(19)
(11)EP 2 943 657 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
14.08.2019 Bulletin 2019/33

(21)Application number: 14737797.2

(22)Date of filing:  14.01.2014
(51)Int. Cl.: 
F01D 9/04  (2006.01)
F01D 5/14  (2006.01)
F01D 25/02  (2006.01)
F01D 5/28  (2006.01)
(86)International application number:
PCT/US2014/011473
(87)International publication number:
WO 2014/110569 (17.07.2014 Gazette  2014/29)

(54)

ORGANIC MATRIX COMPOSITE STRUCTURAL INLET GUIDE VANE FOR A TURBINE ENGINE

STRUKTURELLE EINLASSLEITSCHAUFEL AUS ORGANISCHEM MATRIXVERBUND FÜR EINEN TURBINENMOTOR

AUBE DE GUIDAGE D'ENTRÉE STRUCTURALE COMPOSITE MATRICIEL ORGANIQUE POUR MOTEUR À TURBINE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 14.01.2013 US 201361752255 P

(43)Date of publication of application:
18.11.2015 Bulletin 2015/47

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventors:
  • ROBERTS, Steven, D.
    Moodus, Connecticut 06469 (US)
  • TOSI, Kenneth, F.
    East Haddam, Connecticut 06423 (US)
  • HOGATE, Isaac, J.
    Meriden, Connecticut 06450 (US)
  • SALISBURY, George
    East Hampton, Connecticut 06450 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A2- 1 728 991
EP-A2- 2 110 314
WO-A1-2006/059996
US-A- 2 819 871
US-A1- 2005 076 504
US-A1- 2011 243 752
EP-A2- 1 956 195
EP-A2- 2 363 574
CA-A1- 2 441 514
US-A- 5 690 469
US-A1- 2011 229 326
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    1. Technical Field



    [0001] This disclosure relates generally to a turbine engine and, more particularly, to a turbine engine assembly with one or more inlet guide vanes.

    2. Background Information



    [0002] A typical turbine engine includes a fan section, a compressor section, a combustor section and a turbine section. The engine may also include an inlet guide vane assembly that includes a plurality of guide vane fairings and a plurality of struts (see, e.g. EP 1728991). The guide vane fairings guide a flow of gas into the fan section, and are fastened to the struts. The struts are arranged radially between and structurally tie together a vane inner platform and a vane outer platform. Each of the struts extends radially through a respective one of the guide vane fairings. The guide vane fairings therefore are typically sized relatively large in order to accommodate the struts therewithin. Such relatively large guide vane fairings may reduce the flow of air into the engine. Prior art includes EP 2110314 A2, US 5690469 A, US 2819871 A, CA 2441514 A1 and WO 2006/059996 A1.

    [0003] There is a need in the art for improved inlet guide vanes.

    SUMMARY OF THE DISCLOSURE



    [0004] According to an aspect of the invention, an assembly is provided for a turbine engine as claimed in claim 1.

    [0005] The structural vane body may transfer loads between the inner platform and the outer platform.

    [0006] A gas path may be defined radially between the inner platform and the outer platform. The structural vane body may guide gas through the gas path.

    [0007] The core may be configured as or otherwise include a substantially solid core of the organic matrix composite.

    [0008] The structural vane body may extend axially between a leading edge and a trailing edge. The structural vane body may include a heater located at the leading edge. The heater may be connected to the core.

    [0009] The heater may include a heating element that is at least partially embedded within an insulator.

    [0010] The structural vane body may include a coating that at least partially coats the heater.

    [0011] The first of the structural inlet guide vanes may include a mount that fastens the structural vane body to the inner platform. The first of the structural inlet guide vanes may also or alternatively include a mount that fastens the structural vane body to the outer platform.

    [0012] The structural vane body may extend radially between an inner end and an outer end. The mount may include a sleeve. The structural vane body may extend radially into the sleeve. The structural vane body may also or alternatively be fastened and/or adhered to the sleeve. The mount and/or the sleeve may be configured from or otherwise include metal.

    [0013] The outer platform may include a vane aperture. The first of the structural inlet guide vanes may extend radially into the vane aperture.

    [0014] The inner platform may include a vane aperture. The first of the structural inlet guide vanes may extend radially into the vane aperture.

    [0015] The inner vane platform may include an axial first segment and an axial second segment that is fastened to the first segment. The vane aperture may be defined by the first segment and the second segment.

    [0016] The organic matrix composite may be configured from or otherwise include graphite, silicon carbide and/or fiberglass.

    [0017] The inner platform and/or the outer platform may be configured from or otherwise include metal.

    [0018] The assembly may include a nosecone connected to the inner platform.

    [0019] The assembly may include a plurality of adjustable inlet guide vanes that are respectively arranged with the structural inlet guide vanes. Each of the adjustable inlet guide vanes may rotate about a respective radially extending axis.

    [0020] The foregoing features and the operation of the invention will become more apparent in light of the following description and the accompanying drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0021] 

    FIG. 1 is a side sectional illustration of a turbine engine;

    FIG. 2 is a perspective illustration of an inlet assembly for the engine of FIG. 1;

    FIG. 3 is a side sectional illustration of a portion of the assembly of FIG. 2;

    FIG. 4 is a perspective illustration of a portion of a vane inner platform for the assembly of FIG. 2;

    FIG. 5 is a perspective illustration of a vane outer platform for the assembly of FIG. 2;

    FIG. 6 is a side view illustration of a structural inlet guide vane for the assembly of FIG. 2;

    FIG. 7 is an upstream view illustration of the structural inlet guide vane of FIG. 6

    FIG. 8 is a side sectional illustration of the structural inlet guide vane of FIG. 7;

    FIG. 9 is a cross-sectional illustration of the structural inlet guide vane of FIG. 6; and

    FIG. 10 is a perspective illustration of a portion of another structural inlet guide vane.


    DETAILED DESCRIPTION OF THE INVENTION



    [0022] FIG. 1 is a side sectional illustration of a turbine engine 20 that extends along an axis 22 between an upstream airflow inlet 24 and a downstream airflow exhaust 26. The engine 20 includes a fan section 28, a compressor section 29, a combustor section 30, a turbine section 31 and a nozzle section 32. The compressor section 29 includes a low pressure compressor (LPC) section 29A and a high pressure compressor (HPC) section 29B. The turbine section 31 includes a high pressure turbine (HPT) section 31A and a low pressure turbine (LPT) section 31B. The engine sections 28-32 are arranged sequentially along the axis 22 within an engine case 34.

    [0023] Each of the engine sections 28, 29A, 29B, 31A and 31B includes a respective rotor 36-40. Each of the rotors 36-40 includes a plurality of rotor blades arranged circumferentially around and connected to (e.g., formed integral with or mechanically fastened, welded, brazed or otherwise adhered to) one or more respective rotor disks. The fan rotor 36 and the LPC rotor 37 are connected to and driven by the LPT rotor 40 through a low speed shaft 42. The HPC rotor 38 is connected to and driven by the HPT rotor 39 through a high speed shaft 44. The fan rotor 36 and the LPC rotor 37 are also connected to a forward shaft 46. The forward shaft 46 is rotatably supported by a turbine engine inlet assembly 48 that defines the airflow inlet 24.

    [0024] Air enters the engine 20 through the inlet assembly 48, and is directed through the fan section 28 and into an annular core gas path 50 and an annular bypass gas path 52. The air within the core gas path 50 may be referred to as "core air". The air within the bypass gas path 52 may be referred to as "bypass air" or "cooling air". The core air is directed through the engine sections 29-32 and exits the engine 20 through the airflow exhaust 26. Within the combustor section 30, fuel is injected into and mixed with the core air and ignited to provide forward engine thrust. The bypass air is directed through the bypass gas path 52 and is utilized to cool various turbine engine components within one or more of the engine sections 29-32. The bypass air may also or alternatively be utilized to provide additional forward engine thrust.

    [0025] FIG. 2 is a perspective illustration of the inlet assembly 48. FIG. 3 is a side sectional illustration of a portion of the inlet assembly 48. Referring to FIGS. 2 and 3, the inlet assembly 48 includes a vane inner platform 54, a vane outer platform 56, a plurality of structural inlet guide vanes 58, and a nosecone 60.

    [0026] The inner platform 54 extends circumferentially around the axis 22. The inner platform 54 extends axially between a platform upstream end 62 and a platform downstream end 64. The inner platform 54 extends radially between a platform inner side 66 and a platform outer side 68. The inner platform 54 includes one or more axial platform segments 70-72, and a plurality of vane apertures 74 (e.g., pockets or slots).

    [0027] The platform segments may include an axial first segment 70 (e.g., an upstream ring), an axial second segment 71 (e.g., an intermediate ring), and an axial third segment 72 (e.g., a downstream ring). The first segment 70 extends axially from the upstream end 62 to the second segment 71. The second segment 71 is arranged and extends axially between the first segment 70 and the third segment 72. The third segment 72 extends axially between the second segment 71 and the downstream end 64.

    [0028] Referring to FIG. 4, the vane apertures 74 are arranged circumferentially around the axis 22. One or more of the vane apertures 74 each extends radially through the inner platform 54 from the outer side 68 to the inner side 66. One or more of the vane apertures 74 each extends axially between opposing end surfaces 76 and 78. One or more of the vane apertures 74 each extends laterally (e.g., circumferentially or tangentially) between opposing side surfaces 80. One or more of the vane apertures 74 may each be defined by one or more of the platform segments; e.g., the first and the second segments 70 and 71. The first segment 70 includes, for example, the end surface 76. The second segment 71 includes the end surface 78 and the side surfaces 80.

    [0029] Referring again to FIGS. 2 and 3, one or more of the platform segments 70-72 may each be cast, milled, machined and/or otherwise formed from metal. Examples of the metal may include titanium (Ti), aluminum (Al), nickel (Ni), or an alloy of one or more of the forgoing materials and/or any other material. Alternatively, the platform segments 70-72 may be formed from a composite. The inner platform 54, for course, may be constructed from various materials other than those set forth above.

    [0030] Referring to FIG. 5, the outer platform 56 extends circumferentially around the axis 22. The outer platform 56 extends axially between a platform upstream end 82 and a platform downstream end 84. The outer platform 56 extends radially between a platform inner side 86 and a platform outer side 88. The outer platform 56 is configured as a unitary body, and includes a plurality of vane apertures 90 (e.g., pockets or slots).

    [0031] The vane apertures 90 are arranged circumferentially around the axis 22. Referring to FIG. 3, one or more of the vane apertures 90 each extends radially into the outer platform 56 from the inner side 86 to a bottom surface 92. Referring again to FIG. 5, one or more of the vane apertures 90 each extends axially between opposing end surfaces 94. One or more of the vane apertures 90 each extends laterally between opposing side surfaces 96.

    [0032] The outer platform 56 may be cast, milled, machined and/or otherwise formed from metal. Examples of the metal may include titanium (Ti), aluminum (Al), nickel (Ni), or an alloy of one or more of the forgoing materials. Alternatively, the outer platform 56 may be formed from a composite. The outer platform 56, for course, may be constructed from various materials other than those set forth above.

    [0033] Referring to FIGS. 6 to 8, one or more of the structural inlet guide vanes 58 each extends radially between a body inner end 98 and a body outer end 100. One or more of the structural inlet guide vanes 58 each includes a structural vane body 102. One or more of the structural inlet guide vanes 58 may each also include one or more vane body mounts such as, for example, an inner mount 104 and an outer mount 106.

    [0034] The structural vane body 102 extends radially between a body inner end 108 and a body outer end 110. The structural vane body 102 includes an airfoil portion 112, an inner mount portion 114 and an outer mount portion 116. The airfoil portion 112 is arranged and extends radially between the inner mount portion 114 and the outer mount portion 116. The airfoil portion 112 extends axially between an airfoil leading edge 118 and an airfoil trailing edge 120. The airfoil portion 112 extends laterally between opposing airfoil sides 122 and 124. The inner mount portion 114 extends radially from the airfoil portion 112 to the inner end 108. The outer mount portion 116 extends radially from the airfoil portion 112 to the outer end 110.

    [0035] Referring to FIG. 9, the structural vane body 102 includes a core 126 (e.g., a solid core), a heater 128 and a coating 130. Referring to FIG. 8, the core 126 extends radially between the inner end 108 and the outer end 110. Referring again to FIG. 9, the core 126 extends axially between a core leading edge 132 and a core trailing edge 134. The core 126 extends laterally between opposing core sides 136 and 138. The core 126 is compression molded and/or otherwise formed from an organic matrix composite (OMC). The organic matrix composite may include graphite, silicon carbide, fiberglass, etc. The organic matrix composite, of course, may also or alternatively include various materials other than those set forth above.

    [0036] The heater 128 is located at (e.g., on, adjacent or proximate) the airfoil leading edge 118, and is connected to the core 126. The heater 128 is, for example, adhered and/or otherwise bonded to the core leading edge 132, at least an upstream portion of the core side 136 and/or at least an upstream portion of the core side 138. The heater 128 includes a heating element 140 (e.g., a metallic wire and/or film) that is completely (or at least partially) embedded within an insulator 142 such as, for example, fiberglass. The heater 128, of course, may have various configurations other than that described above.

    [0037] The coating 130 at least partially coats the core 126 and/or the heater 128. The coating 130 is coated onto, for example, the heater 128 as well as portions of the core side surfaces 136 and 138 that are not covered by the heater 128. The core trailing edge 134 is uncoated. Alternatively, the core trailing edge may also be coated with the coating 130 or another coating. The coating 130 may be an erosion coating such as, for example, a polyurethane coating, a silicon coating and/or a fluoroelastomer coating (e.g., a Viton® coating manufactured by DuPont of Wilmington, DE). The coating 130 alternatively may be various types of coatings other than an erosion coating.

    [0038] Referring to FIGS. 6 to 8, the inner mount 104 includes a tubular sleeve 144 and a base 146. The sleeve 144 maybe configured integral with the base 146; e.g., formed as a unitary body. The sleeve 144 extends radially outwards from the base 146. The inner mount 104 may be cast, milled, machined and/or otherwise formed from metal. Examples of the metal may include titanium (Ti), aluminum (Al), nickel (Ni), or an alloy of one or more of the forgoing materials and/or any other material. Alternatively, the inner mount 104 may be formed from a composite. The inner mount 104, for course, may be constructed from various materials other than those set forth above.

    [0039] The outer mount 106 includes a tubular sleeve 148, a base 150, and one or more fasteners 152 (e.g., threaded studs). The sleeve 148 and/or one or more of the fasteners 152 may be configured integral with the base 150; e.g., formed as a unitary body. The sleeve 148 extends radially inwards from the base 150. The fasteners 152 extend radially outwards from the base 150. The outer mount 106 may be cast, milled, machined and/or otherwise formed from metal. Examples of the metal may include titanium (Ti), aluminum (Al), nickel (Ni), or an alloy of one or more of the forgoing materials and/or any other material. Alternatively, the outer mount 106 may be formed from a composite. The outer mount 106, for course, may be constructed from various materials other than those set forth above.

    [0040] Referring to FIGS. 6 to 8, the structural vane body 102 is mated with the inner mount 104 and the outer mount 106. The inner mount portion 114 extends radially into the sleeve 144, and the body inner end 108 engages (e.g., contacts) the base 146. The inner mount portion 114 is adhered and/or otherwise bonded to the inner mount 104. The inner mount portion 114 is also (or alternatively) mechanically fastened to the inner mount 104 with one or more fasteners 154 (e.g., rivets). The outer mount portion 116 extends radially into the sleeve 148, and the body outer end 110 engages the base 150. The outer mount portion 116 is adhered and/or otherwise bonded to the outer mount 106. The outer mount portion 116 is also (or alternatively) mechanically fastened to the outer mount 106 with one or more fasteners 156 (e.g., rivets).

    [0041] Referring to FIG. 2, the nosecone 60 is connected (e.g., mechanically fastened) to the first segment 70. The inner platform 54 is arranged radially within the outer platform 56, which defines an inlet gas path 158 of the engine 20 between the platform outer side 68 and the platform inner side 86. The structural inlet guide vanes 58 are arranged circumferentially around the axis 22. The airfoil portions 112 extend radially through the inlet gas path 158 between the inner platform 54 and the outer platform 56.

    [0042] Referring to FIG. 3, each structural inlet guide vane 58 is mated with a respective one of the vane apertures 74 and a respective one of the vane apertures 90. The inner mount 104 extends radially into the respective vane aperture 74. The inner mount 104 is connected to the first segment 70 and the second segment 71 with at least one fastener 160 (e.g., a bolt and a nut). The fastener 160 also connects the first segment 70 to the second segment 71. The third segment 72 may be connected to the second segment 71 with one or more additional fasteners (not shown). The outer mount 106 extends radially into the respective vane aperture 90. The outer mount 106 is connected to the outer platform 56 with the fasteners 152. The fasteners 152, for example, extend radially through the outer platform 56 and are respectively mated with one or more nuts 162. In this manner, the structural inlet guide vanes 58 structurally connect the inner platform 54 as well as the shaft 46 (see FIG. 1) to the outer platform 56.

    [0043] During operation of the engine 20, the structural inlet guide vanes 58 transfer loads between the inner platform 54 and the outer platform 56. Each of the structural inlet guide vanes 58 and, more particularly, each of the structural vane bodies 102 also guides the flow of air from the airflow inlet 24 through the gas path 158 and into the fan section 28 (see FIG. 1).

    [0044] Referring to FIG. 2, the inlet assembly 48 also includes a plurality of adjustable inlet guide vanes 164 that are respectively arranged with the structural inlet guide vanes 58. Each of the adjustable inlet guide vanes 164 is respectively circumferentially aligned with a respective one of the structural inlet guide vanes 58. Each of the adjustable inlet guide vanes 164 is respectively is located adjacent to and downstream of a respective one of the structural inlet guide vanes 58. Referring to FIG. 3, each of the adjustable inlet guide vanes 164 is connected to the inner platform 54 and the outer platform 56. Each of the adjustable inlet guide vanes 164 is rotatable about a respective radially extending axis 166. During engine operation, one or more of the adjustable inlet guide vanes 164 may each be rotated about its axis 166 to adjust the amount of air flowing into the fan section 28 (see FIG. 1).

    [0045] The inlet assembly 48 and the inlet assembly components may have various configurations other than those described above and illustrated in the drawings. The inlet assembly 48, for example, may be configured without one or more of the adjustable inlet guide vanes 164. One or more of the vane apertures 74 may each extend partially radially into the inner platform 54 from the platform outer side 68. The inner platform 54 may be configured as a unitary body. The outer platform 56 may be configured with a plurality of axial segments. Referring to FIG. 10, the inner mount 104 (or the outer mount 106) may include one or more flanges 168 that radially engage a laterally flared portion 170 of the inner mount portion 114 (or the outer mount portion 116). The present invention therefore is not limited to any particular inlet assembly or inlet assembly component types or configurations.

    [0046] The terms "upstream", "downstream", "inner" and "outer" are used to orientate the components of the inlet assembly 48 described above relative to the turbine engine 20 and its axis 22. A person of skill in the art will recognize, however, one or more of these components may be utilized in other orientations than those described above. The present invention therefore is not limited to any particular spatial orientations.

    [0047] A person of skill in the art will recognize the inlet assembly 48 may be included in various turbine engines other than the one described above. The inlet assembly, for example, may be included in a geared turbine engine where a gear train connects one or more shafts to one or more rotors in a fan section, a compressor section and/or any other engine section. Alternatively, the inlet assembly may be included in a turbine engine configured without a gear train. The inlet assembly may be included in a geared or non-geared turbine engine configured with a single spool, with two spools (e.g., see FIG. 1), or with more than two spools. The present invention therefore is not limited to any particular types or configurations of turbine engines.

    [0048] While various embodiments of the present invention have been disclosed, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible within the scope of the invention. For example, the present invention as described herein includes several aspects and embodiments that include particular features. Although these features may be described individually, it is within the scope of the present invention that some or all of these features may be combined within any one of the aspects and remain within the scope of the invention. Accordingly, the present invention is not to be restricted except in light of the attached claims and their equivalents.


    Claims

    1. An assembly (48) for a turbine engine, comprising:

    an inner platform (54);

    an outer platform (56) that circumscribes the inner platform (54); and

    a plurality of guide vanes arranged around an axis (22), and extending radially between and connected to the inner platform (54) and the outer platform (56);

    the guide vanes are structural inlet guide vanes (58), and a first of the structural inlet guide vanes (58) includes a structural vane body (102) comprising an organic matrix composite, wherein the structural vane body (102) includes a core (126) of the organic matrix composite, characterised in that the structural vane body further includes a coating (130) that at least partially coats the core (126), wherein the coating (130) forms an outermost surface of the first of the structural inlet guide vanes (58).
     
    2. The assembly of claim 1, wherein the structural vane body (102) transfers loads between the inner platform (54) and the outer platform (56).
     
    3. The assembly of claim 1 or 2, wherein
    a gas path (158) is defined radially between the inner platform (54) and the outer platform (56); and
    the structural vane body (102) guides gas through the gas path (158).
     
    4. The assembly of claim 1, 2 or 3, wherein the core (126) comprises a substantially solid core of the organic matrix composite.
     
    5. The assembly of any preceding claim, wherein
    the structural vane body (102) extends axially between a leading edge (118) and a trailing edge (120); and
    the structural vane body (102) further includes a heater (128) located at the leading edge (118) and connected to the core (126).
     
    6. The assembly of claim 5, wherein the coating (130) completely coats the leading edge (118), the trailing edge (120), and the heater (128).
     
    7. The assembly of claim 5 or 6, wherein the heater (128) includes a heating element (140) that is at least partially embedded within an insulator (142).
     
    8. The assembly of any preceding claim, wherein the coating (130) is an erosion coating.
     
    9. The assembly of any preceding claim, wherein the first of the structural inlet guide vanes (58) further includes a mount (104,106) that fastens the structural vane body (102) to one of the inner platform (54) and the outer platform (56).
     
    10. The assembly of claim 9, wherein
    the structural vane body (102) extends radially between an inner end (108) and an outer end (110); and
    the mount (104,106) includes a sleeve (144,148); and
    the structural vane body (102) extends radially into and is at least one of fastened and adhered to the sleeve (144,148), wherein the sleeve (144,148) comprises metal.
     
    11. The assembly of any preceding claim, wherein
    the inner or outer platform (54,56) includes a vane aperture (74,90); and
    the first of the structural inlet guide vanes (58) extends radially into the vane aperture (74,90).
     
    12. The assembly of claim 11, wherein
    the inner platform (54) include an axial first segment (70) and an axial second segment (71) that is fastened to the first segment (70); and
    the vane aperture (74) is defined by the first segment (70) and the second segment (71).
     
    13. The assembly of any preceding claim, wherein the organic matrix composite comprises at least one of graphite, silicon carbide and fiberglass, and/or at least one of the inner platform (54) and the outer platform (56) comprises metal.
     
    14. The assembly of any preceding claim, further comprising a nosecone connected to the inner platform (54).
     
    15. The assembly of any preceding claim, further comprising:

    a plurality of adjustable inlet guide vanes (164) respectively arranged with the structural inlet guide vanes (58);

    wherein each of the adjustable inlet guide vanes (164) rotates about a respective radially extending axis (166).


     


    Ansprüche

    1. Baugruppe (48) für einen Turbinenmotor, umfassend:

    eine innere Plattform (54);

    eine äußere Plattform (56), welche die innere Plattform (54) begrenzt; und

    eine Vielzahl von Leitschaufeln, die um eine Achse (22) herum angeordnet sind und sich radial zwischen der inneren Plattform (54) und der äußeren Plattform (56) erstrecken und damit verbunden sind; wobei die Leitschaufeln strukturelle Einlassleitschaufeln (58) sind, und eine erste der strukturellen Einlassleitschaufeln (58) einen strukturellen Schaufelkörper (102) umfasst, der einen organischen Matrixverbund umfasst, wobei der strukturelle Schaufelkörper (102) einen Kern (126) des organischen Matrixverbunds umfasst,

    dadurch gekennzeichnet, dass der strukturelle Schaufelkörper ferner eine Beschichtung (130) umfasst, die den Kern (126) mindestens teilweise beschichtet, wobei die Beschichtung (130) eine äußerste Oberfläche der ersten der strukturellen Einlassleitschaufeln (58) bildet.


     
    2. Baugruppe nach Anspruch 1, wobei der strukturelle Schaufelkörper (102) Lasten zwischen der inneren Plattform (54) und der äußeren Plattform (56) überträgt.
     
    3. Baugruppe nach Anspruch 1 oder 2, wobei
    ein Gasweg (158) radial zwischen der inneren Plattform (54) und der äußeren Plattform (56) definiert ist; und
    der strukturelle Schaufelkörper (102) Gas über den Gasweg (158) führt.
     
    4. Baugruppe nach Anspruch 1, 2 oder 3, wobei der Kern (126) einen im Wesentlichen festen Kern des organischen Matrixverbunds umfasst.
     
    5. Baugruppe nach einem der vorhergehenden Ansprüche, wobei
    sich der strukturelle Schaufelkörper (102) axial zwischen einer Vorderkante (118) und einer Hinterkante (120) erstreckt; und
    der strukturelle Schaufelkörper (102) ferner eine Heizvorrichtung (128) umfasst, die sich an der Vorderkante (118) befindet und mit dem Kern (126) verbunden ist.
     
    6. Baugruppe nach Anspruch 5, wobei die Beschichtung (130) die Vorderkante (118), die Hinterkante (120) und die Heizvorrichtung (128) vollständig beschichtet.
     
    7. Baugruppe nach Anspruch 5 oder 6, wobei die Heizvorrichtung (128) ein Heizelement (140) umfasst, das mindestens teilweise in einem Isolierkörper (142) eingebettet ist.
     
    8. Baugruppe nach einem der vorhergehenden Ansprüche, wobei die Beschichtung (130) eine Erosionsbeschichtung ist.
     
    9. Baugruppe nach einem der vorhergehenden Ansprüche, wobei die erste der strukturellen Einlassleitschaufeln (58) ferner eine Halterung (104, 106) umfasst, die den strukturellen Schaufelkörper (102) an einer von der inneren Plattform (54) und der äußeren Plattform (56) befestigt.
     
    10. Baugruppe nach Anspruch 9, wobei
    sich der strukturelle Schaufelkörper (102) radial zwischen einem inneren Ende (108) und einem äußeren Ende (110) erstreckt; und
    die Halterung (104, 106) eine Hülse (144, 148) umfasst; und
    sich der strukturelle Schaufelkörper (102) radial in die Hülse (144, 148) erstreckt und mindestens entweder daran befestigt oder daran geklebt ist, wobei die Hülse (144, 148) Metall umfasst.
     
    11. Baugruppe nach einem der vorhergehenden Ansprüche, wobei
    die innere oder äußere Plattform (54, 56) eine Schaufelöffnung (74, 90) umfasst; und
    sich die erste der strukturellen Einlassleitschaufeln (58) radial in die Schaufelöffnung (74, 90) erstreckt.
     
    12. Baugruppe nach Anspruch 11, wobei
    die innere Plattform (54) ein axiales erstes Segment (70) und ein axiales zweites Segment (71), das an dem ersten Segment (70) befestigt ist, umfasst; und
    die Schaufelöffnung (74) durch das erste Segment (70) und das zweite Segment (71) definiert ist.
     
    13. Baugruppe nach einem der vorhergehenden Ansprüche, wobei der organische Matrixverbund mindestens eines von Graphit, Siliziumcarbid und Glasfaser umfasst, und/oder mindestens eine von der inneren Plattform (54) und der äußeren Plattform (56) Metall umfasst.
     
    14. Baugruppe nach einem der vorhergehenden Ansprüche, ferner umfassend einen Nasenkegel, der mit der inneren Plattform (54) verbunden ist.
     
    15. Baugruppe nach einem der vorhergehenden Ansprüche, ferner umfassend:

    eine Vielzahl von anpassbaren Einlassleitschaufeln (164), die jeweils mit den strukturellen Einlassleitschaufeln (58) angeordnet sind;

    wobei sich jede der anpassbaren Einlassleitschaufeln (164) um eine jeweilige sich radial erstreckende Achse (166) dreht.


     


    Revendications

    1. Ensemble (48) pour moteur à turbine, comprenant :

    une plateforme interne (54) ;

    une plateforme externe (56) qui entoure la plateforme interne (54) ; et

    une pluralité d'aubes de guidage disposées autour d'un axe (22), et s'étendant radialement entre et reliées à la plateforme interne (54) et à la plateforme externe (56) ;

    les aubes de guidage sont des aubes de guidage d'entrée structurales (58), et une première des aubes de guidage d'entrée structurales (58) comporte un corps d'aube structurale (102) comprenant un composite matriciel organique, dans lequel le corps d'aube structurale (102) comporte un noyau (126) du composite matriciel organique,

    caractérisé en ce que le corps d'aube structurale comporte en outre un revêtement (130) qui recouvre au moins partiellement le noyau (126), dans lequel le revêtement (130) forme une surface la plus externe de la première des aubes de guidage d'entrée structurales (58).
     
    2. Ensemble selon la revendication 1, dans lequel le corps d'aube structurale (102) transfère des charges entre la plateforme interne (54) et la plateforme externe (56).
     
    3. Ensemble selon la revendication 1 ou 2, dans lequel
    un trajet de gaz (158) est défini radialement entre la plateforme interne (54) et la plateforme externe (56) ; et
    le corps d'aube structurale (102) guide le gaz à travers le trajet de gaz (158).
     
    4. Ensemble selon la revendication 1, 2 ou 3, dans lequel le noyau (126) comprend un noyau sensiblement solide du composite matriciel organique.
     
    5. Ensemble selon une quelconque revendication précédente, dans lequel
    le corps d'aube structurale (102) s'étend axialement entre un bord d'attaque (118) et un bord de fuite (120) ; et
    le corps d'aube structurale (102) comporte en outre un dispositif de chauffage (128) situé au niveau du bord d'attaque (118) et relié au noyau (126).
     
    6. Ensemble selon la revendication 5, dans lequel le revêtement (130) recouvre complètement le bord d'attaque (118), le bord de fuite (120) et le dispositif de chauffage (128).
     
    7. Ensemble selon la revendication 5 ou 6, dans lequel le dispositif de chauffage (128) comporte un élément de chauffage (140) qui est au moins partiellement intégré à l'intérieur d'un isolant (142).
     
    8. Ensemble selon une quelconque revendication précédente, dans lequel le revêtement (130) est un revêtement d'érosion.
     
    9. Ensemble selon une quelconque revendication précédente, dans lequel la première des aubes de guidage d'entrée structurales (58) comporte en outre un support (104, 106) qui fixe le corps d'aube structurale (102) à l'une de la plateforme interne (54) et de la plateforme externe (56).
     
    10. Ensemble selon la revendication 9, dans lequel :

    le corps d'aube structurale (102) s'étend radialement entre une extrémité interne (108) et une extrémité externe (110) ; et

    le support (104, 106) comporte un manchon (144, 148) ; et

    le corps d'aube structurale (102) s'étend radialement dans et se trouve dans au moins l'un des états fixé et collé au manchon (144, 148), dans lequel le manchon (144, 148) comprend du métal.


     
    11. Ensemble selon une quelconque revendication précédente, dans lequel
    la plateforme interne ou externe (54, 56) comporte une ouverture d'aube (74, 90) ; et
    la première des aubes de guidage d'entrée structurales (58) s'étend radialement dans l'ouverture d'aube (74, 90).
     
    12. Ensemble selon la revendication 11, dans lequel
    la plateforme interne (54) comporte un premier segment axial (70) et un second segment axial (71) qui est fixé au premier segment (70) ; et
    l'ouverture d'aube (74) est définie par le premier segment (70) et le second segment (71).
     
    13. Ensemble selon une quelconque revendication précédente, dans lequel le composite matriciel organique comprend au moins l'un parmi le graphite, le carbure de silicium et la fibre de verre, et/ou au moins l'une parmi la plateforme interne (54) et la plateforme externe (56) comprend du métal.
     
    14. Ensemble selon une quelconque revendication précédente, comprenant en outre une coiffe reliée à la plateforme interne (54) .
     
    15. Ensemble selon une quelconque revendication précédente, comprenant en outre :

    une pluralité d'aubes de guidage d'entrée ajustables (164) agencées respectivement avec les aubes de guidage d'entrée structurales (58) ;

    dans lequel chacune des aubes de guidage d'entrée ajustables (164) tourne autour d'un axe respectif s'étendant radialement (166).


     




    Drawing
























    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description