(19)
(11)EP 2 935 804 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 13865842.2

(22)Date of filing:  05.03.2013
(51)International Patent Classification (IPC): 
F01D 25/24(2006.01)
F02K 3/00(2006.01)
F02C 7/00(2006.01)
F04D 29/52(2006.01)
(86)International application number:
PCT/US2013/029078
(87)International publication number:
WO 2014/098936 (26.06.2014 Gazette  2014/26)

(54)

GAS TURBINE ENGINE INNER CASE INCLUDING NON-SYMMETRICAL BLEED SLOTS

GASTURBINENMOTOR-INNENGEHÄUSE MIT UNSYMMETRISCHEN ENTLÜFTUNGSSCHLITZEN

CARTER INTERNE DE MOTEUR À TURBINE À GAZ COMPRENANT DES FENTES DE PURGE NON SYMÉTRIQUES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 18.12.2012 US 201261738536 P

(43)Date of publication of application:
28.10.2015 Bulletin 2015/44

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventors:
  • RONAN, Michael
    East Hartford, Connecticut 06108 (US)
  • CARMINATI, Daniel
    Berlin, Connecticut 06037 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A1- 2 055 961
US-A- 5 203 162
US-A1- 2009 133 403
US-A1- 2010 275 613
JP-A- H02 241 904
US-A1- 2009 000 307
US-A1- 2009 155 056
US-A1- 2011 072 829
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION



    [0001] Bleed air from an axial flow compressor flows through axis-symmetric slots in an inner casing to a manifold. The bleed air in the manifold is directed to at least one of an aircraft environmental control system or wing-anti ice system, or elsewhere in the gas turbine engine for cooling. Flow extractions from the manifold at discrete locations can cause uneven pressure distribution and create a non-axis-symmetric bleed flow from the compressor. A non-axis-symmetric flow results in lower compressor stall margins than an axis-symmetric flow. Flow asymmetry can be reduced by decreasing the area of the bleed slots, but this can cause an increase in pressure losses.

    [0002] EP 2055961 discloses a flow extraction system for a compressor of a gas turbine engine comprising an annular opening in the compressor casing. Air entering the annular opening is directed to a bleed flow passage wherein the cross section of the bleed flow passage varies about the circumference of the casing.

    [0003] US 2009/000307 A1 discloses another compressor bleed system with a circumferential asymmetry.

    SUMMARY OF THE INVENTION



    [0004] The invention is a compressor according to claim 1.

    [0005] In a further embodiment of any of the foregoing compressors the compressor is a high pressure compressor.

    [0006] In a further embodiment of any of the foregoing compressors the plurality of first slots and the plurality of second slots are located after a fourth stage rotor.

    [0007] In a further embodiment of any of the foregoing compressors the second area of each of the second slots is substantially 90% of the first area of each of the first slots.

    [0008] In a further embodiment of any of the foregoing compressors the manifold includes four mid-turbine frame/low pressure turbine ports that direct bleed air to a mid-turbine frame and a low pressure turbine.

    [0009] In a further embodiment of any of the foregoing compressors the first slots are located proximate to the four mid-turbine frame/low pressure turbine ports.

    [0010] In a further embodiment of any of the foregoing compressors the manifold includes a buffer port that directs bleed air to bearings.

    [0011] In a further embodiment of any of the foregoing compressors the port is an environmental control system port that directs bleed air to an environmental control system.

    [0012] In a further embodiment of any of the foregoing compressors the plurality of first slots, the plurality of second slots, and the two third slots are equally located about the central longitudinal axis.

    [0013] In a further embodiment of any of the foregoing compressors the manifold includes a buffer port that directs bleed air to bearings and at least one of the two third slots is located proximate to a buffer port.

    [0014] In a further embodiment of any of the foregoing compressors the manifold includes four mid-turbine frame/low pressure turbine ports that direct bleed air to a mid-turbine frame and a low pressure turbine, and a buffer port that directs bleed air to bearings. The port is an environmental control system port that directs bleed air to an environmental control system. The environmental control system port has an area that is substantially four to substantially six times larger than an area of the four mid-turbine frame/low pressure turbine ports and an area of the buffer port.

    [0015] In a further embodiment of any of the foregoing compressors the second area of each of the second slots is substantially 90% of the first area of each of the first slots.

    [0016] In a further embodiment of any of the foregoing compressors the manifold includes four mid-turbine frame/low pressure turbine ports that direct bleed air to a mid-turbine frame and a low pressure turbine, and a buffer port that directs bleed air to bearings. The first slots are located proximate to the four mid-turbine frame/low pressure turbine ports and at least one of the two third slots is located proximate to the buffer port.

    [0017] In a further embodiment of any of the foregoing compressors the plurality of first slots, the plurality of second slots, and the two third slots are equally located about the central longitudinal axis.

    [0018] In a further embodiment of any of the foregoing compressors the compressor is a high pressure compressor.

    [0019] In a further embodiment of any of the foregoing compressors the plurality of second slots are located proximate to the port.

    [0020] These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0021] 

    Figure 1 illustrates a schematic view of an embodiment of a gas turbine engine;

    Figure 2 illustrates a cross-sectional view of an axial compressor taken along a central longitudinal axis; and

    Figure 3 illustrates a cross-sectional view of the axial compressor taken along an axis perpendicular to the central longitudinal axis.


    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT



    [0022] Figure 1 schematically illustrates an example gas turbine engine 20, such as a geared turbofan engine, that includes a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engines might include an augmenter section (not shown) among other systems or features. The fan section 22 includes a fan 42 and drives air along a bypass flow path B in a bypass duct defined within a nacelle 34, while the compressor section 24 draws air in along a core flow path C where air is compressed and communicated to the combustor section 26. In the combustor section 26, air is mixed with fuel and ignited to generate a high pressure exhaust gas stream that expands through the turbine section 28 where energy is extracted and utilized to drive the fan section 22 and the compressor section 24.

    [0023] Although the disclosed non-limiting embodiment depicts a geared turbofan gas turbine engine, it should be understood that the concepts described herein are not limited to use with geared turbofans as the teachings may be applied to other types of traditional turbine engines. For example, the gas turbine engine 20 can have a three-spool architecture in which three spools concentrically rotate about a common axis and where a low spool enables a low pressure turbine to drive the fan 42 via a gearbox, an intermediate spool that enables an intermediate pressure turbine to drive a first compressor of the compressor section, and a high spool that enables a high pressure turbine to drive a high pressure compressor of the compressor section.

    [0024] The example gas turbine engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about a central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided.

    [0025] The low speed spool 30 generally includes an inner shaft 40 that connects the fan 42 and a low pressure (or first) compressor section 44 to a low pressure (or first) turbine section 46. The inner shaft 40 drives the fan 42 through a speed change device, such as a geared architecture 48, to drive the fan 42 at a lower speed than the low speed spool 30. The high-speed spool 32 includes an outer shaft 50 that interconnects a high pressure (or second) compressor section 52 and a high pressure (or second) turbine section 54. The inner shaft 40 and the outer shaft 50 are concentric and rotate via the bearing systems 38 about the central longitudinal axis A which is collinear with their longitudinal axes.

    [0026] A combustor 56 is arranged between the high pressure compressor 52 and the high pressure turbine 54. In one example, the high pressure turbine 54 includes at least two stages to provide a double stage high pressure turbine 54. In another example, the high pressure turbine 54 includes only a single stage. As used herein, a "high pressure" compressor or turbine experiences a higher pressure than a corresponding "low pressure" compressor or turbine.

    [0027] The example low pressure turbine 46 has a pressure ratio that is greater than substantially 5. The pressure ratio of the example low pressure turbine 46 is measured prior to an inlet of the low pressure turbine 46 as related to the pressure measured at the outlet of the low pressure turbine 46 prior to an exhaust nozzle.

    [0028] A mid-turbine frame 58 of the engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46. The mid-turbine frame 58 further supports bearing systems 38 in the turbine section 28 as well as setting airflow entering the low pressure turbine 46.

    [0029] The air in the core flow path C is compressed by the low pressure compressor 44 then by the high pressure compressor 52, mixed with fuel and ignited in the combustor 56 to produce high speed exhaust gases that are then expanded through the high pressure turbine 54 and low pressure turbine 46. The mid-turbine frame 58 includes vanes 60, which are in the core flow path C and function as an inlet guide vane for the low pressure turbine 46. Utilizing the vane 60 of the mid-turbine frame 58 as the inlet guide vane for low pressure turbine 46 decreases the length of the low pressure turbine 46 without increasing the axial length of the mid-turbine frame 58. Reducing or eliminating the number of vanes in the low pressure turbine 46 shortens the axial length of the turbine section 28. Thus, the compactness of the gas turbine engine 20 is increased and a higher power density may be achieved.

    [0030] The disclosed gas turbine engine 20 in one example is a high-bypass geared aircraft engine. In a further example, the gas turbine engine 20 includes a bypass ratio greater than substantially six (6), with an example embodiment being greater than substantially ten (10). The example geared architecture 48 is an epicyclical gear train, such as a planetary gear system, star gear system or other known gear system, with a gear reduction ratio of greater than substantially 2.3.

    [0031] In one disclosed embodiment, the gas turbine engine 20 includes a bypass ratio greater than substantially ten (10:1) and the fan diameter is significantly larger than an outer diameter of the low pressure compressor 44. It should be understood, however, that the above parameters are only exemplary of one embodiment of a gas turbine engine including a geared architecture 48 and that the present disclosure is applicable to other gas turbine engines.

    [0032] A significant amount of thrust is provided by the air in the bypass flow path B due to the high bypass ratio. The fan section 22 of the gas engine 20 is designed for a particular flight condition -- typically cruise at substantially 0.8 Mach and substantially 35,000 feet. The flight condition of 0.8 Mach and 35,000 ft., with the engine at its best fuel consumption - also known as "bucket cruise Thrust Specific Fuel Consumption ('TSFC')" - is the industry standard parameter of pound-mass (lbm) of fuel per hour being burned divided by pound-force (lbf) of thrust the engine produces at that minimum point.

    [0033] "Low fan pressure ratio" is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane ("FEGV") system. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than substantially 1.50. In another non-limiting embodiment the low fan pressure ratio is less than substantially 1.45. "Low corrected fan tip speed" is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tram °R) / (518.7 °R)]0.5. The "Low corrected fan tip speed" as disclosed herein according to one non-limiting embodiment is less than about 1150 ft / second.

    [0034] The example gas turbine engine includes the fan 42 that comprises in one non-limiting embodiment less than substantially 26 fan blades. In another non-limiting embodiment, the fan section 22 includes less than substantially 20 fan blades. Moreover, in one disclosed embodiment the low pressure turbine 46 includes no more than substantially 6 turbine rotors. In another non-limiting example embodiment the low pressure turbine 46 includes substantially 3 turbine rotors. A ratio between the number of fan blades and the number of low pressure turbine rotors is between substantially 3.3 and substantially 8.6. The example low pressure turbine 46 provides the driving power to rotate the fan section 22 and therefore the relationship between the number of turbine rotors in the low pressure turbine 46 and the number of blades in the fan section 22 disclose an example gas turbine engine 20 with increased power transfer efficiency.

    [0035] Figure 2 illustrates a cross-sectional view of a portion of an axial compressor, such as the high pressure compressor 52, of the gas turbine engine 20. The high pressure compressor 52 includes a plurality of rotors 62 that rotate about the central longitudinal axis A and a plurality of stators 64 attached to a circumferential inner case 66 located outwardly of the plurality of rotors 62 and the plurality of stators 64. The plurality of rotors 62 and the plurality of stators 64 alternate. A circumferential manifold 68 is located outwardly of the inner case 66. Air flows through ports 78, 80 and 82 in the manifold 68 to various gas turbine engine 20 components, as explained below.

    [0036] As shown in Figure 3, the inner case 66 includes a plurality of smaller bleed slots 70, a plurality of transitional bleed slots 74, and a plurality of larger bleed slots 72 in fluid communication with the manifold 68. The smaller bleed slots 70, the transitional bleed slots 74, and the larger bleed slots 72 are separated by structural ligaments. Air from the core flow path C flows through the smaller bleed slots 70, the transitional bleed slots 74, and the larger bleed slots 72 and into the manifold 68. In one example, the smaller bleed slots 70, the transitional bleed slots 74, and the larger bleed slots 72 are located axially after the fourth stage rotor 62.

    [0037] The plurality of smaller bleed slots 70 are grouped together in a common area 76 of the inner case 66, and one transitional bleed slot 74 is located on each side of the common area 76. In one example, there are five smaller bleed slots 70, two transitional bleed slots 74 and fifteen larger bleed slots 72. In one example, the smaller bleed slots 70, the transitional bleed slots 74, and the larger bleed slots 72 are equally spaced about the central longitudinal axis A.

    [0038] In one example, the smaller bleed slots 70, the transitional bleed slots 74, and the larger bleed slots 72 are substantially oval in shape. In one example, the smaller bleed slots 70 each have an area that is substantially 90% of the area of each of the larger bleed slots 72. That is, the smaller bleed slots 70, the transitional bleed slots 74, and the larger bleed slots 72 have unequal areas. Therefore, the distribution of bleed slots 70, 72 and 74 is non-axis-symmetric.

    [0039] The manifold 68 includes six ports. The manifold 68 includes four mid-turbine frame/low pressure turbine ports 78 that direct bleed air in the manifold 68 to the mid-turbine frame 58 and the low pressure turbine 46. The larger bleed slots 72 are located proximate to the mid-turbine frame/low pressure turbine ports 78. In one example, at least one of the larger bleed slots 72 is located proximate to the mid-turbine frame/low pressure turbine port 78.

    [0040] The manifold 68 also includes a buffer port 80 that directs bleed air in the manifold 68 to the bearing systems 38. The buffer port 80 is located near one of the two transitional bleed slots 74.

    [0041] The manifold 68 also includes an environmental control system port 82 located near the smaller bleed slots 70 that directs air to an environmental control system 84. The greatest amount of bleed air flows through the environmental control system port 82. The environmental control system port 82 has an opening with an area that is approximately four to six times larger than the area of the opening of the mid-turbine frame/low pressure turbine ports 78 or the area of the opening of the buffer port 80.

    [0042] By locating the smaller bleed slots 70 proximate to the environmental control system port 82, a reduced amount of air flows into the environmental control system port 82 through the smaller bleed slots 70. However, as the manifold 68 is circumferential, bleed air from the other larger bleed slots 72 flows towards and enters the environmental control system port 82, allowing the required amount of bleed air to be directed to the environmental control system 84. That is, the environmental control system 84 is provided with enough bleed air because of the other bleed air flowing into the manifold 68 through the slots 72 proximate to the mid-turbine frame/low pressure turbine ports 78 and the buffer port 80.

    [0043] Pressure losses from the low pressure compressor 24 to the manifold 68 are reduced due to the presence of the larger bleed slots 72. As a result of the distribution of bleed slots 70, 72 and 74 of different areas, the flow of bleed air becomes more axis-symmetric.

    [0044] Additionally, each of the smaller bleed slots 70 can have a different area than the other smaller bleed slots 70, each of the transitional bleed slots 74 can have a different area than the other of the transitional bleed slot 74, and each of the larger bleed slots 72 can have a different area than the other of the larger bleed slots 72. That is, the area of each of the smaller bleed slots 70 does not need to be identical, the area of each of the transitional bleed slots 74 does not need to be identical, and the area of each of the larger bleed slots 72 does not need to be identical.

    [0045] Although a gas turbine engine 20 with geared architecture 48 is described, the inner case 66 can be employed in a gas turbine engine without geared architecture.

    [0046] The foregoing description is only exemplary of the principles of the invention. Many modifications and variations are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than using the example embodiments which have been specifically described. The invention is defined solely by the appended claims.


    Claims

    1. A compressor for a gas turbine engine (20), comprising:

    a plurality of rotors (62) rotatable about a central longitudinal axis (A);

    a plurality of stators (64);

    a circumferential inner case wall (66) located outwardly of the plurality of rotors and the plurality of stators, and

    a circumferential manifold (68) located outwardly of the inner case wall including a port (82),

    characterised in that

    the inner case wall includes a plurality of first slots (72) located in a first section of the circumferential inner case wall, a plurality of second slots (70) located in at least one second section (76) of the circumferential inner case wall, and two third slots (74), in that a first area of each of the first slots is greater than a second area of each of the second slots, in that the first section and the at least one second section are circumferentially arranged about the central longitudinal axis, in that each of the third slots has a third area smaller than the second area of each of the second slots (70), and the first section and the at least one second section (76) meet at two locations, and each of the third slots is located at one of the two locations; and

    in that the plurality of second slots is located closer to the port than the plurality of first slots.


     
    2. The compressor as recited in claim 1 wherein the compressor is a high pressure compressor (52).
     
    3. The compressor as recited in claim 1 or 2 wherein the plurality of first slots (72) and the plurality of second slots (70) are located after a fourth stage rotor (62).
     
    4. The compressor as recited in any preceding claim wherein the second area of each of the second slots (70) is substantially 90% of the first area of each of the first slots (72).
     
    5. The compressor as recited in any preceding claim wherein the manifold (68) includes four mid-turbine frame/low pressure turbine ports (78) that direct bleed air to a mid-turbine frame (58) and a low pressure turbine (46).
     
    6. The compressor as recited in claim 5 wherein the first slots (72) are located proximate to the four mid-turbine frame/low pressure turbine ports (78).
     
    7. The compressor as recited in any preceding claim wherein the manifold (68) includes a buffer port (80) that directs bleed air to bearings (38).
     
    8. The compressor as recited in any preceding claim wherein the port is an environmental control system port (82) that directs bleed air to an environmental control system (84).
     
    9. The compressor as recited in any preceding claim wherein the plurality of first slots (72), the plurality of second slots (70), and the two third slots (74) are equally located about the central longitudinal axis.
     
    10. The compressor as recited in any preceding claim wherein the manifold (68) includes a buffer port (80) that directs bleed air to bearings (38), and at least one of the two third slots (74) is located proximate to the buffer port.
     
    11. The compressor as recited in any preceding claim wherein:

    the manifold (68) includes:

    four mid-turbine frame/low pressure turbine ports (78) that direct bleed air to a mid-turbine frame (58) and a low pressure turbine (46), and

    a buffer port (80) that directs bleed air to bearings (38),

    wherein the port is an environmental control system port (82) that directs bleed air to an environmental control system (84), and

    wherein the environmental control system port has an area that is substantially four to substantially six times larger than an area of the four mid-turbine frame/low pressure turbine ports and an area of the buffer port.


     


    Ansprüche

    1. Kompressor für ein Gasturbinentriebwerk (20), Folgendes umfassend:

    eine Vielzahl von Rotoren (62), die um eine zentrale Längsachse (A) rotierbar sind;

    eine Vielzahl von Statoren (64);

    eine umlaufende innere Gehäusewand (66), die sich außerhalb der Vielzahl von Rotoren und der Vielzahl von Statoren befindet, und

    ein umlaufender Verteiler (68), der sich außerhalb der inneren Gehäusewand befindet und einen Anschluss (82) beinhaltet,

    dadurch gekennzeichnet, dass

    die innere Gehäusewand eine Vielzahl von ersten Schlitzen (72), die sich in einem ersten Abschnitt der umlaufenden inneren Gehäusewand befindet, eine Vielzahl von zweiten Schlitzen (70), die sich in mindestens einem zweiten Abschnitt (76) der umlaufenden inneren Gehäusewand befindet, und zwei dritte Schlitze (74) beinhaltet,

    ein erster Bereich von jedem der ersten Schlitze größer ist als ein zweiter Bereich von jedem der zweiten Schlitze, der erste Abschnitt und der mindestens eine zweite Abschnitt umlaufend um die zentrale Längsachse angeordnet sind, jeder der dritten Schlitze einen dritten Bereich aufweist, der kleiner ist als der zweite Bereich von jedem der zweiten Schlitze (70), und sich der erste Abschnitt und der mindestens eine zweite Abschnitt (76) an zwei Stellen treffen, und sich jeder der dritten Schlitze an einer der zwei Stellen befindet; und

    sich die Vielzahl von zweiten Schlitzen näher an dem Anschluss befindet als die Vielzahl von ersten Schlitzen.


     
    2. Kompressor nach Anspruch 1, wobei der Kompressor ein Hochdruckkompressor (52) ist.
     
    3. Kompressor nach einem der Ansprüche 1 oder 2, wobei sich die Vielzahl von ersten Schlitzen (72) und die Vielzahl von zweiten Schlitzen (70) hinter einem vierten Stufenrotor (62) befinden.
     
    4. Kompressor nach einem der vorhergehenden Ansprüche, wobei der zweite Bereich von jedem der zweiten Schlitze (70) im Wesentlichen 90 % von dem ersten Bereich von jedem der ersten Schlitze (72) ausmacht.
     
    5. Kompressor nach einem der vorhergehenden Ansprüche, wobei der Verteiler (68) vier Mittelturbinenrahmen-/Niederdruckturbinenanschlüsse (78) beinhaltet, die Abluft an einen Mittelturbinenrahmen (58) und eine Niederdruckturbine (46) leiten.
     
    6. Kompressor nach Anspruch 5, wobei sich die ersten Schlitze (72) nahe der vier Mittelturbinenrahmen-/Niederdruckturbinenanschlüsse (78) befinden.
     
    7. Kompressor nach einem der vorhergehenden Ansprüche, wobei der Verteiler (68) einen Pufferanschluss (80) beinhaltet, der Abluft zu Lagern (38) leitet.
     
    8. Kompressor nach einem der vorhergehenden Ansprüche, wobei der Anschluss ein Anschluss (82) eines Umgebungssteuersystems ist, der Abluft zu einem Umgebungssteuersystem (84) leitet.
     
    9. Kompressor nach einem der vorhergehenden Ansprüche, wobei sich die Vielzahl von ersten Schlitzen (72), die Vielzahl von zweiten Schlitzen (70), und die zwei dritten Schlitze (74) in gleichem Abstand um die zentrale Längsachse befinden.
     
    10. Kompressor nach einem der vorhergehenden Ansprüche, wobei der Verteiler (68) einen Pufferanschluss (80) beinhaltet, der Abluft zu Lagern (38) leitet, und sich mindestens einer der zwei dritten Schlitze (74) nahe dem Pufferanschluss befindet.
     
    11. Kompressor nach einem der vorhergehenden Ansprüche, wobei:

    der Verteiler (68) Folgendes beinhaltet:

    vier Mittelturbinenrahmen-/Niederdruckturbinenanschlüsse (78), die Abluft zu einem Mittelturbinenrahmen (58) und einer Niederdruckturbine (46) leiten, und

    einen Pufferanschluss (80), der Abluft zu Lagern (38) leitet,

    wobei der Anschluss (82) ein Anschluss eines Umgebungssteuersystems ist, der Abluft zu einem Umgebungssteuersystem (84) leitet, und

    wobei der Anschluss des Umgebungssteuersystems einen Bereich aufweist, der im Wesentlichen vier- bis sechsmal größer als ein Bereich der vier Mittelturbinenrahmen-/Niederdruckturbinenanschlüsse und ein Bereich des Pufferanschlusses ist.


     


    Revendications

    1. Compresseur pour un moteur à turbine à gaz (20), comprenant :

    une pluralité de rotors (62) rotatifs autour d'un axe longitudinal central (A) ;

    une pluralité de stators (64) ;

    une paroi de carter interne circonférentielle (66) située vers l'extérieur de la pluralité de rotors et de la pluralité de stators, et

    un collecteur circonférentiel (68) situé vers l'extérieur de la paroi de carter interne comportant un orifice (82), caractérisé en ce que

    la paroi de carte interne comporte une pluralité de premières fentes (72) situées dans une première section de la paroi de carter interne circonférentielle, une pluralité de deuxièmes fentes (70) situées dans au moins une seconde section (76) de la paroi de carter interne circonférentielle, et deux troisièmes fentes (74), en ce que

    une première région de chacune des premières fentes est plus grande qu'une deuxième région de chacune des deuxièmes fentes, en ce que la première section et l'au moins une seconde section sont disposées circonférentiellement autour de l'axe longitudinal central, en ce que chacune des troisièmes fentes a une troisième région plus petite que la deuxième région de chacune des deuxièmes fentes (70), et la première section et l'au moins une seconde section (76) se croisent en deux emplacements, et chacune des troisièmes fentes est située à l'un des deux emplacements ; et
    en ce que la pluralité de deuxièmes fentes est située plus près de l'orifice que la pluralité de premières fentes.
     
    2. Compresseur selon la revendication 1, dans lequel le compresseur est un compresseur haute pression (52).
     
    3. Compresseur selon les revendications 1 ou 2, dans lequel la pluralité de premières fentes (72) et la pluralité de deuxièmes fentes (70) sont situées après un rotor de quatrième étage (62).
     
    4. Compresseur selon une quelconque revendication précédente, dans lequel la deuxième région de chacune des deuxièmes fentes (70) représente sensiblement 90 % de la première région de chacune des premières fentes (72).
     
    5. Compresseur selon une quelconque revendication précédente, dans lequel le collecteur (68) comporte quatre orifices de cadre de turbine centrale/turbine basse pression (78) qui dirigent l'air de purge vers un cadre de turbine centrale (58) et une turbine basse pression (46).
     
    6. Compresseur selon la revendication 5, dans lequel les premières fentes (72) sont situées à proximité des quatre orifices de cadre de turbine centrale/turbine basse pression (78) .
     
    7. Compresseur selon une quelconque revendication précédente, dans lequel le collecteur (68) comporte un orifice tampon (80) qui dirige l'air de purge vers des paliers (38).
     
    8. Compresseur selon une quelconque revendication précédente, dans lequel l'orifice est un orifice de système de conditionnement d'air (82) qui dirige l'air de purge vers un système de conditionnement d'air (84).
     
    9. Compresseur selon une quelconque revendication précédente, dans lequel la pluralité de premières fentes (72), la pluralité de deuxièmes fentes (70) et les deux troisièmes fentes (74) sont également situées autour de l'axe longitudinal central.
     
    10. Compresseur selon une quelconque revendication précédente, dans lequel le collecteur (68) comporte un orifice tampon (80) qui dirige l'air de purge vers des paliers (38), et au moins l'une des deux troisièmes fentes (74) est située à proximité de l'orifice tampon.
     
    11. Compresseur selon l'une quelconque des revendications précédentes, dans lequel :

    le collecteur (68) comprend :

    quatre orifices de cadre turbine centrale/turbine basse pression (78) qui dirigent l'air de purge vers un cadre de turbine centrale (58) et une turbine basse pression (46), et

    un orifice tampon (80) qui dirige l'air de purge vers des paliers (38),

    dans lequel l'orifice est un orifice de système de conditionnement d'air (82) qui dirige l'air de purge vers un système de conditionnement d'air (84), et

    dans lequel l'orifice du système de conditionnement d'air a une région qui est sensiblement quatre à sensiblement six fois plus grande qu'une région des quatre orifices de cadre de turbine centrale/turbine basse pression et une région de l'orifice tampon.


     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description