID and "data package type"=1.

    [0064] Examining whether "next wireless device ID" is identical with "last wireless device ID". If no, then the wireless device identifies itself as a relay in this communication path. The wireless device updates "next wireless device ID" in the data package as the ID of its child node and then transmits the data package; if yes, the wireless device identifies itself as the termination point in the communication and the wireless device continue parsing the content in the data package.

    [0065] The second step further comprises following step:
    when the cloud server needs to communicate with the wireless device, the cloud server transmits the data package including the communication path to the base station via the Ethernet, the base station then wirelessly transmits the data package.

    [0066] Fig. 11 shows the format of the data package transmitted to the based station from the cloud server. The format of the data package is similar and compatible with that of the data package from the node or relay. The steps of processing the data package by the wireless device are the same as those shown in Fig. 10 and will not be repeated herein. Other content in the data package includes "data package type" and "content data". The wireless device receiving the data package processes the data package in accordance with the data package type. The data package type includes but is not limited to:
    data package typemeaning of the typecontent data
    16 request to transmit sensor data 0
    17 request to transmit hardware parameter hardware parameter code
    18 request to modify hardware parameter new hardware parameter
    19 communication path update 0


    [0067] In above table, the hardware parameter code helps defining the hardware parameter to be transmitted. For example, "0" represents the parameter of the signal processing module, "1" represents the parameter of the RF communication module, "2" represents the parameter of the power supply management module and "3" represents the parameter of the sensor module.

    [0068] In above table, if data package type is "19", it means the cloud server has updated the communication path, and the wireless device needs to write the communication path in the data package into the mass storage device to make an update. Then the wireless device transmit an acknowledge data package to the cloud server.

    [0069] Thirdly displaying, controlling and modifying operation status of the sensor network, in accordance with the data in the data package of the wireless sensor network obtained from the cloud server.

    [0070] In the embodiment of the present invention, controlling and modifying operation status of the sensor network particularly refers to setting and modifying the wireless device in the wireless network through a dynamic interface, and comprises following steps:

    The user input an operation instruction in the interface by using an input device such as a keyboard or a mouse to;

    An image generation module transmits the operating instruction to an interface management module;

    The interface management module converts the operation instruction into a data pattern in the wireless device list and /or the "edge" list and then transmits the data to the cloud server;

    A communication management module in the cloud server parses the received data, generates a data package in accordance with the content of the data and transmits the data package to related wireless device;

    After the communication management module receiving an acknowledgment data packet of the wireless device, updating the wireless device list and/or the "edge" list in accordance with the content of the acknowledge data package and transmitting the updated information to all interface management modules, the interface management module updates its own wireless device list and/or the "edge" list and transmits the updated information to the image generation module;

    The image generation module updates the interface graphics program and thus updates the image display.



    [0071] Below is an elementary instant of a user setting. In this instant, a user adds a new node 08 to the network in Fig. 4 and designates its father mode as node 04 through the dynamic interface. The setting steps are as below:
    1. 1. The user clicks the right key of the mouse and selects "adding new wireless device'. A new dialog box appears and the user can write the ID ("08") and feature ("node") of the new wireless device in the dialog box;
    2. 2. The image generation module transmits the instruction to the interface management module;
    3. 3. The interface management module transmits "08, node" (the content to be added in the wireless device list) and "(04, 08, N)" (the content to be added in the "edge" list, wherein N represents no RSSI information) to the cloud server;
    4. 4. The communication management module in the cloud server parses the received data package to obtain a communication path to the node 08 (namely, 00->01->04->08) and transmits the communication path update data package to the node 08 (data package type=19). If the communication management module receives the acknowledge data package (data package type=1) sent back from the node 08, the communication management module adds "08, node" in the wireless device list and adds "(04, 08, RSSI)" in the "edge" list, the value of RSSI is that in the acknowledge data package from the node 08. If the communication management module does not receive the acknowledge data package from the node 08, the communication management module receives a report (data package type=3) from the relay 04. The communication management module adds "08, node" in the wireless device list and adds "(04, 08, 0)" in the "edge" list. The communication management module in the cloud server transmits the updated content to all interface management modules;
    5. 5. The interface management module updates its own wireless device list and/or "edge" list and transmits the updated information to the image generation module;
    6. 6. The image generation module modifies the interface graphics program and then updates the image display. In the image display, the node 08 will appear and the thickness of the "edge" from the relay 04 to the node 08 represents the value of the RSSI.


    [0072] In above instant, the user needs to place the node 08 at the desire place and turn on the node, otherwise the cloud server will not find the node 08 which causes the state of RSSI=0 in the "edge" list.

    [0073] In addition to adding a wireless device, the interface software module further provides following functions. The particular implementing methods of these functions are similar to that of above instant, thus all details of the steps will not be repeated below.
    1. 1) Modifying the communication connection. In the dynamic interface, a user uses the left key of the mouse to drag a first wireless device which is already existed onto a second wireless device which is already existed, the effect thereof is the communication connection ("edge") of the first wireless device and its father node is cut off, and the father node of the first wireless device is changed to the second wireless device. For example, as shown in Fig. 8, dragging the relay 04 by using the left key of the mouse onto the relay 02 and then releasing the left key of the mouse, the father node of the relay 04 is changed from 01 to 02. The child nodes (namely, node 07) below the relay 04 remain unchanged. This function can be implemented by modifying the "edge" list. Fig. 14 shows a new "edge" list which deletes "(01, 04, 9)" and adds "(02, 04, 3)"as compared to the original "edge" list in Fig.13, wherein RSSI=3 is the value in the acknowledge data package sent back from the relay 04.
    2. 2) Removing a communication path. A user uses the left key of the mouse to drag a wireless device to the edge of the interface, the connection ("edge") of this wireless device and its father node is cut off. The method of implementing this function is to modify the "edge" list. For example, the user selects to disconnect the node 05 shown in Fig. 8, the method for implementing this is to remove "(02, 05, 0)" from the "edge" list shown in Fig. 13. This method does not delete the node 05 from the interface.
    3. 3) Deleting a wireless device. A user clicks the right key of the mouse on a wireless device in the interface and selects "deleting wireless device". A new dialog box will appear and query whether the user affirms to delete this wireless device, and the users selects yes. The method of implementing this function is to modify the "edge" list and the wireless device list. For example, the user selects to delete the node 05 shown in Fig. 8, the method for implementing this is to remove "(02, 05, 0)" from the "edge" list shown in Fig. 13 and to remove "05, node " from the wireless device list shown in Fig. 12.
    4. 4) Modifying the parameter of the wireless device. A user clicks the right key of the mouse on a wireless device in the interface and selects "modifying parameter". A new dialog box will appear which includes a plurality of wireless device parameters including channel number, transmission speed and transmitting power and so on. The user may select one parameter to modify. The method of implementing this function is to modify the feature of the wireless device in the wireless device list. For example, the user requests to modify the transmitting power of the node 03 shown in Fig. 8 and modify transmitting power=10 (default) to transmitting power=5. The modification in the wireless device list is "03, node, battery=low, transmitting power=5".


    [0074] The system and method for managing CWSN (Cloud Wireless Sensor Network) with GUI (graphical interaction interface) in accordance with the embodiments of the present invention establish a dynamic interface mainly in graphics, which makes the information of the sensor network clear and the user can easily know the operation condition, connection condition and the strength of the wireless signal in the sensor network and can also easily find the problematical wireless device in the network. The user can control the sensor network, establish the communication path, modify the communication path and set the parameters of the wireless device through the interface directly. The user does not need using relatively difficult operations such programming or examining or modifying text files and the datasheets. As the present invention decreases the difficulty of maintenance and monitor of the network, the user can directly control and maintain the network with less intervene of any professional team or outside company.

    [0075] At last, it should be noted that those skilled in the art can make various amendments and modifications to the present invention without departing from the present invention. Thus, the present invention intends to include the amendments and modifications if the amendments and modifications fall into the scope of the claims of the present invention and its equivalent technology.

    Industrial Applicability of Invention



    [0076] The system and method for managing cloud wireless sensor network with GUI in accordance with the present application can not only dynamically manage the operation condition of the wireless sensor network, but also allow directly monitoring and maintaining the wireless sensor network through the interface and performing the operation of establishing and modifying the communication path and data collection and so on.


    Claims

    1. A system for managing cloud wireless sensor network with graphical user interface, GUI, wherein the system comprises:

    one or more wireless sensor networks, each comprising at least one wireless device, wherein said wireless device comprises at least one base station, at least one node, at least one relay, and is configured to collect sensor data and transmit said sensor data and operation status of wireless devices to a cloud server; wherein said node or relay is adapted to transmit the collected sensor data to the base station through multi-hop;

    one or more cloud servers configured to receive said sensor data and operation status from said base station, to process said sensor data and store said sensor data in a database, to manage the operation of said wireless device in said wireless sensor network and to store a wireless device list and a communication connection list representing the communication connection between each pair of a father node and a child node in said wireless sensor network; wherein said cloud server is configured to transmit said wireless device list and said communication connection list to a client and to forward data packages from said client to said wireless device; and

    one or more clients configured to display said wireless device list and said communication connection list with a dynamic graphic interface and to convert user operation instructions into data compatible with said wireless device list and said communication connection list and transmit it to said cloud server;

    wherein said cloud server is configured to generate a data package in accordance with the data compatible with said wireless device list and/or said communication connection list and transmit the data package to the related wireless device and update said wireless device list and/or said communication connection list in response of an acknowledgement data packet from said wireless device; and said clients are configured to update an interface graphics program and thus updating image display in response of updating of said wireless device list and/or said communication connection list;

    wherein said user operation instructions are selected from the group consisting of : adding node, modifying a communication connection, removing a communication connection, deleting a wireless device and modifying parameters of a wireless device;

    wherein said dynamic graphic interface comprises the name of each wireless device in said wireless device list and network topology of said wireless devices;

    wherein width or length or color of a connecting line in said network topology varies with received signal strength indication, RSSI, of corresponding connection in said communication connection list.


     
    2. The system for managing cloud wireless sensor network with GUI of Claim 1, wherein the operation status comprises the status of the battery, the status of the communication connection, RSSI and the operation status of the sensor.
     
    3. The system for managing cloud wireless sensor network with GUI of Claim 1, wherein said node and said relay both comprise:

    a sensor module comprising a sensor device for collecting sensor data;

    a radio frequency, RF, communication module comprising a RF communication chip for wirelessly communicating with each other when adopting a same physical layer communication protocol; and

    a signal processing module configured to control said sensor module by requesting or modifying its operation status through serial port, to request and receive said sensor data from said sensor module, to process said sensor data, and to control said RF communication module to receive or transmit data package wirelessly and to request and modify operation status of said RF communication module.


     
    4. The system for managing cloud wireless sensor network with GUI of Claim 3, wherein said node and said relay further comprise:

    a memory for performing signal processing and computing;

    a hard drive for storing said sensor data and operating information including the communication protocol information; and

    a power supply module comprising a battery and a battery power managing chip and/or a DC power supply import and a DC power managing chip.


     
    5. The system for managing cloud wireless sensor network with GUI of Claim 4, wherein the base station comprises:

    a base station sensor module comprising a sensor device for collecting the sensor data; an Ethernet communication module comprising a Ethernet communication chip and an Ethernet interface, for communicating with devices in Ethernet via Ethernet standard communication protocols; and

    a base station signal processing module configured to control said base station sensor module by requesting or modifying its operation status through serial port, to request and receive said sensor data from said base station sensor module, to process said sensor data, and to control said Ethernet communication module to exchange data packages with said cloud server.


     
    6. The system for managing cloud wireless sensor network with GUI of Claim 1, wherein said base station further comprises:

    a memory for performing signal processing and computing;

    a hard drive for storing said sensor data and operating information including communications protocol information; and

    a power supply module comprising a battery and a battery power managing chip and/or a DC power supply import and a DC power managing chip.


     
    7. The system for managing cloud wireless sensor network with GUI of Claim 1, wherein each time receiving a data package transmitted from said base station, said cloud server updates said wireless device list and said communication connection list in accordance with said data package.
     
    8. The system for managing cloud wireless sensor network with GUI of Claim 7, wherein said client is configured to mark "x" on corresponding wireless device to indicate that the communication path of the child node is closed if RSSI is too low for reliable communication, and to display the characteristics of said wireless device in said wireless device list beside corresponding icon of said wireless device.
     
    9. A method for managing cloud wireless sensor network with graphical user interface, GUI, comprising:

    collecting, at a node or relay, sensor data and packaging said sensor data and operation status of the node or relay into a data package and transmitting the same to a base station through multi-hop; forwarding, by the base station, said data package received from said node or relay to a cloud server via Ethernet for further processing, wherein said cloud server is configured to store a wireless device list and a communication connection list representing the communication connection between each pair of father node and a child node said wireless sensor network, and to transmit said wireless device list and said communication connection list to a client; and displaying, at said client, said wireless device list and communication connection list in accordance with data packages obtained from said cloud server, and controlling and modifying operation status of wireless sensor network in accordance with user operation instructions;

    wherein controlling and modifying operation status of wireless sensor network in accordance with instructions further comprises: receiving said user operation instructions at said client; wherein said user operation instructions are selected from the group consisting of : adding node, modifying a communication connection, removing a communication connection, deleting a wireless device and modifying parameters of a wireless device; converting, at said client, said instructions into data compatible with said wireless device list and/or said communication connection list and then transmitting said data to said cloud server; parsing, at said cloud server, the received data, generating a data package in accordance with said data and transmitting said data package to related wireless device; after receiving, at said cloud server, an acknowledgment package from said wireless device, updating said wireless device list and/or said communication connection list in accordance with said acknowledge package and transmitting updated information to all clients, and updating wireless device list and/or communication connection list at said clients; and updating, at said clients, an interface graphics program and thus updating image display.


     
    10. The method for managing cloud wireless sensor network with GUI of Claim 9, wherein the step of forwarding said data package received from said node or relay to a cloud server further comprises:
    said cloud server transmitting to said base station a data package including a communication path via the Ethernet when the cloud server needs to communicate with a wireless device, and then said base station forwarding said data package.
     


    Ansprüche

    1. System zum Verwalten eines Cloud-Sensornetzes mit grafischer Benutzeroberfläche, GUI, wobei das System umfasst:

    ein oder mehrere drahtlose Sensornetzwerke, die jeweils mindestens eine drahtlose Vorrichtung umfassen, wobei die drahtlose Vorrichtung mindestens eine Basisstation, mindestens einen Knoten, mindestens eine Relaisstation umfasst und ausgelegt ist zum Erfassen von Sensordaten und Senden der Sensordaten und des Betriebsstatus von drahtlosen Vorrichtungen an einen Cloud-Server; wobei der Knoten oder die Relaisstation eingerichtet sind, um die erfassten Sensordaten über Multi-Hop zur Basisstation zu senden;

    einen oder mehrere Cloud-Server, ausgelegt zum Empfangen der Sensordaten und des Betriebsstatus von der Basisstation, um die Sensordaten zu verarbeiten und die Sensordaten in einer Datenbank zu speichern, um den Betrieb der drahtlosen Vorrichtung in dem drahtlosen Sensornetzwerk zu verwalten und um eine Liste drahtloser Vorrichtungen und eine Liste von Kommunikationsverbindungen zu speichern, die die Kommunikationsverbindung zwischen jedem Paar aus einem Vaterknoten und einem Kindknoten in dem drahtlosen Sensornetzwerk wiedergibt, wobei der Cloud-Server ausgelegt ist, um die Liste der drahtlosen Vorrichtungen und die Liste der Kommunikationsverbindungen an einen Client zu senden und Datenpakete von dem Client zu der drahtlosen Vorrichtung weiterzuleiten; und

    einen oder mehrere Clients, ausgelegt zum Anzeigen der Liste der drahtlosen Vorrichtungen und der Liste der Kommunikationsverbindungen mit einer dynamischen grafischen Oberfläche und zum Umwandeln der Betriebsanweisungen des Benutzers in Daten, die mit der Liste der drahtlosen Vorrichtungen und der Liste der Kommunikationsverbindungen kompatibel sind, und zum Senden dieser Daten an den Cloud-Server;

    wobei der Cloud-Server ausgelegt ist, um entsprechend den mit der Liste der drahtlosen Vorrichtungen und/oder der Liste der Kommunikationsverbindungen kompatiblen Daten ein Datenpaket zu erzeugen und das Datenpaket an die dazugehörige drahtlose Vorrichtung zu senden und um die Liste der drahtlosen Vorrichtungen und/oder die Liste der Kommunikationsverbindungen als Reaktion auf ein Quittungs-Datenpaket von der drahtlosen Vorrichtung zu aktualisieren, und wobei die Clients ausgelegt sind, um ein Oberflächengrafikprogramm zu aktualisieren und somit die Bildanzeige als Reaktion auf die Aktualisierung der Liste der drahtlosen Vorrichtungen und/oder der Liste der Kommunikationsverbindungen zu aktualisieren;

    wobei die Betriebsanweisungen des Benutzers ausgewählt sind aus der Gruppe bestehend aus: Hinzufügen eines Knotens, Modifizieren einer Kommunikationsverbindung, Entfernen einer Kommunikationsverbindung, Löschen einer drahtlosen Vorrichtung und Modifizieren von Parametern einer drahtlosen Vorrichtung;

    wobei die dynamische grafische Oberfläche den Namen jeder drahtlosen Vorrichtung in der Liste der drahtlosen Vorrichtungen und die Netzwerktopologie der drahtlosen Vorrichtungen umfasst;

    wobei die Breite oder Länge oder Farbe einer Verbindungsleitung in der Netzwerktopologie mit dem Indikator der Empfangsfeldstärke, RSSI, der dazugehörigen Verbindung in der Liste der Kommunikationsverbindungen variiert.


     
    2. System zum Verwalten eines Cloud-Sensornetzes mit GUI nach Anspruch 1, wobei der Betriebsstatus den Status der Batterie, den Status der Kommunikationsverbindung, RSSI, und den Betriebsstatus des Sensors umfasst.
     
    3. System zum Verwalten eines Cloud-Sensornetzes mit GUI nach Anspruch 1, wobei der Knoten und die Relaisstation jeweils umfassen:

    ein Sensormodul, umfassend eine Sensorvorrichtung zum Erfassen von Sensordaten;

    ein Hochfrequenz-(HF)-Kommunikationsmodul, umfassend einen HF-Kommunikations-Chip zur drahtlosen Kommunikation untereinander, wenn ein Kommunikationsprotokoll einer gleichen Bitübertragungsschicht übernommen wird; und

    ein Signalverarbeitungsmodul, ausgelegt zum Steuern des Sensormoduls durch Abfragen oder Modifizieren von dessen Betriebsstatus über einen seriellen Port, um die Sensordaten von dem Sensormodul anzufordern und zu empfangen, um die Sensordaten zu verarbeiten und um das HF-Kommunikationsmodul zum drahtlosen Empfangen oder Senden von Datenpaketen zu steuern und um den Betriebsstatus des HF-Kommunikationsmoduls abzurufen und zu modifizieren.


     
    4. System zum Verwalten eines Cloud-Sensornetzes mit GUI nach Anspruch 3, wobei der Knoten und die Relaisstation weiter umfassen:

    einen Speicher zum Ausführen der Signalverarbeitung und Berechnung;

    eine Festplatte zum Speichern der Sensordaten und Betriebsinformation einschließlich der Kommunikationsprotokoll-Information; und

    ein Stromversorgungsmodul umfassend eine Batterie und einen Batteriestrom-Management-Chip und/oder einen DC-Stromzufuhr-Import und einen DC-Strommanagement-Chip.


     
    5. System zum Verwalten eines Cloud-Sensornetzes mit GUI nach Anspruch 4, wobei die Basisstation umfasst: ein Basisstation-Sensormodul, umfassend eine Sensorvorrichtung zum Erfassen der Sensordaten;
    ein Ethernet-Kommunikationsmodul, umfassend einen Ethernet-Kommunikations-Chip und eine Ethernet-Schnittstelle zum Kommunizieren mit Vorrichtungen in Ethernet über standardmäßige Ethernet-Kommunikationsprotokolle; und
    ein Basisstation-Signalverarbeitungsmodul, ausgelegt zum Steuern des Basisstation-Sensormoduls durch Abrufen oder Modifizieren von dessen Betriebsstatus über einen seriellen Port, um die Sensordaten von dem Basisstation-Sensormodul abzurufen und zu empfangen, um die Sensordaten zu verarbeiten und um das Ethernet-Kommunikationsmodul zum Austausch von Datenpaketen mit dem Cloud-Server zu steuern.
     
    6. System zum Verwalten eines Cloud-Sensornetzes mit GUI nach Anspruch 1, wobei die Basisstation weiter umfasst:

    einen Speicher zum Ausführen der Signalverarbeitung und Berechnung;

    eine Festplatte zum Speichern der Sensordaten und Betriebsinformation einschließlich der Kommunikationsprotokoll-Information; und

    ein Stromversorgungsmodul, umfassend eine Batterie und einen Batteriestrom-Management-Chip und/oder einen DC-Stromzufuhr-Import und einen DC-Strommanagement-Chip.


     
    7. System zum Verwalten eines Cloud-Sensornetzes mit GUI nach Anspruch 1, wobei der Cloud-Server bei jedem Empfang eines von der Basisstation gesendeten Datenpakets die Liste der drahtlosen Vorrichtungen und die Liste der Kommunikationsverbindungen dem Datenpaket entsprechend aktualisiert.
     
    8. System zum Verwalten eines Cloud-Sensornetzes mit GUI nach Anspruch 7, wobei der Client ausgelegt ist, die entsprechende drahtlose Vorrichtung mit "x" zu markieren, um anzugeben, dass der Kommunikationspfad des Kindknotens geschlossen ist, falls RSSI für eine zuverlässige Kommunikation zu niedrig ist, und die Merkmale der drahtlosen Vorrichtung in der Liste der drahtlosen Vorrichtungen neben dem dazugehörigen Symbol der drahtlosen Vorrichtung anzuzeigen.
     
    9. System zum Verwalten eines Cloud-Sensornetzes mit grafischer Benutzeroberfläche, GUI, umfassend:

    Erfassen von Sensordaten an einem Knoten oder einer Relaisstation und Paketerstellung der Sensordaten und des Betriebsstatus des Knotens oder der Relaisstation zu einem Datenpaket und dessen Übertragung zu einer Basisstation mittels Multi-Hop;

    Weiterleiten des von dem Knoten oder der Relaisstation empfangenen Datenpakets durch die Basisstation an einen Cloud-Server über Ethernet zur weiteren Verarbeitung, wobei der Cloud-Server ausgelegt ist, um eine Liste drahtloser Vorrichtungen und eine Liste von Kommunikationsverbindungen, die die Kommunikationsverbindung zwischen jedem Paar aus Vaterknoten und einem Kindknoten wiedergibt, das drahtlosen Sensornetzwerk zu speichern und um die Liste drahtloser Vorrichtungen und die Liste von Kommunikationsverbindungen an einen Client zu senden; und

    Anzeigen der Liste drahtloser Vorrichtungen und der Liste von Kommunikationsverbindungen beim Client entsprechend den von dem Cloud-Server erhaltenen Datenpaketen und Steuern und Modifizieren des Betriebsstatus des drahtlosen Sensornetzwerks entsprechend den Betriebsanweisungen des Benutzers;

    wobei das Steuern und Modifizieren des Betriebsstatus des drahtlosen Sensornetzwerks entsprechend den Anweisungen weiter umfasst:

    Empfangen der Betriebsanweisungen des Benutzers beim Client;

    wobei die Betriebsanweisungen des Benutzers ausgewählt sind aus der Gruppe bestehend aus: Hinzufügen eines Knotens, Modifizieren einer Kommunikationsverbindung, Entfernen einer Kommunikationsverbindung, Löschen einer drahtlosen Vorrichtung und Modifizieren von Parametern einer drahtlosen Vorrichtung;

    Umwandeln der Anweisungen beim Client in mit der Liste drahtloser Vorrichtungen und/oder der Liste von Kommunikationsverbindungen kompatible Daten und dann Senden der Daten zu dem Cloud-Server;

    Parsing der empfangenen Daten bei dem Cloud-Server und Erzeugen eines Datenpakets entsprechend den Daten und Senden des Datenpakets zur diesbezüglichen drahtlosen Vorrichtung;

    nach dem Empfang eines Quittungspakets von der drahtlosen Vorrichtung bei dem Cloud-Server, Aktualisieren der Liste der drahtlosen Vorrichtungen und/oder der Liste von Kommunikationsverbindungen entsprechend dem Quittungspaket und Senden aktualisierter Information an alle Clients und Aktualisieren der Liste drahtloser Vorrichtungen und/oder der Liste von Kommunikationsverbindungen bei den Clients; und

    Aktualisieren eines Oberflächengrafikprogramms bei den Clients und somit Aktualisieren der Bildanzeige.


     
    10. Verfahren zum Verwalten eines Cloud-Sensornetzes mit GUI nach Anspruch 9, wobei der Schritt des Weiterleitens des von dem Knoten oder der Relaisstation empfangenen Datenpakets an einen Cloud-Server weiter umfasst:
    Senden eines Datenpakets einschließlich eines Kommunikationspfads durch den Cloud-Server an die Basisstation über das Ethernet, wenn der Cloud-Server mit einer drahtlosen Vorrichtung kommunizieren muss, und dann Weiterleiten des Datenpakets durch die Basisstation.
     


    Revendications

    1. Système pour gérer un réseau de capteurs sans fil en nuage avec une interface utilisateur graphique (GUI), dans lequel le système comprend :

    un ou plusieurs réseaux de capteurs sans fil, chacun comprenant au moins un dispositif sans fil, dans lequel ledit dispositif sans fil comprend au moins une station de base, au moins un noeud, au moins un relais et est configuré pour collecter des données de capteur et pour transmettre lesdites données de capteur et un état de fonctionnement de dispositifs sans fil à un serveur en nuage ; dans lequel ledit noeud, ou relais, est conçu pour transmettre les données de capteur collectées à la station de base par des sauts multiples ;

    un ou plusieurs serveurs en nuage configurés pour recevoir lesdites données de capteur et ledit état de fonctionnement en provenance de ladite station de base pour traiter lesdites données de capteur et pour stocker lesdites données de capteur dans une base de données, pour gérer le fonctionnement dudit dispositif sans fil dans ledit réseau de capteurs sans fil et pour stocker une liste de dispositifs sans fil et une liste de connexions de communication représentant la connexion de communication entre chaque paire d'un noeud père et d'un noeud enfant dans ledit réseau de capteurs sans fil ; dans lequel ledit serveur en nuage est configuré pour transmettre ladite liste de dispositifs sans fil et ladite liste de connexions de communication à un client et pour expédier des paquets de données du client audit dispositif sans fil ; et

    un ou plusieurs clients configurés pour afficher ladite liste de dispositifs sans fil et ladite liste de connexions de communication avec une interface graphique dynamique et pour convertir des instructions d'opération d'utilisateur en données compatibles avec ladite liste de dispositifs sans fil et ladite liste de connexions de communication et pour les transmettre audit serveur en nuage ;

    dans lequel ledit serveur en nuage est configuré pour générer un paquet de données en fonction des données compatibles avec ladite liste de dispositifs sans fil et/ou ladite liste de connexions de communication et pour transmettre le paquet de données au dispositif sans fil associé et pour mettre à jour ladite liste de dispositifs sans fil et/ou ladite liste de connexions de communication en réponse à un paquet de données d'accusé de réception en provenance dudit dispositif sans fil ; et lesdits clients sont configurés pour mettre à jour un programme graphique d'interface et, donc, pour mettre à jour un affichage de données à la suite de la mise à jour de ladite liste de dispositifs sans fil et/ou de ladite liste de connexions de communication ;

    dans lequel lesdites instructions d'opération d'utilisateur sont sélectionnées dans le groupe constitué par : l'ajout d'un noeud, la modification d'une connexion de communication, la suppression d'une connexion de communication, l'élimination d'un dispositif sans fil et la modification de paramètres d'un dispositif sans fil ;

    dans lequel ladite interface graphique dynamique comprend le nom de chaque dispositif sans fil dans ladite liste de dispositifs sans fil et une topologie de réseau desdits dispositifs sans fil ;

    dans lequel la largeur ou la longueur ou la couleur d'une ligne de connexion dans ladite topologie de réseau varie avec une indication d'intensité de signal reçu (RSSI) d'une connexion correspondante dans ladite liste de connexions de communication.


     
    2. Système pour gérer un réseau de capteurs sans fil en nuage avec une interface GUI selon la revendication 1, dans lequel l'état de fonctionnement comprend l'état de la batterie, l'état de la connexion de communication, l'indicateur RSSI et l'état de fonctionnement du capteur.
     
    3. Système pour gérer un réseau de capteurs sans fil en nuage avec une interface GUI selon la revendication 1, dans lequel ledit noeud et ledit relais comprennent l'un et l'autre :

    un module de capteur comprenant un dispositif de capteur pour collecteur des données de capteur ;

    un module de communication radiofréquence (RF) comprenant une puce de communication RF pour communiquer sans fil l'un avec l'autre lors de l'adoption d'un même protocole de communication de couche physique ; et

    un module de traitement de signal configuré pour commander ledit module de capteur en demandant ou en modifiant son état de fonctionnement au moyen d'un port série, pour demander et recevoir lesdites données de capteur en provenance dudit module de capteur, pour traiter lesdites données de capteur et pour commander ledit module de communication RF pour recevoir ou transmettre un paquet de données sans fil et pour demander et modifier un état de fonctionnement dudit module de communication RF.


     
    4. Système pour gérer un réseau de capteurs sans fil en nuage avec une interface GUI selon la revendication 3, dans lequel ledit noeud et ledit relais comprennent en outre :

    une mémoire pour effectuer un traitement de signal et un calcul ;

    un disque dur pour stocker lesdites données de capteur et des informations de fonctionnement comportant les informations de protocole de communication ; et

    un module d'alimentation électrique comprenant une batterie et une puce de gestion d'énergie de batterie et/ou une importation d'alimentation électrique en courant continu (CC) et une puce de gestion de puissance en courant continu.


     
    5. Système pour gérer un réseau de capteurs sans fil en nuage avec une interface GUI selon la revendication 4, dans lequel la station de base comprend :

    un module de capteur de station de base comprenant un dispositif de capteur pour collecter les données de capteur ;

    un module de communication Ethernet comprenant une puce de communication Ethernet et une interface Ethernet pour communiquer avec des dispositifs dans l'Ethernet par le biais de protocoles de communication de norme Ethernet ; et

    un module de traitement de signal de station de base configuré pour commander ledit module de capteur de station de base en demandant ou en modifiant son état de fonctionnement au moyen d'un port série, pour demander et recevoir lesdites données de capteur en provenance dudit module de capteur de station de base, pour traiter lesdites données de capteur et pour commander ledit module de communication Ethernet pour échanger des paquets de données avec ledit serveur en nuage.


     
    6. Système pour gérer un réseau de capteurs sans fil en nuage avec une interface GUI selon la revendication 1, dans lequel ladite station de base comprend en outre :

    une mémoire pour effectuer un traitement de signal et un calcul ;

    un disque dur pour stocker lesdites données de capteur et des informations de fonctionnement comportant des informations de protocole de communication ; et

    un module d'alimentation électrique comprenant une batterie et une puce de gestion d'énergie de batterie et/ou une importation d'alimentation électrique en courant continu (CC) et une puce de gestion de puissance en courant continu.


     
    7. Système pour gérer un réseau de capteurs sans fil en nuage avec une interface GUI selon la revendication 1, dans lequel chaque fois qu'il reçoit un paquet de données transmis par ladite station de base, ledit serveur en nuage met à jour ladite liste de dispositifs sans fil et ladite liste de connexions de communication en fonction dudit paquet de données.
     
    8. Système pour gérer un réseau de capteurs sans fil en nuage avec une interface GUI selon la revendication 7, dans lequel ledit client est configuré pour marquer un « x » sur un dispositif sans fil correspondant pour indiquer que le trajet de communication du noeud enfant est fermé si l'indicateur RSSI est trop faible pour une communication fiable et pour afficher les caractéristiques dudit dispositif sans fil dans ladite liste de dispositifs sans fil à côté d'une icône correspondante dudit dispositif sans fil.
     
    9. Procédé pour gérer un réseau de capteurs sans fil en nuage avec une interface utilisateur graphique (GUI) consistant :

    à collecter, au niveau d'un noeud ou d'un relais, des données de capteur et à mettre en paquets lesdites données de capteur et un état de fonctionnement du noeud ou du relais dans un paquet de données et à transmettre ce dernier à une station de base par des sauts multiples ;

    à expédier, au moyen de la station de base, ledit paquet de données reçu dudit noeud ou dudit relais à un serveur en nuage par le biais d'une connexion Ethernet pour un traitement supplémentaire, dans lequel ledit serveur en nuage est configuré pour stocker une liste de dispositifs sans fil et une liste de connexions de communication représentant la connexion de communication entre chaque paire d'un noeud père et d'un noeud enfant ledit réseau de capteurs sans fil et pour transmettre ladite liste de dispositifs sans fil et ladite liste de connexions de communication à un client ; et

    à afficher, chez ledit client, ladite liste de dispositifs sans fil et ladite liste de connexions de communication en fonction de paquets de données obtenus dudit serveur en nuage et à commander et à modifier un état de fonctionnement d'un réseau de capteurs sans fil en fonction d'instruction d'opération d'utilisateur ;

    dans lequel la commande et la modification d'un état de fonctionnement d'un réseau de capteurs sans fil en fonction d'instructions consistent en outre :

    à recevoir lesdites instructions d'opération d'utilisateur chez ledit client ;

    dans lequel lesdites instructions d'opération d'utilisateur sont sélectionnées dans le groupe constitué par : l'ajout d'un noeud, la modification d'une connexion de communication, la suppression d'une connexion de communication, l'élimination d'un dispositif sans fil et la modification de paramètres d'un dispositif sans fil ;

    à convertir, chez ledit client, lesdites instructions en données compatibles avec ladite liste de dispositifs sans fil et/ou ladite liste de connexions de communication et, ensuite, à transmettre lesdites données audit serveur en nuage ;

    à analyser, au niveau dudit serveur en nuage, les données reçues, à générer un paquet de données en fonction desdites données et à transmettre ledit paquet de données à un dispositif sans fil associé ;

    après la réception, au niveau dudit serveur en nuage, un paquet d'accusé de réception en provenance dudit dispositif sans fil, à mettre à jour ladite liste de dispositifs sans fil et/ou ladite liste de connexions de communication en fonction dudit paquet d'accusé de réception et à transmettre des informations mises à jour à tous les clients et à mettre à jour une liste de dispositifs sans fil et/ou une liste de connexions de communication chez tous les clients ; et

    à mettre à jour, chez lesdits clients, un programme graphique d'interface et, donc, à mettre à jour un affichage d'image.


     
    10. Procédé pour gérer un réseau de capteurs sans fil en nuage avec une interface GUI selon la revendication 9, dans lequel l'étape d'expédition dudit paquet de données reçu dudit noeud ou dudit relais à un serveur en nuage comprend en outre le fait que :
    ledit serveur en nuage transmet à ladite station de base un paquet de données comprenant un trajet de communication par le biais d'une connexion Ethernet lorsque le serveur en nuage doit communiquer avec un dispositif sans fil et, ensuite, ladite station de base expédie ledit paquet de données.
     




    Drawing















































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description