(19)
(11)EP 2 941 537 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 13821647.8

(22)Date of filing:  31.12.2013
(51)International Patent Classification (IPC): 
F01C 1/46(2006.01)
F01C 21/08(2006.01)
F01C 3/02(2006.01)
(86)International application number:
PCT/US2013/078510
(87)International publication number:
WO 2014/107458 (10.07.2014 Gazette  2014/28)

(54)

CIRCULATING PISTON ENGINE

UMLAUFKOLBENMOTOR

MOTEUR À PISTON DE CIRCULATION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 03.01.2013 US 201361748553 P

(43)Date of publication of application:
11.11.2015 Bulletin 2015/46

(73)Proprietor: WB Development Company LLC
Marlborough, MA 01752 (US)

(72)Inventors:
  • BONIN, Walter, T.
    Marlborough, MA 01572 (US)
  • JORDAN, Glenn, A.
    Harvard, MA 01451 (US)

(74)Representative: Vossius, Corinna et al
Corinna Vossius IP Group Patent- und Rechtsanwaltskanzlei Buchenstraße 17
82064 Straßlach-Dingharting
82064 Straßlach-Dingharting (DE)


(56)References cited: : 
WO-A1-2005/038198
WO-A2-2008/024505
DE-A1- 3 815 122
US-A- 2 069 557
WO-A1-2008/108743
DE-A1- 3 403 132
DE-A1-102007 020 337
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] Conventional piston engines include multiple cylinder assemblies used to drive a crankshaft. In order to drive the crankshaft, each cylinder assembly requires fuel, such as provided by a fuel pump via a fuel injector. During operation, a spark plug of each cylinder assembly ignites a fuel/air mixture received from the fuel injector and causes the mixture to expand. Expansion of the ignited mixture displaces a piston of the cylinder assembly within a cylinder assembly housing to rotate the crankshaft.

    [0002] By contrast to conventional piston engines, embodiments of the present innovation relate to a circulating piston engine. A known circulating piston engine is disclosed in DE 38 15 122 A1.

    SUMMARY



    [0003] According to the invention, the circulating piston engine includes a housing that defines an annular bore extending about its outer periphery and a set of pistons disposed within the bore and secured to a drive mechanism or driveshaft. The engine also includes a set of valves that are moveably disposed within the bore, each valve being configured to define a temporary combustion chamber relative to a corresponding piston.

    [0004] During operation, when disposed in a first position, each valve defines a combustion chamber relative to a corresponding piston, a fuel injector introduces a gas/air mixture into the chamber, and a spark plug ignites the mixture. Combustion of the mixture generates a corresponding force on each piston (e.g., along a direction that is substantially tangential to the annular bore along the direction of rotation of the drive mechanism) and propels the pistons forward within the annular bore. As each piston advances toward a subsequently disposed valve, each of the valves moves to a second position within the annular bore to allow each piston to rotate past the corresponding valve. Next, the engine repositions each valve within the bore to the first position to define the combustion chamber with the corresponding piston and the process begins again. Accordingly, as the set of pistons rotate around the perimeter of the engine, the drive mechanism generates a relatively large torque, such as an average torque of about 4500 ft-lbs (about 6100 Nm). ignition, the drive mechanism can generate a torque of about 10,000 ft-lbs (about 13600 Nm). These torques are generated by the relatively large moment arm between each piston and the drive mechanism, as well as the 90° direction of the force applied to each piston.

    [0005] In one arrangement, the annular bore defined by the engine housing has a relatively large circumference. During operation, when divided by the pistons, this results in a relatively long stroke distance utilizing a high percentage of the energy generated by combustion of the fuel/air mixture within the combustion chamber. Additionally, the substantially continuous motion of the pistons within the annular bore reduces the duration of time that each piston is exposed to the heat of combustion, thereby providing the engine with a relatively high thermal efficiency (e.g., relative to crankshaft-based engines). Also, the configuration of the fuel delivery system of the engine allows the fuel to be delivered to the engine in a process that is separate from, but parallel to, the combustion process. This creates, in effect, a single cycle engine where the combustion process is substantially continuous and where the power output of the engine can be increased (e.g., increased to a horsepower of about 685, 510 KW, @800 RPM) relative to conventional engines. Accordingly, the engine configuration results in the delivery of more precise fuel ratios, a more complete combustion of the fuel/air mixture, and shorter times at high temperatures compared to conventional piston engines. This can reduce the amount of contaminants generated by the engine and output as part of the exhaust and can increase the engine's efficiency such as to an efficiency of about 60%.

    [0006] According to the invention, the engine includes a housing that defines an annular bore, a piston assembly, and a valve. The piston assembly is disposed within the annular bore and is configured to be coupled to a drive mechanism. The valve is configured to be intermittently disposed within the annular bore to define a combustion chamber relative to the piston assembly.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0007] The foregoing and other objects, features and advantages will be apparent from the following description of particular embodiments of the innovation, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of various embodiments of the innovation.

    Fig. 1 illustrates an overhead, cross-sectional, schematic view of an engine having a piston assembly disposed in a first position within the housing, according to one arrangement

    Fig. 2A illustrates a partial sectional view of a portion of an annular bore of Fig. 1, according to one arrangement.

    Fig. 2B illustrates a partial sectional view of a portion of the annular bore of Fig. 2A, according to one arrangement.

    Fig. 3 illustrates an overhead, cross-sectional, schematic view of the engine of Fig. 1 having a piston assembly disposed in a second position within the housing, according to one arrangement.

    Fig. 4 illustrates a front view of an arrangement of a valve of Fig. 1, according to one arrangement.

    Fig. 5 illustrates a rear view of the valve of Fig. 4, according to one arrangement.

    Fig. 6 illustrates the valve of Fig. 4 disposed in an engine, according to one arrangement.

    Fig. 7A illustrates an arrangement of a toggling mechanism coupled to the valve of Fig. 4, according to one arrangement.

    Fig. 7B illustrates a perspective view of a rocker arm of Fig. 7A, according to one arrangement.

    Fig. 8 illustrates an arrangement of a compressor of the engine of Fig. 6.

    Fig. 9A illustrates a top schematic view of an air intake assembly, according to one arrangement.

    Fig. 9B illustrates a perspective cutaway view of a rotatable plate of the air intake assembly of Fig. 9A.

    Fig. 9C illustrates a schematic view of the air intake assembly and a fuel distribution assembly of Fig. 9B.

    Fig. 10 illustrates a perspective view of a rocker arm disposed between a valve and a splined barrel cam.


    DETAILED DESCRIPTION



    [0008] Embodiments of the present innovation relate to a circulating piston engine. In one arrangement, the circulating piston engine includes a housing that defines an annular bore extending about its outer periphery and a set of pistons disposed within the bore and secured to a drive mechanism or driveshaft. The engine also includes a set of valves that are moveably disposed within the bore, each valve being configured to define a temporary combustion chamber relative to a corresponding piston.

    [0009] Fig. 1 illustrates an overhead, cross-sectional, schematic view of a circulating piston engine 10, according to one arrangement. The engine 10 includes a housing 12 that defines an annular channel or bore 14 and that contains a piston assembly 16 and a valve assembly 18.

    [0010] The annular bore 14 is disposed at an outer periphery of the housing 12. While the annular bore 14 can be configured in a variety of sizes, in one arrangement, the annular bore 14 is configured as having a radius 15 of about twelve inches relative to an axis of rotation 21 of the piston assembly 16. As will be described below, with such a configuration, the relatively large radius 15 of the annular bore 14 disposes the engine combustion chamber at a maximal distance from the axis of rotation 21 and allows the piston assembly to generate a relatively large torque on an associated drive mechanism 20, such as a drive shaft, disposed at the axis of rotation.

    [0011] The annular bore 14 can be configured with a cross-sectional area having a variety of shapes. For example, with reference to Fig. 2B, in the case where a piston 24 of the piston assembly 16 is configured to define a generally rectangular cross-sectional area 25, the annular bore 14 can also define a corresponding rectangular cross-sectional area 27. In such an arrangement, the cross-sectional area 27 of the annular bore 14 is larger than the cross sectional area 25 of the piston 24 to allow the piston 24 to travel within the annular bore 14 during operation.

    [0012] Returning to Fig. 1, in the arrangement illustrated, the piston assembly 16 is disposed within the annular bore 14 and is coupled to the drive mechanism 20 via a flywheel 22. While the piston assembly 16 can include any number of individual pistons 24, in the arrangement illustrated, the piston assembly 16 includes four pistons 24-1 through 24-4 disposed about the periphery of the flywheel 22. While the pistons 24 can be disposed at a variety of locations about the periphery of the flywheel 22, in one arrangement, opposing pistons are disposed at an angular orientation of about 180° relative to each other and adjacent pistons disposed at an angular orientation of about 90° relative to each other. For example, as illustrated, the first and third pistons 24-1, 24-3 are disposed on the flywheel 22 at about 180° relative to each other and the second and fourth pistons 24-2, 24-4 are disposed on the flywheel 22 at about 180° relative to each other. Additionally, the first and second pistons 24-1, 24-2 are disposed on the flywheel 22 at a relative angular orientation of about 90°, the second and third pistons 24-2, 24-3 are disposed on the flywheel 22 at a relative angular orientation of about 90°, the third and fourth pistons 24-3, 24-4 are disposed on the flywheel 22 at a relative angular orientation of about 90°, and the fourth and first pistons 24-4, 24-1 are disposed on the flywheel 22 at a relative angular orientation of about 90°.

    [0013] During operation, the pistons 24 of the piston assembly 16 are configured to rotate within the annular bore 14. As illustrated, the pistons 24 are configured to rotate within the annular bore 14 in a clockwise direction. However, it should be noted that the pistons can rotate within the annular bore 14 in a counterclockwise manner as well. Such rotation causes rotation of the drive mechanism 20.

    [0014] The valve assembly 18 includes a set of valves 30 configured to define combustion chambers 26 relative to the respective pistons 24 of the piston assembly 16. For example, while the valve assembly 18 can include any number of individual valves 30, in the arrangement illustrated, the valve assembly 18 includes valves 30-1 through 30-4 disposed within the annular bore 14 of the housing 12. While the valves 30 can be disposed at a variety of locations about the periphery of the housing 12, in one arrangement, opposing valves are disposed at an angular orientation of about 180° relative to each other and adjacent valves disposed at an angular orientation of about 90° relative to each other. For example, as illustrated, the first and third valves 30-1, 30-3 are disposed about the periphery of the housing 12 at about 180° relative to each other and the second and fourth valves 30-2, 30-4 are disposed about the periphery of the housing 12 at about 180° relative to each other. Additionally, the first and second valves 30-1, 30-2 are disposed about the periphery of the housing 12 at a relative angular orientation of about 90°, the second and third valves 30-2, 30-3 are disposed about the periphery of the housing 12 at a relative angular orientation of about 90°, the third and fourth valves 30-3, 30-4 are disposed about the periphery of the housing 12 at a relative angular orientation of about 90°, and the fourth and first valves 30-4, 30-1 are disposed about the periphery of the housing 12 at a relative angular orientation of about 90°. In such an arrangement, the relative positioning of the valves 30 of the valve assembly 18 corresponds to the relative positioning of the pistons 24 of the piston assembly 16.

    [0015] Each valve 30 of the valve assembly 18 is moveably disposed within the annular bore 14 to create a temporary combustion chamber 26 relative to a corresponding piston 24. For example, during operation, each piston 24 of the piston assembly 16 rotates within the annular bore 14 and toward a valve 30 of the valve assembly 18. Taking piston 24-1 and valve 30-1 as an example, and with reference to Fig. 2A, as the piston 24-1 transitions within the annular bore 14 from a distal position to a proximal position relative to the corresponding valve 30-1, the valve 30-1 is disposed in a first position relative to the annular bore 14. In the first position, the valve 30-1 is at least partially withdrawn from the travel path of the piston 24-1 within the annular bore 14 to allow the piston 24-1 to advance along its travel path. With reference to Fig. 2B, when the piston 24-1 reaches a given location within the annular bore 14 (e.g., once the piston 24-1 has passed the valve 30), the valve 30-1 moves to a second position relative to the annular bore 14 (e.g., to a closed position), such as illustrated. With such positioning, the valve 30-1 defines the combustion chamber 26-1 relative to the piston 24-1 and is configured as a bulkhead against which combustion can work to produce power.

    [0016] For example, with each valve 30 disposed in a closed position as indicated in Fig. 1, a fuel injector 32 then delivers a fuel-air mixture 34 into the associated combustion chambers 26 which can then be ignited by an ignition device (not shown) such as a spark plug. As the ignition devices ignite the fuel-air mixture 34 in all four of the combustion chambers 26-1 through 26-4 in a substantially simultaneous manner, the expansion of the fuel-air mixture 34 against each valve 30-1 through 30-4 generates a load 36 on each of the corresponding pistons 24-1 through 24-4 to propel each piston 24-1 through 24-4 along the rotational travel path defined by the annular bore 14.

    [0017] With reference to Fig. 3, each of the pistons 24-1 through 24-4 travels within the bore 14 along a relatively large stroke distance, such as a distance of between about 12 inches and 15 inches, toward the next valve 30. At a certain point in the bore 14, such as at the end of a stroke length 13 as illustrated in Fig. 1, each piston 24 passes a corresponding exhaust port 38 (i.e., disposed proximal to the subsequent valve 30) which vents the spent gas contained in the chamber 26 to the atmosphere. For example, as piston 24-1 passes the exhaust port 38-1, spent gas contained in the chamber 26-1 between the piston 24-1 and the valve 30-1 can exit the chamber 26-1 via the exhaust port 38-1.

    [0018] The exhaust ports 38, in one arrangement, are configured as passive ports which are open to the atmosphere and which do not require mechanical components. In one arrangement, each exhaust port 38 is configured as being relatively large to provide efficient exhausting to the engine 10. For example, the stroke distance between the piston 24 and valve 30, such as a stroke distance of between about 12 inches and 15 inches, can form part of each exhaust port 38 to increase the overall length of the port 38.

    [0019] Additionally, as each piston 24 approaches the subsequently disposed valve 30, each valve 30 moves from the second, closed position (Figs. 1 and 2B) to the first position (Fig. 3 and 2A) relative to a corresponding piston 24. For example, as the piston 24-1 approaches the valve 30-2, the valve 30-2 is at least partially withdrawn from the bore 14 to allow the piston 24-1 to move past the valve 30-2. Once each of the pistons 24 have translated to a location distal to the corresponding valves 30, the corresponding valves 30 are moved to the first position and the process begins again. Accordingly, during operation, the engine 10 can generate up to sixteen combustion events per revolution (i.e., each of four pistons 24 experiencing up to four combustion events in a single revolution), thereby causing the piston assembly 16 to rotate the drive mechanism 20.

    [0020] In use, the pistons 24 and valve assembly 16 are disposed at the outer perimeter of the engine housing 12, such as at distance of about twelve inches from the drive mechanism 20. With the combustion force applied to the pistons 24 along a direction that is tangent to the direction of rotation and perpendicular to the distance 15 from the drive mechanism 20, such combustion force can maximize torque on the drive mechanism 20. Additionally, the relatively long stroke path of the pistons 24, the presence of the exhaust ports 38, and the ability of the engine 10 to customize the number of combustion events generated in the bore 14 can enhance the performance of the engine 10. For example, the engine 10 can produce a relatively large amount of continuous power (e.g., a horsepower of about 685, 510 KW, @800 RPM) with a relatively high torque (e.g., an average torque of about 4500 ft-lbs, 6100 Nm) and efficiency (e.g., an efficiency of about 60%) relative to conventional engines having an efficiency of about 25-30%.

    [0021] In one arrangement, the operation of the engine 10 can considerably reduce pollutants compared with current engines. For example, the relatively long stroke distance, among other factors, can reduce unburnt hydrocarbons and carbon monoxide contained in the combustion chamber 26. Oxides of nitrogen should also be reduced since the amount formed during combustion is proportional to temperature and dwell times. The rapid and continuous motion of the piston 24 within the bore 14 can reduce their formation, as dwell times will be reduced.

    [0022] As indicated above, the engine 10 can generate relatively large amounts of torque (e.g., 15 times the torque generated by conventional engines). In conventional piston engines, complex six-speed (and greater) transmissions are needed to multiply the engine's torque for adequate performance, which add to the weight, expense, and complexity to the transmissions. However, because the engine 10 described above generates a relatively higher amount of torque, the engine requires fewer gear ratios than conventional engines and, hence, utilizes a lighter and less expensive transmission.

    [0023] It should be noted that the relatively high torque generated by the engine 10 can be managed by adjustment of the combustion events (i.e., the firing sequence of the pistons 30 and detonation mechanisms) within the engine 10. For example, each piston 24 can experience four combustions per revolution such that the entire piston assembly 16 experiences a total of sixteen combustions per revolution. In order to control the power and output torque of the engine 10 as necessary, the engine 10 can fire anywhere from one to sixteen times per revolution. For example, the combustion chambers 26 are arranged around the periphery and can be fired independent from each other. This allows firing of a combustion event from one to sixteen times per revolution to adjust the velocity of the pistons 24 within the annular bore and to adjust the power or output torque generated by the engine 10. Such a configuration of the engine 10 contrasts the use of a throttle in conventional engines, which manages flow of air and is relatively less efficient.

    [0024] As indicated above, each valve 30 of the valve assembly 18 is moveably disposed within the annular bore to create a temporary combustion chamber 26 relative to a corresponding piston 24. The valve assembly 18 and valves 30 can be configured in a variety of ways to provide such temporary combustion chamber creation. Figs. 4 through 7 illustrate one arrangement of a valve assembly 118 having a valve 130 configured to reciprocate within the bore 14.

    [0025] According to the invention, the valve assembly 118 includes a housing 129 with the valve 130 being rotatably coupled to the housing 129. The valve 130 is configured to pivot within the housing 129 between a first position that allows a piston 24 to travel within the annular bore 14 past the valve 130 and second position that defines the combustion chamber 26 relative to the piston 24. For example, the valve 130 is configured with a notch that defines a channel 135 relative to the annular bore 14 of the housing 10. When the valve 130 is disposed in the first position, as indicated in Figs. 4 and 5, the channel 135 is configured to allow a piston 24 to travel within the annular bore 14 between a first location proximal to the valve assembly 118 (such as indicated by valve 30-1 relative to piston 24-4 in Fig. 3) and a second location distal to the valve assembly 118. As the valve 130 pivots or rotates within the housing 129 along direction 139, a bulkhead portion 137 of the valve 130 enters the annular bore 14 to define the combustion chamber 26 with the piston 24, as illustrated in Fig. 6.

    [0026] In one arrangement, a portion of the fuel injector 32 of the engine 10 is integrally formed with the valve 130. For example, with reference to Figs. 4-6, the housing 129 includes a fuel source port 133 disposed in fluid communication with a set of openings 141 (see Fig. 7A) defined by the valve 130 and with a fuel source and an air source or air intake assembly 250 (see Figs. 6 and 9A-9C). During operation, the valve 130 is configured to combine fuel from the fuel source and air from the air source 250 into a fuel-air mixture within the combustion chamber 26, as illustrated in Fig. 6.

    [0027] In one arrangement, the rotation of the valve 130 within the housing 129 can control delivery of the fuel and air from the fuel source port 133 to the set of openings 141 of the valve 130 and, subsequently, to the combustion chamber 26. For example, when the valve 130 is disposed in the first position, as indicated in Figs. 4 and 5, the set of openings 141 can be aligned with a wall of the housing 129 to fluidly decouple the set of openings 141 from the fuel source port 133. In such an arrangement, the wall housing 129 blocks the delivery of fuel and air from the fuel source and air source 250 to the openings 141. Accordingly, as the piston 24 rotates past the valve 130, the valve 130 cannot deliver fuel or air into the annular bore 14. When the valve 130 rotates to the second position as illustrated in Fig. 6, the set of openings 141 align with and fluidly couple to the fuel source and air source 250 via the fuel source port 133. Accordingly, with such positioning, the valve 130 can direct the fuel and air into the combustion chamber 26 defined between the piston 24 and the valve 130.

    [0028] Actuation of the valve 130 between the second, closed position to the first, open position utilizes a synchronous actuation mechanism to limit or prevent mechanical contact between the circulating piston 24 and the valve 130 during operation. Conventional engines utilize a cam and cam follower to drive a valve to an open position and a heavy-duty return spring to move the valve to a closed position. The return springs in conventional engines, however, can cause problems due to resonance in the return spring at high operating frequencies. When the operating frequency of the engine matches the natural frequency of the spring, resonance occurs in the spring which can dispose the valve in a position other than the position prescribed by the motion of the cam.

    [0029] Additionally, resonance can cause a phenomenon known as valve float. In the case of resonant oscillation, the return spring does not have enough stored energy to accelerate the mass of the valve. As a result, the valve effectively floats in a substantially stationary position. Accordingly, as the cam follower leaves and recontacts the cam surface, contact between the cam follower and the cam face generates a contact stress, known as von Mises stress. If the contact stress exceeds the yield strength of the cam surface, gaulling of the cam surface can occur.

    [0030] While the valve 130 can be actuated within the housing 129 in a variety of ways, in one arrangement, to minimize issues caused by possible resonance of the valve, the valve assembly 118 includes a toggling assembly 155, as shown in Figs. 4, 5, and 7A, configured to toggle the valve 130 within the housing 129. The toggling assembly 155 is configured to exert positive loads on the valve 130 (i.e., apply a push/push motion on opposing ends of the valve 130) when positioning the valve 130 between the first and second positions. For example, with reference to Fig. 7A, the toggling assembly 155 can include a first arm 157 coupled to a first end 158 of the valve 130 and a second arm 159 coupled to a second end 160 of the valve 130. During operation, the first arm 157 is configured to generate a first, linear, positive load 162 on the first or proximal end 158 of the valve 130 along a positive displacement direction to pivot the valve 130 toward the first position, as illustrated in Figs. 4 and 5. Further during operation, the second arm 159 is configured to generate a second, linear, positive load 164 on the second or distal end 160 of the valve 130 along the positive displacement direction to pivot the valve 130 toward the second position, as illustrated in Fig. 6.

    [0031] The toggling assembly 155 can be actuated in a variety of ways. According to the invention, as illustrated in Fig. 7A, the arms 157, 159 of the toggling assembly 155 are coupled to a cam assembly 165 that includes a barrel cam, such as a conjugate splined barrel cam 170, a rocker arm 174, and a toggle element 176 coupled between the rocker arm 174 and the first and second arms 157, 159.

    [0032] The conjugate splined barrel cam 170 defines a spline profile 180 for each valve 130. The profile 180 of the cam 170 includes a rise portion 182, a dwell portion 186, and a fall portion 184 which defines the relative movement of the valve 130 during operation. During operation, as the cam rotates about a longitudinal axis 172, the profile 180 imparts an oscillating motion to the valve 130 through the rocker arm 174 and toggle element 176.

    [0033] The rocker arm 174 is configured to translate the motion of the profile 180 into a reciprocation motion of the toggle element 176. For example, the rocker arm 174 includes a first cam follower 188 and a second cam follower 190, each disposed in proximity to the profile 180 of the cam 170. The rocker arm 174 includes a sliding/pivot joint 192 which actuates the toggle element 176 about longitudinal axis 194 in response to the motion of the rocker arm 174. Because the total angular motion of the toggle element 176 is bisected evenly, when one arm or push rod 157 moves in one direction, the other arm or push rod 159 is displaced by an equal amount in the opposite direction. Cam assembly 165, accordingly, achieves substantially zero backlash during operation when opening and closing the combustion valve 130.

    [0034] During operation, as the conjugate splined barrel cam 170 rotates about an axis 172, a spline profile or element 180 of the cam 170 actuates the arms 157, 159 to drive the valve 130 between the first and second positions. For example, the cam profile 180 drives the valve 130 to an open position and remains open as the piston 24 passes by and then drives the valve 130 to the closed position when the piston 24 has passed.

    [0035] In one arrangement, to increase the longevity and lower frictional losses of the toggling assembly 155 and the cam assembly 165, all joints can be configured as roller bearings that can be either pressure lubricated or disposed within an oil bath. In one arrangement, the two cam followers 188, 190 that capture the cam profile 180 are formed from a compliant material to allow for tolerance mismatch in the rocker arm 174, the two cam followers 188, 190, and the relative pivot position of the rocker arm 174 during operation.

    [0036] Although tolerance could be held to the standards to minimize or prevent backlash, such standardization can add cost to manufacturing process. In one arrangement, to limit the use of tolerance standards, and with reference to Fig. 7B, the second cam follower 190 is secured to an oscillating lever 195 via a diamond-shaped pin 196. The oscillating lever 195, in turn, is coupled to the rocker arm 174 via a spring mechanism 197. The diamond-shaped pin 196 allows relatively small movements of the second cam follower 190 in one direction 198 while maintaining the position of the first cam follower 188. In the application shown in Fig. 7B, the diamond-shaped pin 196 allows a distance 199 between the cam followers 188, 190 to be constantly adjusted by a compressive force, but maintains a radial position of the second cam follower 190 relative to its own pivot point. Accordingly, with the first cam follower 188 and the second cam follower 190 configured to apply a preload force against the spline profile 180, the rocker arm 174 minimizes the use of tolerance standards as part of the cam assembly 165.

    [0037] The absence of springs in toggle assembly 155 and the cam assembly 165 insures that the valve position is controlled strictly by the cam profile 180 which is important to the functionality of the engine 10 and can limit or prevent any contact between the circulating piston 24 and the valves 130. In the event contact were to occur due to a statistical failure, the valve 130 is designed to move in the same direction as the circulating piston 24 and would most likely be disposed in a closed postion in the event of failure.

    [0038] Conventional engines utilize four stages or cycles to produce power. These cycles include an intake cycle which provides the intake of air and fuel through a system of valves created by piston retraction, a subsequent compression cycle to compress the air and fuel, an ignition/combustion/power cycle, and an exhaust cycle to forcibly exhaust combustion byproducts through a separate valve system. The four stages are performed in a serial fashion by a piston contained within a cylinder of the engine.

    [0039] In conventional piston engines, the pressure of the hot gasses created by the combustion of the air and fuel mixture contained within the cylinder can :create blowby where the hot gasses and their corrosive byproducts are forced past the piston rings into the interior of the engine. As the gasses and byproducts pass into the engine, they can burn a portion of the lubricating oil contained within the cylinder, thereby adding to pollutant creation and corruption of the oil supply. As a result, conventional engines require relatively frequent oil changes. Additionally, conventional piston engines do not allow for relatively high compression ratios because of the resulting knocking/autoignition caused by the relatively long dwell times which can damage the piston and cylinder walls.

    [0040] With reference to Fig. 8, the engine 10 can include a compressor 200 configured to perform an intake cycle to deliver air and fuel into the engine 10 and a compression cycle to compress the air and fuel. The compressor 200 performs these cycles independent from the power and exhaust cycles performed by the valve and piston assemblies 16, 18. By separating the compression process from the combustion process, as found in conventional engines, the compressor 200 allows the engine 10 to start operation with the use of air pressure only. For example, the compressor 200 can be configured to insert compressed air from a reservoir into the combustion chamber 26 between the piston 24 and the closed previous valve 30. Such injection moves the piston 24 to the next point in the annular bere 14 for reignition. To insure the proper location of the piston 24, a small brake can be applied to the flywheel 22 when the engine 10 is turned off to insure proper positioning of the piston 24 for restart. Accordingly, the use of the compressor 200 as part of the engine can minimize or eliminate the need for a starter motor, as found in conventional engines, and can reduce the overall, size, weight, and cost associated with the engine 10.

    [0041] In one arrangement, the compressor operates synchronously with the engine. For example, the compressor 200 is connected to a drive mechanism 20 powered by the engine 10 through a transmission system 202. The transmission system 202 can be configured as a belt and gear system that includes a set of belts 204-1, 204-2 and corresponding gears 206-1, 206-2. As illustrated, the first belt 204-1 is operatively coupled to the drive mechanism or drive shaft 20 of the engine 10 and to the first gear 206-1, the second belt 204-2 is operatively coupled to the second gear 206-2 and to a compressor shaft 207, and the first gear 206-1 is operatively coupled to the second gear 206-2 via shaft 209. In one arrangement, to cover a speed range of between about 0 to 155 miles per hour (0-250 km/h ), a gear ratio (i.e., including the rear and transmission rears) of between about 1.00:1 (e.g., providing about 60 mph, 97 km/h) and 2.57:1 (e.g., providing about 155 mph, 250 km/h) can be utilized. Such a configuration can utilize a four-speed transmission with a rear gear ratio of 1:1 and a first gear ration also 1:1. This compares to a conventional drive train having a six-speed transmission of overall ratios of 12.23:1 in first gear (e.g., 30 mph max, 48 km/h max) to 2.18:1 in sixth gear (e.g., 155 mph max, 250 km/h max).

    [0042] The transmission system 202 is configured to alter a ratio of compressor speed to engine speed to control a volume of compressed air generated by the compressor 200 and to control a compression ratio associated with the air and fuel. For example, as the transmission system 202 receives rotational input from the drive shaft 20, the system 202 applies a rotational output on the compressor shaft 207 to rotate the shaft 207 at a rate that is faster than the rotational rate of the drive shaft 20. This produces a high volume of air at a relatively high pressure. Accordingly, the transmission system 202 allows the compressor 200 to operate at a variety of ratios/speeds to optimize performance.

    [0043] During operation, the compressor 200 generates relatively highly pressurized air which is then mixed with fuel from an injector close to the combustion chamber 26. This allows the input of the air/fuel mix into the combustion chamber 26 at very high pressures, such as pressures of between about 150 and 200 pounds per square inch (1,03 - 1,38 MPa). Accordingly, the air/fuel mix enters the combustion chamber 26 at a relatively high velocity to create turbulence within the combustion chamber 26 which promotes a mixture of the air and fuel, as well as a short input duration (e.g., as measured in fractions of milliseconds). The high velocity and pressure of the air/fuel mix promote rapid combustion which contributes to the engine's 10 relatively high efficiency.

    [0044] As indicated above, the compressor 200 is configured to perform two of the four stages or cycles utilized by an engine during operation, separate from the combustion process. Such a configuration allows the circulating pistons 24 in the bore 14 to exclusively perform the third stage (i.e., producing substantially continuous power) during operation. The engine 10 performs the fourth exhaust stage passively with a large, valveless port associated with the bore 14 and open to the air treatment system and atmosphere. When combustion and expansion is complete, the piston 24 passes the exhaust opening 38 and the spent gas within the chamber 26 is expelled from the engine. The compressor 200 is physically and thermally isolated from the combustion process. Accordingly, the compressor 200 does not experience blowby which, in conventional piston engines relates to the passage of combusted gases past the piston rings and into a crankcase. Traditional blowby causes the engine to accumulate contaminated exhaust gas that requires treatment before exhausted to the atmosphere. In addition, in conventional piston engines, the mixing of contaminated exhaust gases with the oil stored in the case significantly shortens the oil life causing more frequent oil changes. This oil itself must be treated before disposal or reuse.

    [0045] With reference to Fig. 6, and as indicated above, valve 130 is configured to input the fuel-air mix from a fuel distribution assembly 262 close to into the combustion chamber 26Figs. 9A through 9C illustrate an example schematic representation of an air intake assembly 250 and fuel distribution assembly 262.

    [0046] As illustrated, the air intake assembly 250 includes a housing 252 having an air intake port 254 and an air output port 258. The air intake port 254 is configured to receive air from an air source, such as a high pressure air source. The air output port 258 is selectively disposed in fluid communication between the housing volume 257 and the fuel distribution assembly 262.

    [0047] The air intake assembly 250 further includes a drive assembly 270 that is configured to provide selectable communication between the air output port 258 and the interior volume 257of the housing 252. For example, the drive assembly 270 includes a shaft 272 disposed in operational communication with the engine 10 and gear 274, such as a worm gear, disposed at an end of the shaft 272 and a plate 278 that is rotatably coupled to the housing 252. The gear 274 is disposed in operational communication with a corresponding set of teeth 276 disposed about an outer periphery of the plate 278. The plate 278 is configured to rotate about a longitudinal axis 280 within the housing 252 in response to axial rotation of the drive assembly 270. For example, during operation, rotation of the shaft 272 and the gear 274 about longitudinal axis 282 in a clockwise direction causes the plate 278 to rotate within the housing 252 in a counterclockwise direction about longitudinal axis 280 within the housing 252. Additionally, the plate 278 defines an aperture 282 that is configured to selectively allow fluid communication between the port 258 and the housing volume 257, as described in detail below.

    [0048] With reference to Fig. 9C, located in proximity to the air intake assembly 250 is the fuel distribution assembly 262. The fuel distribution assembly 262 is configured to allow mixing of the fuel and air within the assembly housing 263. Attached to the housing 263 is at least one fuel injector 32.

    [0049] During operation, the plate 278 disposes the aperture 282 along a rotational path 264, as indicated in Fig. 9A. As the plate 278 rotates along a counterclockwise direction toward the output port 258, the plate 278 positions the aperture 282 along the path 264. With such positioning, the plate 278 blocks output port 258 and from the housing volume 257 to minimize or prevent fluid communication there between. Accordingly, the housing volume 257 can receive relatively high pressure air via the air intake port 254.

    [0050] As the aperture 282 approaches a first open position 266, the fuel injector 32 injects fuel into the housing 263 of the fuel distribution assembly 262. As the plate 278 continues to rotate along the counterclockwise direction, the plate 278 disposes the aperture 282 in a first open position 266 which aligns the aperture 282 with the air output port 258. With such positioning, immediately following fuel injection, compressed air from assembly 250 is transported through port 258 of assembly 250 and into the fuel distribution assembly 262 to mixes the air with the suspended fuel 267. This mixture then flows through flexure valves 265 and into openings 141 of the valve 130, as indicted in Fig. 6. A bleed line 256 attached to an intake system of the compressor 200 draws excess air, reducing the high pressure in assembly 262 permitting operation of the fuel injector 32 for the next cycle which operates at lower pressure.

    [0051] Following the delivery of the air to the fuel distribution assembly 262, the plate 278 rotates the aperture 282 counterclockwise past the air output port 258 to allow introduction of pressurized air into the volume 257 for a subsequent fuel distribution cycle.

    [0052] While various embodiments of the innovation have been particularly shown and described, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the innovation as defined by the appended claims.

    [0053] For example, as described above, the piston assembly includes four pistons and the valve assembly includes four valves. Such description is by way of example only. In one arrangement, the piston assembly can include a first piston and a second piston, the first piston disposed within the annular bore at a position that is substantially 180° from the second piston. Additionally, the valve assembly can include a first valve disposed at a first location within the housing and a second valve disposed at a second location within the housing, the second valve being disposed along the annular bore at a position that is substantially 180° relative to the first valve.

    [0054] As indicated above, the valve assembly 118 includes a toggling assembly 155, as shown in Figs. 4, 5, and 7A, configured to toggle the valve 130 within the housing 129. As described, the arms 157, 159 of the toggling assembly 155 are coupled to a cam assembly 165 that includes a barrel cam, such as a conjugate splined barrel cam 170, a rocker arm 174, and a toggle element 176 coupled between the rocker arm 174 and the first and second arms 157, 159. During operation, the first arm 157 is configured to generate a first, positive load 162 on the first end 158 of the valve 130 along a positive displacement direction to pivot the valve 130 toward the first position and the second arm 159 is configured to generate a second, positive load 164 on the second end 160 of the valve 130 along the positive displacement direction to pivot the valve 130 toward the second position. Such description is by way of example only. In one arrangement, the toggling assembly is configured with a reduced number of moving parts that extends a connection between the valve 130 and the cam 170 along an axis of rotation of the valve 130.

    [0055] For example, with reference to Fig. 10, the toggling assembly 255 includes a valve support 231 extending along a longitudinal axis 233 of the valve 130 between the valve 130 and the rocker arm 174. A first end 235 of the valve support 231 is coupled to the valve 130 while a second end of the valve support 237 is slidably coupled to the rocker arm 170 via a sliding/pivot joint 192. While the valve support 231 can be configured in a variety of ways, in one arrangement, the valve support 231 is configured as a substantially cylindrical, tubular structure.

    [0056] During operation, as the conjugate splined barrel cam 170 rotates about the axis 172, the spline profile or element 180 of the cam 170 oscillates the rocker arm 174 in both a clockwise and counterclockwise direction about an axis of rotation 239. In response to the oscillation of the rocker arm 174, the sliding/pivot joint 192 exerts a first rotational load 241 and an opposing second rotational load 243 on the valve support 231 to oscillate the valve support 231 and the valve 130 about longitudinal axis 233. Such oscillation positions the valve 130 between a first (e.g., open) position and a second (i.e., closed) position within the valve housing.

    [0057] Use of the valve support 231 provides the toggling assembly 255 with a relatively low moment of inertia which, in turn, allows the rocker arm 174 to toggle the valve 130 within the valve housing at a relatively high speed. Additionally, because the valve support 231 has relatively few parts, the valve support 231 reduces the possibility of the toggling assembly 255 failing during operation.

    [0058] Furthermore, the valve support 231 provides the toggling assembly 255 with a relatively long life. For example, during operation as the piston 24 approaches the valve 130, the valve 130 must move to an open position (i.e., out of the piston's path) and then back to a closed position in a relatively short amount of time. Once the toggle assembly 255 moves the valve 130 to a closed position, the valve 130 defines a combustion chamber relative to the piston 24 and the gas pressure within the chamber builds at a relatively high rate. The gas pressure within the combustion chamber creates not only a force that propels the piston 24 forward, but an equal and opposite force on the valve 130 itself. With the configuration of the valve support 231 as a substantially cylindrical, tubular structure, the valve support 231 has a relatively large stiffness which increases the overall stiffness of the valve assembly and minimizes failure.

    [0059] As indicated above, each valve 30 of the valve assembly 18 is moveably disposed within an annular bore to create a temporary combustion chamber 26 relative to a corresponding piston 24. For example, with reference to Fig. 2B, when the piston 24-1 reaches a given location within the annular bore 14, the valve 30-1 moves to a second position relative to the annular bore 14. With such positioning, the valve 30-1 forms the combustion chamber 26-1 relative to the piston 24-1 and is configured as a bulkhead against which combustion can work to produce power. In one arrangement, the size of the combustion chamber 26 can be altered during operation to adjust the power output or efficiency of the engine. For example, the volume of the combustion chamber 26 can be decreased or increased by varying the duration of the fuel input process to the combustion chamber 26 and by adjusting (e.g., delaying) the ignition timing accordingly. In the case where the volume of the combustion chamber 26 is increased, the engine can include a second spark plug (not shown) located adjacent to the relatively larger combustion chamber 26 to accelerate combustion in the enlarged chamber.

    [0060] It should be noted that the walls of the combustion chamber 26 and the direction of introduction of fuel relative to the valve can be modified to create a variety of geometric travel paths for the air/fuel mixture. For example, the walls of the combustion chamber 26 and the direction of fuel introduction can define a circular or other geometry to accelerate ignition and combustion effectiveness.

    [0061] As indicated above, in order to control the power and output torque of the engine 10 as necessary, the engine 10 can fire anywhere from one to sixteen times per revolution. In one arrangement, the engine 10 can be configured to alternate the firing order of the combustion chambers 26 to reduce the operating temperature of the engine 10. For example, with reference to Fig. 1, in the case where the engine 10 has accelerated to a particular drive mechanism 20 velocity, the engine 10 can require firing of only two combustion chambers 26 during a revolution of the piston assembly 30 within the engine 10 to maintain the velocity. To minimize the engine temperature, in a first revolution cycle, the first 26-1 and third 26-3 combustion chambers can be fired while in a second revolution cycle, the second 26-2 and fourth 26-4 combustion chambers can be fired. When certain combustion chambers 26 are not fired, relatively low temperature air flows through those combustion chambers as well through the annular bore 12, thereby reducing the operating temperature of the engine 10. This allows a leaner fuel-air mixture to be utilized during operation to improve engine efficiency and air quality.


    Claims

    1. An engine (10) comprising:

    a housing (12) defining an annular bore (14),

    a piston assembly (16) disposed within the annular bore (14) and configured to be coupled to a drive mechanism (20),

    a valve (30; 130) configured to be moveably disposed within the annular bore (14) for pivoting between a first position to allow the piston assembly (16) to travel within the annular bore (14) from a first location proximate to the valve (30; 130) to a second location distal to the valve (30; 130), and a second position to define a combustion chamber (26) relative to the piston assembly (16) at the second location, and

    a toggling mechanism (255) coupled to a first end of the valve (30; 130) and configured to generate a first rotational load (241) on the first end of the valve (30; 130) to pivot the valve (30; 130) toward the first position, and to generate a second rotational load (243) on the first end of the valve (30; 130), the second rotational load (243) opposing the first rotational load (241) to pivot the valve (30; 130) toward the second position, characterized in that

    the toggling mechanism (255) comprises a conjugate splined barrel cam (170), a rocker arm (174) operatively coupled to the conjugate splined barrel cam (170), and a valve support (231) extending along a longitudinal axis (233) of the valve (30; 130) and being coupled to the first end of the valve (30; 130) and to the rocker arm (174).


     
    2. The engine (10) of claim 1, wherein:

    the piston assembly (16) comprises a first piston and a second piston, the first piston disposed within the annular bore (14) at a position that is substantially 180° from the second piston; and

    the valve (30; 130) comprises a first valve disposed at a first location within the housing and a second valve disposed at a second location within the housing, the second valve being disposed along the annular bore at a position that is substantially 180° relative to the first valve.


     
    3. The engine (10) of claim 1, wherein:

    the piston assembly (16) comprises a first piston (24-1), a second piston (24-2), a third piston (24-3), and a fourth piston (24-4), each of the first piston, the second piston, the third piston, and the fourth piston disposed consecutively within the annular bore (14) such that each piston is disposed within the annular bore (14) at substantially 90° relative to a previous disposed piston; and

    the valve (30) comprises a first valve (30-1) disposed at a first location within the annular bore (14), a second valve (30-2) disposed at a second location within the annular bore (14), a third valve (30-3) disposed at a third location within the annular bore (14), and a fourth valve (30-4) disposed at a fourth location within the annular bore (14), each of the first valve, second valve, third valve, and fourth valve being disposed consecutively within the housing and along the annular bore (14) at a position that is substantially 90° relative to a previous valve.


     
    4. The engine (10) of claim 1, further comprising a fuel injector (32) configured to deliver a fuel-air mixture to the combustion chamber (26) defined between the piston assembly (16) and the valve (30; 130).
     
    5. The engine (10) of claim 1, wherein the valve (130) defines a set of openings (1141), the valve (130) configured to move between (i) a first position to fluidly decouple the set of openings relative to a fuel source and an air source (250) and (ii) a second position to fluidly couple the set of openings (141) with the fuel source and the air source (250) to direct the fuel and air into the combustion chamber (26) defined between the piston assembly (16) and the valve (130).
     
    6. The engine (10) of claim 1, wherein the valve (130) defines a channel (135), the channel configured to define, in conjunction with a housing (129), a passageway that allows the piston assembly to travel within the annular bore (14) from the first location proximate to the valve (130) to the second location distal to the valve (130) when the valve is disposed in the first position.
     
    7. The engine (10) of claim 1, further comprising a compressor (200) configured to perform an intake cycle to deliver air and fuel to the engine (10) and to perform a compression cycle to compress the air and fuel in the engine, the intake cycle and the compression cycle separate from a combustion process associated with the piston assembly (16) and valve assembly (30).
     
    8. The engine (10) of claim 7, comprising a belt and gear system (202) coupled to the compressor (200), the belt and gear system (202) configured to adjust a ratio of compressor speed to engine speed to control a volume of compressed air generated by the compressor and a compression ratio associated with the air and fuel.
     
    9. The engine (10) of claim 8, wherein the belt and gear system (202) comprises:

    a first belt (204-1) operatively coupled to the drive mechanism (20) and to a first gear (206-1);

    a second belt (204-2) operatively coupled to a second gear (206-2) and to a compressor shaft 207; and

    a shaft (209) operatively coupled to the first gear (204-1) and to the second gear (204-2).


     
    10. The engine (10) of claim 1, comprising an exhaust port (38) disposed in fluid communication with the annular bore (14), the exhaust port (38) disposed at a location substantially proximal to the valve (30; 130).
     
    11. The engine (10) of claim 1, comprising:

    an air intake assembly (250), comprising:

    a housing (252) defining a housing volume (257),

    an air intake port (254) carried by the housing (252),

    an air outlet port carried by the housing, and

    a drive assembly carried by the housing (252), the drive assembly configured to provide selectable communication between the housing volume (257) and the air outlet port (258); and

    a fuel distribution assembly (262) disposed in fluid communication with the air outlet port (258) of the air intake assembly (250) and with intake portion of a compressor (200), fuel distribution assembly comprising:

    a fuel injector (32) configured to provide fuel to a volume defined by the fuel distribution assembly (262), and

    a set of flexure ports (265) disposed in fluid communication with the combustion chamber (26), wherein the drive assembly comprises a plate (278) that is rotatably coupled to the housing (252) and is configured to selectively align an aperture (282) defined by the plate (278) with the air outlet port (258) to provide fluid communication the air outlet port (258) and the fuel distribution assembly (262).


     


    Ansprüche

    1. Motor (10) umfassend:

    ein Gehäuse (12), das eine ringförmige Bohrung (14) ausbildet,

    eine Kolbenanordnung (16), die in der ringförmigen Bohrung (14) angeordnet und für eine Koppelung mit einem Antriebsmechanismus (20) hergerichtet ist,

    ein Ventil (30; 130), das für eine bewegliche Anordnung innerhalb der ringförmigen Bohrung (14) hergerichtet ist, und zwar zum Verschwenken zwischen einer ersten Position, um es der Kolbenanordnung (16) zu ermöglichen, sich innerhalb der ringförmigen Bohrung (14) von einer ersten Stelle in der Nähe des Ventils (30; 130) zu einer zweiten Stelle distal zu dem Ventil (30; 130) zu bewegen, und einer zweiten Position, um eine Verbrennungskammer (26) relativ zu der Kolbenanordnung (16) an der zweiten Stelle auszubilden, und

    einen Umschaltmechanismus (255), der an ein erstes Ende des Ventils (30; 130) gekoppelt und hergerichtet ist, eine erste Rotationslast (241) auf das erste Ende des Ventils (30; 130) zu erzeugen, um das Ventil (30; 130) in Richtung der ersten Position zu schwenken, und eine zweite Rotationslast (243) auf das erste Ende des Ventils (30; 130), wobei die zweite Rotationslast (243) der ersten Rotationslast (241) entgegenwirkt, um das Ventil (30; 130) in Richtung der zweiten Position zu schwenken, dadurch gekennzeichnet, dass

    der Umschaltmechanismus (255) einen konjugiert verzahnten Zylinder (170), einen Kipphebel (174), der mit dem konjugiert verzahnten Zylinder (170) wirkverbunden ist, umfasst, und eine Ventilhalterung (231), die sich entlang einer Längsachse (233) des Ventils (30; 130) erstreckt und an das erste Ende des Ventils (30; 130) und den Kipphebel (174) gekoppelt ist.


     
    2. Motor (10) nach Anspruch 1, wobei:

    die Kolbenanordnung (16) einen ersten Kolben und einen zweiten Kolben umfasst, und der erste Kolben innerhalb der ringförmigen Bohrung (14) in einer Position angeordnet ist, die in einem Winkel von im Wesentlichen 180° von dem zweiten Kolben beabstandet ist; und wobei

    das Ventil (30; 130) ein erstes Ventil umfasst, das an einer ersten Stelle innerhalb des Gehäuses angeordnet ist, und ein zweites Ventil umfasst, das an einer zweiten Stelle innerhalb des Gehäuses angeordnet ist, wobei das zweite Ventil entlang der ringförmigen Bohrung in einer Position angeordnet ist, die im Wesentlichen in einem Winkel von 180° relativ zu dem ersten Ventil steht.


     
    3. Motor (10) nach Anspruch 1, wobei:

    die Kolbenanordnung (16) einen ersten Kolben (24-1), einen zweiten Kolben (24-2), einen dritten Kolben (24-3) und einen vierten Kolben (24-4) umfasst, wobei der erste Kolben, der zweite Kolben, der dritte Kolben und der vierte Kolben jeweils fortlaufend innerhalb der ringförmigen Bohrung (14) angeordnet sind, derart, dass jeder Kolben innerhalb der ringförmigen Bohrung (14) in einem Winkel von im Wesentlichen 90° relativ zu einem vorher angeordneten Kolben angeordnet ist; und

    das Ventil (30) ein erstes Ventil (30-1) umfasst, das an einer ersten Stelle innerhalb der ringförmigen Bohrung (14) angeordnet ist, ein zweites Ventil (30-2), das an einer zweiten Stelle innerhalb der ringförmigen Bohrung (14) angeordnet ist, ein drittes Ventil (30-3), das an einer dritten Stelle innerhalb der ringförmigen Bohrung (14) angeordnet ist, und ein viertes Ventil (30-4), das an einer vierten Stelle innerhalb der ringförmigen Bohrung (14) angeordnet ist, wobei das erste Ventil, das zweite Ventil, das dritte Ventil und das vierte Ventil jeweils fortlaufend innerhalb des Gehäuses und entlang der ringförmigen Bohrung (14) in einer Position angeordnet sind, die in einem Winkel von im Wesentlichen 90° relativ zu einem vorherigen Ventil steht.


     
    4. Motor (10) nach Anspruch 1, der ferner eine Kraftstoffeinspritzdüse (32) umfasst, die derart hergerichtet ist, dass sie ein Kraftstoff-Luft-Gemisch der Verbrennungskammer (26) zuführt, die zwischen der Kolbenanordnung (16) und dem Ventil (30; 130) ausgebildet ist.
     
    5. Motor (10) nach Anspruch 1, wobei das Ventil (130) eine Reihe von Öffnungen (141) ausbildet, und das Ventil (130) derart hergerichtet ist, dass es sich zwischen (i) einer ersten Position bewegt, um die Reihe von Öffnungen relativ zu einer Kraftstoffquelle und einer Luftquelle (250) fluidisch zu entkoppeln, und (ii) einer zweiten Position, um die Reihe von Öffnungen (141) mit der Kraftstoffquelle und der Luftquelle (250) fluidisch zu koppeln, um den Kraftstoff und die Luft in die Verbrennungskammer (26) zu leiten, die zwischen der Kolbenanordnung (16) und dem Ventil (130) ausgebildet ist.
     
    6. Motor (10) nach Anspruch 1, wobei das Ventil (130) einen Kanal (135) ausbildet, der hergerichtet ist, um in Verbindung mit einem Gehäuse (129) einen Durchgang auszubilden, der es der Kolbenanordnung ermöglicht, sich innerhalb der ringförmigen Bohrung (14) zu bewegen, und zwar von der ersten Stelle in der Nähe des Ventils (130) zu der zweiten distal zu dem Ventil (130) gelegenen Stelle, wenn das Ventil in der ersten Position angeordnet ist.
     
    7. Motor (10) nach Anspruch 1, der ferner einen Kompressor (200) umfasst, der hergerichtet ist, einen Ansaugzyklus durchzuführen, um dem Motor (10) Luft und Kraftstoff zuzuführen, sowie einen Kompressionszyklus, um die Luft und den Kraftstoff in dem Motor zu verdichten, wobei der Ansaugzyklus und der Kompressionszyklus von einem Verbrennungsprozess getrennt sind, der mit der Kolbenanordnung (16) und der Ventilanordnung (30) assoziiert ist.
     
    8. Motor (10) nach Anspruch 7, der ein Riemen- und Getriebesystem (202) umfasst, das mit dem Kompressor (200) gekoppelt ist, wobei das Riemen- und Getriebesystem (202) hergerichtet ist, um ein Verhältnis von Kompressordrehzahl zu der Motordrehzahl einzustellen, um so ein von dem Kompressor erzeugtes Druckluftvolumen und ein mit der Luft und dem Kraftstoff assoziiertes Verdichtungsverhältnis zu steuern.
     
    9. Motor (10) nach Anspruch 8, wobei das Riemen- und Getriebesystem (202) umfasst:

    einen ersten Riemen (204-1), der mit dem Antriebsmechanismus (20) und einem ersten Getriebe (206-1) wirkverbunden ist;

    einen zweiten Riemen (204-2), der mit einem zweiten Getriebe (206-2) und mit einer Kompressorwelle (207) wirkverbunden ist; und

    eine Welle (209), die mit dem ersten Getriebe (204-1) und mit dem zweiten Getriebe (204-2) wirkverbunden ist.


     
    10. Motor (10) nach Anspruch 1, der eine Abluftöffnung (38) umfasst, die in fluidischer Kommunikation mit der ringförmigen Bohrung (14) angeordnet ist, wobei die Abluftöffnung (38) an einer Stelle angeordnet ist, die im Wesentlichen in der Nähe des Ventils (30; 130) liegt.
     
    11. Motor (10) nach Anspruch 1, umfassend:

    eine Lufteinlassanordnung (250), umfassend:

    ein Gehäuse (252), das ein Gehäusevolumen (257) definiert,

    eine vom Gehäuse (252) gestützte Lufteinlassöffnung (254),

    eine vom Gehäuse gestützte Luftauslassöffnung und

    eine von dem Gehäuse (252) gestützte Antriebsanordnung, die hergerichtet ist, um eine auswählbare Verbindung zwischen dem Gehäusevolumen (257) und der Luftauslassöffnung (258) bereitzustellen; und

    eine Kraftstoffverteilungsanordnung (262), die in fluidischer Kommunikation mit der Luftauslassöffnung (258) der Lufteinlassanordnung (250) und dem Ansaugteil eines Kompressors (200) angeordnet ist, wobei die Kraftstoffverteilungsanordnung umfasst:

    eine Kraftstoffeinspritzdüse (32), die hergerichtet ist, um Kraftstoff für ein Volumen bereitzustellen, das durch die Kraftstoffverteilungsanordnung (262) definiert wird, und

    eine Reihe von Flexionsöffnungen (265), die für eine fluidische Kommunikation mit der Verbrennungskammer (26) angeordnet sind, wobei die Antriebsanordnung eine Platte (278) umfasst, die drehbar mit dem Gehäuse (252) gekoppelt ist und hergerichtet ist, um eine durch die Platte (278) ausgebildete Öffnung (282) wahlweise mit der Luftauslassöffnung (258) auszurichten, um so eine fluidische Kommunikation zwischen der Luftauslassöffnung (258) und der Kraftstoffverteilungsanordnung (262) bereitzustellen.


     


    Revendications

    1. Moteur (10) comprenant :

    un carter (12) définissant un alésage annulaire (14),

    un ensemble formant piston (16) disposé à l'intérieur de l'alésage annulaire (14) et configuré pour être accouplé à un mécanisme d'entraînement (20),

    une soupape (30; 130) configurée pour être disposée de façon mobile à l'intérieur de l'alésage annulaire (14) pour pivoter entre une première position afin de permettre à l'ensemble formant piston (16) de se déplacer à l'intérieur de l'alésage annulaire (14) d'un premier emplacement proche de la soupape (30; 130) à un deuxième emplacement distal par rapport à la soupape (30 ; 130), et une deuxième position pour définir une chambre de combustion (26) par rapport à l'ensemble formant piston (16) au deuxième emplacement, et

    un mécanisme de basculement (255) accouplé à une première extrémité de la soupape (30; 130) et configuré pour générer une première charge rotative (241) sur la première extrémité de la soupape (30; 130) pour pivoter la soupape (30; 130) vers la première position, et pour générer une deuxième charge rotative (243) sur la première extrémité de la soupape (30; 130), la deuxième charge rotative (243) opposant la première charge rotative (241) pour pivoter la soupape (30 ; 130) vers la deuxième position, caractérisé en ce que

    le mécanisme de basculement (255) comprend une came périphérique cannelée conjuguée (170), un culbuteur (174) accouplé de façon fonctionnelle à la came périphérique cannelée conjuguée (170), et un support de soupape (231) s'étendant le long d'un axe longitudinal (233) de la soupape (30 ; 130) et étant accouplé à la première extrémité de la soupape (30 ; 130) et au culbuteur (174).


     
    2. Moteur (10) selon la revendication 1, dans lequel :

    l'ensemble formant piston (16) comprend un premier piston et un deuxième piston, le premier piston disposé à l'intérieur de l'alésage annulaire (14) à une position qui est sensiblement à 180° du deuxième piston ; et

    la soupape (30; 130) comprend une première soupape disposée à un premier emplacement à l'intérieur du carter et une deuxième soupape disposée à un deuxième emplacement à l'intérieur du carter, la deuxième soupape étant disposée le long de l'alésage annulaire à une position qui est sensiblement à 180° par rapport à la première soupape.


     
    3. Moteur (10) selon la revendication 1, dans lequel :

    l'ensemble formant piston (16) comprend un premier piston (24-1), un deuxième piston (24-2), un troisième piston (24-3), et un quatrième piston (24-4), chacun du premier piston, du deuxième piston, du troisième piston, et du quatrième piston disposés successivement à l'intérieur de l'alésage annulaire (14) de sorte que chaque piston est disposé à l'intérieur de l'alésage annulaire (14) essentiellement à 90° par rapport à un piston disposé précédemment ; et

    la soupape (30) comprend une première soupape (30-1) disposée à un premier emplacement à l'intérieur de l'alésage annulaire (14), une deuxième soupape (30-2) disposée à un deuxième emplacement à l'intérieur de l'alésage annulaire (14), une troisième soupape (30-3) disposée à un troisième emplacement à l'intérieur de l'alésage annulaire (14), et une quatrième soupape (30-4) disposée à un quatrième emplacement à l'intérieur de l'alésage annulaire (14), chacune de la première soupape, deuxième soupape, troisième soupape, et quatrième soupape étant disposées successivement à l'intérieur du carter et le long de l'alésage annulaire (14) à une position qui est essentiellement à 90° par rapport à une soupape précédente.


     
    4. Moteur (10) selon la revendication 1, comprenant en outre un injecteur de carburant (32) configuré pour délivrer un mélange carburant - air à la chambre de combustion (26) définie entre l'ensemble formant piston (16) et la soupape (30 ; 130).
     
    5. Moteur (10) selon la revendication 1, dans lequel la soupape (130) définit un ensemble d'ouvertures (141), la soupape (130) configurée pour se déplacer entre (i) une première position pour découpler de façon fluide l'ensemble d'ouverture par rapport à une source de carburant et une source d'air (250) et (ii) une deuxième position pour accoupler de façon fluide l'ensemble d'ouvertures (141) avec la source de carburant et la source d'air (250) pour diriger le carburant et l'air dans la chambre de combustion (26) définie entre l'ensemble formant piston (16) et la soupape (130).
     
    6. Moteur (10) selon la revendication 1, dans lequel la soupape (130) définit un canal (135), le canal configuré pour définir, conjointement avec un carter (129), un passage qui permet à l'ensemble formant piston de se déplacer à l'intérieur de l'alésage annulaire (14) du premier emplacement proche de la soupape (130) au deuxième emplacement distal par rapport à la soupape (130) lorsque la soupape est disposée dans la première position.
     
    7. Moteur (10) selon la revendication 1, comprenant en outre un compresseur (200) configuré pour effectuer un cycle d'admission pour délivrer de l'air et du carburant au moteur (10) et pour effectuer un cycle de compression pour comprimer l'air et le carburant dans le moteur, le cycle d'admission et le cycle de compression étant distincts d'un processus de combustion associé à l'ensemble formant piston (16) et à l'ensemble formant soupape (30).
     
    8. Moteur (10) selon la revendication 7, comprenant un système à courroie et engrenage (202) accouplé au compresseur (200), le système à courroie et engrenage (202) étant configuré pour ajuster un rapport de la vitesse du compresseur à la vitesse du moteur pour commander un volume d'air comprimé généré par le compresseur et un rapport de compression associé à l'air et au carburant.
     
    9. Moteur (10) selon la revendication 8, dans lequel le système à courroie et engrenage (202) comprend :

    une première courroie (204-1) accouplée de façon fonctionnelle au mécanisme d'entraînement (20) et à un premier engrenage (206-1) ;

    une deuxième courroie (204-2) accouplée de façon fonctionnelle à un deuxième engrenage (206-2) et à un arbre de compresseur (207) ; et

    un arbre (209) accouplé de façon fonctionnelle au premier engrenage (204-1) et au deuxième engrenage (204-2).


     
    10. Moteur (10) selon la revendication 1, comprenant un orifice d'échappement (38) disposé en communication fluide avec l'alésage annulaire (14), l'orifice d'échappement (38) disposé à un emplacement essentiellement proche de la soupape (30 ; 130).
     
    11. Moteur (10) selon la revendication 1, comprenant :
    un ensemble d'admission d'air (250), comprenant :

    un carter (252) définissant un volume de carter (257),

    un orifice d'admission d'air (254) porté par le carter (252),

    un orifice de de sortie d'air porté par le carter, et

    un ensemble d'entraînement porté par le carter (252), l'ensemble d'entraînement configuré pour fournir une communication sélectionnable entre le volume du carter (257) et l'orifice de sortie de l'air (258) ; et

    un ensemble de distribution du carburant (262) disposé en communication fluide avec l'orifice de sortie d'air (258) de l'ensemble d'admission d'air (250) et avec une partie d'admission d'un compresseur (200), l'ensemble de distribution du carburant comprenant :

    un injecteur de carburant (32) configuré pour fournir du carburant à un volume défini par l'ensemble de distribution du carburant (262), et

    un ensemble d'orifices de flexion (265) disposés en communication fluide avec la chambre de combustion (26), dans lequel l'ensemble d'entraînement comprend une plaque (278) qui est accouplée de façon rotative au carter (252) et est configurée pour aligner de façon sélective une ouverture (282) définie par la plaque (278) avec l'orifice de sortie d'air (258) pour fournir une communication fluide à l'orifice de sortie d'air (258) et à l'ensemble de distribution du carburant (262).


     




    Drawing















































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description