(19)
(11)EP 2 945 816 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
18.09.2019 Bulletin 2019/38

(21)Application number: 13870806.0

(22)Date of filing:  11.01.2013
(51)International Patent Classification (IPC): 
H02P 9/10(2006.01)
B60L 1/00(2006.01)
H01M 8/04955(2016.01)
H01M 8/04223(2016.01)
H01M 8/0444(2016.01)
H01M 8/04858(2016.01)
H01M 8/241(2016.01)
B60L 58/30(2019.01)
B60L 53/50(2019.01)
H01M 8/04(2016.01)
H01M 8/04828(2016.01)
H01M 8/04089(2016.01)
H01M 8/0438(2016.01)
H01M 8/04746(2016.01)
H01M 8/04303(2016.01)
B60L 53/30(2019.01)
B60L 58/40(2019.01)
B60L 50/72(2019.01)
(86)International application number:
PCT/US2013/021240
(87)International publication number:
WO 2014/109761 (17.07.2014 Gazette  2014/29)

(54)

POWER-ON SHUTDOWN OF FUEL CELL POWER PLANT FOR ENHANCED DURABILITY

EINSCHALTEN/ABSCHALTEN EINER BRENNSTOFFZELLENANLAGE FÜR VERBESSERTE BESTÄNDIGKEIT

COUPURE DE LA MISE EN MARCHE D'UN GROUPE PROPULSEUR À PILE À COMBUSTIBLE POUR UNE MEILLEURE DURABILITÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
25.11.2015 Bulletin 2015/48

(73)Proprietor: Audi AG
85045 Ingolstadt (DE)

(72)Inventors:
  • RAMASWAMY, Sitaram
    West Hartford, CT 06107 (US)
  • PERRY, Michael, L.
    Glastonbury, CT 06033 (US)


(56)References cited: : 
EP-A1- 1 291 947
KR-A- 20120 059 802
KR-B1- 100 805 448
US-A1- 2011 200 901
EP-A2- 1 860 718
KR-B1- 100 805 445
US-A1- 2005 031 917
US-A1- 2013 004 879
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The disclosure relates generally to fuel cell power systems and more particularly to fuel cell power plants suited for mobile usage, as in transportation vehicles. More particularly still, the disclosure relates to operation of such fuel cell power systems and the fuel cell power plant(s) thereof, into and/or in, mode(s) other than normal operating modes to enhance durability, economy, and/or the like.

    [0002] Fuel cell power plants for mobile/transportation usage are increasingly being employed in automobiles and in larger carriers, such as busses. These power plants typically employ numerous PEM-type fuel cells arranged in one or more stack(s), or stack assembly(s) (CSA), for the generation of electrical power to both power electrical motors to directly propel the vehicle, and to provide energy for storage in an energy storage system such as a battery, or bank of batteries.

    [0003] A PEM fuel cell employs a membrane-type electrolyte in which the membrane is a proton exchange membrane, or polymer electrolyte membrane, (PEM). The membrane is disposed between anode and cathode electrodes respectively. The catalyzed cathode and anode serve to induce the desired electrochemical reactions. Reactants, typically an oxidant such as oxygen or air and a fuel such as hydrogen, are flowed through respective cathode and anode flow helds over respectively opposite sodes of the membrane to obtain requisite electrochemical reaction.

    [0004] It is know that the startup and shutdown mechanisme associated with operation of a fuel cell stack have a critical, typically adverse, impact on the durability and life of the stack. Degradation of a fuel cell stack results from oxidation of catalyst support material, as well as high temperatures and high (electrical) potentials. This impact is more pronounced in the application of fuel cell power plants for transportation purposes, because of the increased number/frequency of startups and shutdowns as compared to typically long-duration operation in stationary applications, and is of particular impact with respect to such power plants in large transport vehicles, such as busses.

    [0005] A number of different techniques have been proposed or employed to help mitigate the degradation mechanisms associated with the startup/shutdown cycle, with a preferred approach being one of hydrogen stabilization, sometimes referred to as a "Hydrogen On" (or "H2 On'") approach. In the "Hydrogen On" approach, oxygen is removed from the air side volume of the fuel cell stack (including the oxidant flow fields in the cells, inlet and outlet manifolds, plumbing, etc), and hydrogen levels are stabilized in both the cathode and anode flow fields, thus preventing or minimizing at least high voltages in the cells. Typical hydrogen stabilization is accomplished in a shutdown procedure which includes (a) blocking the input of fresh air into the stack, (b) removing the service load and connecting the stack to a resistive auxiliary load, (c) performing cathode recycle by conducting cathode exhaust to the inlet of a/the cathode blower, which remains on, while continuing to provide fresh hydrogen to the cells, with fuel recycle on, and with fuel purge (exhaust) blocked, and continuing this until sufficient hydrogen has been provided to react with all of the residual oxygen in the air side volume, and (d) closing off the inlet of fresh hydrogen to the fuel cells while continuing to provide cathode and fuel recycling (recirculation) until shutdown is completed. One representative example of such a system is disclosed in U.S. Patent No. 8,142,950 issued March 27, 2012 to Reiser et al, and assigned to the owner of the present application. Another similar representative example is disclosed in U.S. Patent Application Publication No. US 2011/0223495 A1 published Sept. 15, 2011 by M. L. Perry and assigned to the owner of the present invention.

    [0006] The EP 1 860 718 A2 describes a charging method of a secondary battery of a vehicle, which contains a fuel cell power plant, for providing electrical energy necessary during start procedure of the fuel cell. If the charge rate of the secondary battery is below a threshold it will be charged after the vehicle is stopped. This will be done by either using the fuel cell itself or by using an external power supply. If the secondary battery is connected to an external power supply the fuel cell operation is stopped.

    [0007] The US 2005/0031917 A1 describes a stopping procedure of a fuel cell system by means of hydrogen passivation of the cathode. Herein two methods for shutting down the system are described. In a passive method the concentration of hydrogen within the cathode and anode flow path is monitored immediately prior start and if the concentration is below a threshold, a rapid hydrogen purge is used to eliminate remaining oxygen. In an active state the level of hydrogen is monitored by sensor means. If the concentration of hydrogen is below a certain value, additional hydrogen is supplied.

    [0008] The EP 2 308 596 A1 shows an method for supplying hydrogen fuel from a hydrogen supply device to an electric vehicle.

    [0009] It will be noted that the Hydrogen On stabilization approach is employed during the process of shutting down and may relatively quickly terminate the supply of air to the stack, but may continue to rely for a limited interval on the delivery and/or recirculation of hydrogen to the stack. While the passivation benefits of the Hydrogen On condition may continue for some interval during the actual shutdown state, that interval is typically limited to a few hours, e.g., less than 16 hours. It has been deemed impractical from both logistical and durability standpoints to repeatedly restart, briefly operate, and again shutdown and H2-passivate the fuel cell power plant for the purpose of extending the duration of the H2 On passivation benefits. Such limits on the duration of the Hydrogen On condition correspondingly limit the benefits derived front such mode of operation, especially for extended intervals during which the power plant is normally shutdown.

    SUMMARY



    [0010] Various transportation vehicles do, or are required from time to time to, proceed to a station, garage, "shed", or terminal for various types of storage and/or maintenance. While at such stations, the vehicle may receive a recharge of various resources such as hydrogen fuel, and its fuel cell power plant has heretofore typically been in a shutdown condition for intervals that may extend from several hours to several days. However, it is recognized herein that by utilizing one or more of the station's relatively unlimited resources, including at least electrical power, and by modifying the normal shutdown process to include a so-called Power On mode, it is possible for the protective Hydrogen On condition to remain active for greatly extended intervals.

    [0011] A method or technique is disclosed of modified shutdown of, or for, a fuel cell power plant contained with and supplying electrical power to a mobile vehicle. The vehicle characteristically proceeds at intervals to a station containing one or more resources utilized by the fuel cell power plant, for resupply thereof. One such resource provided at/by the station is electrical energy, and operation of the fuel cell power plant is modified to utilize the availability of that electrical energy to maintain an active protective Hydrogen On condition for greatly extended intervals, for example of several days or longer, via a so-called Power On mode of operation.

    [0012] The Power On mode maintains a passivating flow of hydrogen, directly and/or by recirculation, to or within the fuel cell power plant, and is typically entered via modification of an otherwise conventional shutdown procedure. Whereas initial aspects of a conventional shutdown procedure are or may be, retained, at some preselected phase or condition in that procedure at which most of the H2 passivation will have been attained, the procedure may be modified in response to the presence of at least external electrical power. The procedure is modified to maintain a hydrogen flow, directly and/or by recirculation, to thereby maintain and extend the duration of hydrogen passivation to intervals greater than 16 hours, or 30 hours, or indeed to many days. Regulation of hydrogen flow may be in response to a sensed pressure of hydrogen, for example at or near an inlet for the hydrogen to the fuel cell of the fuel cell power plant, and involve providing hydrogen when the sensed pressure thereof decreases to some threshold, for example 2kPa.

    [0013] While the provision of the Power On mode of operation depends initially upon the availability of electriced power at the station to extend the otherwise limited duration of H2 On passivation, additional benefits may also be derived during the Power On mode by supplying to the vehicle and/or the fuel cell power plant other resources from the station, such as supplemental H2 and/or supplemental coolant and/or cooling capacity.

    [0014] The foregoing features and advantages of the present disclosure will become more apparent in light of the following detailed description of exemplary embodiments thereof as illustrated in the accompanying drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0015] Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.

    Fig. 1 is a simplified diagram illustrating a part of a station or terminal at which one or more vehicles having a fuel cell power plant are, or may be connected which one or more vehicles having a fuel cell cell power plant are, or may be, connected to external resources in accordance with the present disclosure;

    Fig. 2 is a generalized diagram of a vehicle of Fig. 1, depicting in block form various generalized components of the fuel cell power plant;

    Fig. 3 is a schematic diagram view of relevant portions of the fuel cell power plant of Fig. 2, illustrating some of the components and their interconnections in greater detail;

    Fig. 4A illustrates a generalized functional flow diagram of the initial portion of the Hydrogen On shutdown process prior to determination of a Power On enabled state;

    Fig. 4B is a continuation of the generalized functional flow diagram begun in Fig. 4A, illustrating, alternatively, completion of the shutdown process or entry into and maintenance of the Power On process; and

    Fig. 5 is a simple functional pictorial representation of the determination of a Power On enabled state


    DETAILED DESCRIPTION



    [0016] Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.

    [0017] Refering to Fig. 1, there is depicted a portion of a station 10, referred to variously also as a terminal, shed, garage, etc, at which one or more fuel cell-powered vehicles 12 may temporarily located, as for periodic storage, maintenance, and/or replenishment of required resources. The vehicles 12 characteristically contain a fuel cell power system (FCPS) 14, a limited on-board supply of hydrogen 16, an electric motor drive 18, and various vehicle auxiliary loads 19. While the vehicle 12 might be any of various types of fuel cell-powered vehicles, including but not limited to automobiles, trucks, and busses, the disclosure is particularly directed to vehicles such as busses which routinely proceed to a station 10 for overnight, weekend, or longer, storage or housing, and which may obtain replenishement at the terminal 10 of one or more "external" resources 20. Those resources 20 include at least electrical power 20A, and may optionally also include hydrogen 20B, coolant and coolant processing 20C, and/or other resources, Such resources 20 are, or may be, conveniently available at a station 10, and in quantities that are nominally unlimited relative to their limited quantities as housed on the respective vehicles 12. For illustrative purposes in Fig. 1, each and all of the resources 20 are depicted as being connected to a respective vehicle 12 via a gross conduit 22, which in actuality will be various independent conduits for the materials, entities, properties, and functions conveyed. It will be understood, though not separately shown, that for the transfer of electrical power there will be appropriate electrical cables/ connectors/ contactors, etc. The same would be true for the optional provision of hydrogen and/or coolant and coolant processing. Importantly also, the gross conduit 22 is presumed to embrace the transfer of signal information between the vehicle 12 and the station 10 with respected to the resources 20.

    [0018] Referring to Fig. 2, the vehicle 12, and particularly the fuel cell power system 14, is depicted in somewhat greater detail. The FCPS 14 importantly includes a fuel cell power plant (FCPP) 24. It may also include an electrical energy storage system (ESS) 25. The FCPP 24 is capable of electrochemically providing electrical energy in a known manner. The ESS 25 may be a rechargeable battery, or battery system. Either, or both, of the FCPP 24 and the ESS 25 is/are capable of providing electrical energy to the vehicle motor drive to propel the vehicle 12. The ESS 25 may conveniently be recharged, to varying extents, by dynamic braking of the vehicle and/or by operation of the FCPP 24. Moreover, the ESS 25 is depicted in Fig. 2 as being connected to also supply electrical energy to the FCPP 24. This capacity allows some limited operation of limited duration of various electrically-powered equipment that comprise part of the FCPP 24, even during times such as shutdown when the FCPP 24 is not normally supplying electrical energy, and for purposes of restart.

    [0019] Considering the FCPP 24 in greater detail, it is generally comprised of a fuel cell stack assembly (CSA) 26; a fuel processing system (FPS) 28 for processing the hydrogen fuel delivered from on-board source 16 and delivered to and/or recirculated from/to the CSA 26; an air processing system (APS) 29 for receiving an oxidant such as air from a source designated 30 and delivered to and/or recirculated from/to the CSA 26; a thermal management system (TMS) 32 for managing the thermal requirements of the CSA 26; a voltage limiting device (VLD) 34 for regulating and/or limiting the output voltage of the CSA 26; and a controller 36 for regulating the numerous processes and functions of at least the FCPP 24, and typically also those of the ESS 25, the vehicle auxiliary loads 19, and the interface between the station resources and the vehicle 12, particularly the FCPP 24.

    [0020] Reference is now made to Fig. 3 which depicts the relevant components of the FCPP 24 in greater detail. The fuel cell stack assembly 26 is comprises of multiple fuel cells, here collectively shown as a single cell, each having a cathode 38 and an anode 40 with an electrolyte 42 between them. In the illustrated embodiment, the electrolyte is a proton exchange membrane (PEM). In an exemplary embodiment, the reactant gas flow fields (well known and not shown) are disposed in bipolar plates, at least one of which has coolant passages 44 on a side of the plate opposite to the side having reactant gas flow field channels. These bipolar plates can either be solid or micro-porous, hydrophilic water transport plates, both of which are well known. There may or may not be cooler plates interspersed or at intervals between bipolar plates.

    [0021] Fuel is provided from the on-board source 16 of hydrogen, through a pressure control valve 46, and a fuel flow control valve 48 to inlets 50 of the anodes. The exits 52 of the flow fields transfer hydrogen-depleted exhaust through a conduit 54 that leads to a remotely controllable anode exhaust valve 56, which in turn is operatively connected to a mixing box 73. The anode exhaust valve 56 may be slightly opened conditinuously, or operated periodically on a polse-width modulation basis, as necessary to eliminate contaminants and inerts such as nitrogen, and/or for mixture with exhaust air for possible recycle. A conduit 57 also connected to conduit 54 connects the anode exhaust to an aniode recycle pump 58, which might be an ejector, the output of which in a conduit 59 is connected with the inlets 50 of the nodes for anode fuel recycle. The anode recycle pump may also be as electrichemical hydrogen pump which relies passing a direct current through the fuel cell in a known manner and provides both recirculation and puriffication of the exit hydrogen,

    [0022] Air is provided in a conduit 60 through an air inlet valve 62 to an air blower 64, which provides air through an air control valve 65 to inlets 66 of the cathodes 38. The cathode exits 67 are connected through a conduit 68 and an exhaust valve 69 to exhaust, and includes a mixing box 73 chere exhausted process air is mixed with exhausted fuel so as to reduce flammability before discharging to the atmosphere, as well as for possible recycle to the cathodes 38. The exhaust valve 69 is remotely operable for variably controlling the exhaust flow of not only the cathodes 38 but also the anodes 40, including partially and fully closed, states for facilitating cathode recycle flow.

    [0023] To perform hydrogen stabilization in the the anodes and cathodes at shatdown, cathode recycle is provided in this embodiment by a conduit 70 which is connected through a remotely operable feedback valve 71 and a conduit 72 to the inlet of air blower 64. Still further, a hydrogen transfer means in communication between the flow path of anodes 40 and the flow paths of cathodes 38 selectively permits transfer of hydrogen fuel between flow fields during shutdown. In this embodiment, the hydrogen transfer means comprises the hydrogen-containing exhaust from the anodes 40 being connected to the mixing box 73 vin conduit 54 and anode exhaust valve 56, for mixing with air exhausted from the cathodes 38 and then recycled via conduits 70 and 72. Alternatively, or additionally, other hydrogen transfer means may comprise a hydrogen transfer valve 74, here depicted in broken line form, secured in fluid communication between the anode inlets 50 and a lower-pressure point in the cathode recycle path, such as at the inlet to the air blower 64 leading to the cathode inlets 66. Other alternate means for such hydrogen transfer might take form of an electrochemical hydrogen pump which relies upon passing a direct current through the fuel cell in a known manner, or simply by relying upon relatively slow diffusion of hydrogen across the PEM electrolyte 42.

    [0024] The thernal management system 32 is depicted only in a generalized form, but it will be inderstood that it may take any of several well known form for condensing or otherwise cooling moisture or liquid coolant exiting the cell stack assembly 26 and selectively returning some portion to the coolant passages 44. If the cell stack assembly 26 is cooled by conduction and convection of sensible heat into circulating coolant, the thermal management system will typically include a fan-cooled heat exchanger and liquid circulating pump, as well as an accumulator. If the cell stack assemby 26 employs evaporative cooling, the cathode exhaust may be condensed by a condenser and the resulting liquid stored in an accomulator for selective use in the stack.

    [0025] A pressure transducer 76 is operably connected with the hydrogen flow path for sensing and indicating the pressure of hydrogen therein as a facet of the Power On routine or procedure to be hereinafter described in greater detail. The hydrogen pressure transducer 76 is conveniently connected to the hydrogen inlet stream substantially at or near the anode inlets 50, and has a pressure measuring range sufficient to embrace the pressures hereinafter described.

    [0026] Referring briefly to the portion of Figs. 2 and 3 designated VLD 34, there is depicted in Fig. 3 an external circuit 78 that receives electrical current generated by The CSA 26 for supply to a primary load designated 80 when a primary switch 82 is closed (shown open here) and the CSA is in normal operation. That primary load designated 80 will typically include at the vehicle motor drive 18, and may additionally include all or some of the vehicle auxiliary loads 19, but would not normally, though may, include the various loads required to operate the FCPP itself. The VLD 34 additionally includes an auxiliary load 84, here depicted as being of a variable or remotely adjustable resistance, that does not receive electrical current during normal operation of the CSA 26 and an auxiliary load switch 85 is open. The auxiliary load 84 is intended to reduce and/or limit CSA 26 output voltage during the shutdown procedure, as known and later described. A diode 86 may be connected in series with the auxiliary load 84 to terminate current flow through the latter when cell output voltage drops below a pre-selected value. A voltmeter 87 or similar voltage sensing devices is connected across the electrical output terminals of the CSA 26 to provide an indication of voltage for purposes of control and regulation. The voltage limiting function may alternatively or additionally be provided by the ESS 25, for example as disclosed I US Patent 7,790,303 by S. J. Fredette and assigned to the owner of the present invention.

    [0027] Although no separate connections are depicted, the controller 36 of the FCPP 24 is understood to be operatively connected with the various elements under its control and forming part of the following description of operation. The controller 36 may take any of a variety of well known forms capable of performing the functions hereinafter described, with examples ranging from simple manual operation of some or all valves and connections, etc, to programmed electronic digital processor control via hardwired and/or remote wireless connection, The ability to sense actual connectivity with one or more of the resources 20, though not shown, is presumed as known and understood, and may include sensors associated with physical contact, detection of electrical current, hydrogen, and/or coolant flow, etc.

    [0028] Attention is now directed additionally to Figs. 4A, 4B, and 5 for an understanding of the process of operation in a Power On mode, including the initial process of shutting down and diverting from that process, prior to reaching the full shutdown state, to a branch process of Power On which maintains an active Hydrogen On condition for an extended interval. These Figs. functionally depict the higher level operations of that process, and the accompanying description correlates the hardware of Figs. 1-3 with the flow diagram(s) of Figs. 4A, 4B, and 5.

    [0029] During normal operation of the FCPP 24, primary switch 82 is closed and electricity is being provided to at least the primary load 80, which may include vehicle drive motor 18. The oxidant blower 30 and the anode recycle pump 58 are on. The air inlet valve 62 and the cathode exhaust valve 69 are open, as are the hydrogen inlet valve 48 and exhaust valve 56. Generally, air is flowing through the cathode fields and being exhausted, and hydrogen is flowing through the anode fields, with some being exhausted via anode exhaust valve 56, mixing box 73, and cathode exhaust valve 69, and some being recycled (recirculated) to the anode fields.

    [0030] Shutting down the FCPP 24 will typically occur when occur when the vehicle 12 is at rest and in the present instance may be located at station 10. Whether the FCPP 24 fully shots down or alternately enters the Power On mode is determined by whether or not the vehicle 12 is operatively connected to one or more of the resources 20 at station 10.

    [0031] Step 100 in Fig. 4A represents the initiation of the shutdown process, and is accomplished by a switch or ignition signal "off" or other method (not shown). This in turn is followed at step 102 by the removal of the primary load 80 and the enabling of the voltage limiting device 34. More specifically, step 102 involves opening switch 82, and closing switch 85 that connects auxiliary load 84, which in turn may be a variable load device.

    [0032] Next, the cathode oxygen is depleted at step 104 by closing the air inlet valve 62 and the cathode exhaust valve 69; running the air blower 64 at maximum speed for some preselected interval, for example in the range of 3 to 300 seconds, monitoring the voltage output of the CSA 26, as via voltmeter 87; and when the voltage drops sufficiently, as for example to a preselected level between about 0.1 and 0.7 volts, proceeding to step 106.

    [0033] At step 106, hydrogen is accumulated in the CSA 26 by reducing the speed of the air blower 64 to somewhere in the range of 20% - 70% of its maximum speed; and maintaining the air inlet valve 62 and the cathode exhaust valve 69 in the closed state. During this phase, hydrogen will migrate and/or be transported from the anodes 40 to the cathodes 38 where reacts with the oxygen, thus serving to further deplete the oxygen. The direct transport of hydrogen comes, in the illustrated embodiment, at least partly from the recycle to the cathodes 38 of anode exhaust hydrogen mixed with cathode exhaust air at mixing box 73, which assumes the anode exhaust valve 56 to remain at least partly open.

    [0034] As an adjunct or extension of the process describe for step 106, the next step 108 acts to reduce cathode oxygen concentration even further by perhaps reducing the speed of air blower even lower in the range presented with respect to step 106; maintaining the air inlet valve 62 and the cathode exhaust valve 69 in the closed state; and changing/varying the resistance of the auxiliary load 84 of the VLD 34 to a lower value to increase draw. As in step 106, hydrogen will continue to migrate and/or be transported from the anodes 40 to the cathodes 38 where it reacts with the oxygen, thus serving to further deplete the oxygen. Then, shortly after entering step 108 of the shutdown procedure (e.g., 0.1s to 10s), the program sequence queries whether or not it is to enter the Power On mode. This isn done at decision step 110 by Whether or not it is to enter the Power On mode. This is done at decision step 110 by conducting a Power_On signal check.

    [0035] Referring briefly to Fig. 5. there is depicted a functional representation of a [0038] Referring briefly to Fig. 5, there is depicted a functional representation of a symbolic Power On swirch 111, here shown closed, for setting in step 112 a Power On flag either to a "1" (True) state or to a "0" (False) State. The True state is reflective that the Power On mode is, or is to be, enabled, and may be attained symbolically by closure of switch 1111 manually by an operator and/or automatically upon actual operative connection of the FCPP 24 to at least the electrical power 20A at the station 10. To the extent others of the external ressources20, such as hydrogen 20B and/or coolant resources 20C are to be utilized in addition to the electrical power, appropriate signals indicating their respective connections may also be used or required to establish the Power On enabled, or True, state.

    [0036] Returning to the flow diagram, now at Fig. 4B, it will be noted that the Power On signal check of decision step 110 presents either a True or a False response alternative, depending upon which flag was set in step 112 of Fig. 5. If the Power On mode flag had been set to a "0", indicating False, at block 114, typically because the vehicle 12 and its FCCPP 24 are not actually connected to the electrical power resource 20A, then the shutdown routine is continued at step 116 by stopping the fuel and air supplies. This is done by shutdown of the air blower 64, and closing, or maintaining supplies. This is done by shutdown of the air blower 64; and closing, or maintaining closed, the hydrogen inlet valve 48, the air inlet valve 62, the air recirculation valve 71, and the cathode exhaust valve 69.
    Following completion of these steps the fuel cell power plant 24, and particulary the CSA 24, will be deemed shutdown, as reflected at function block 118.

    [0037] If, however, the Power On mode flag had been set to a "1", indicating True, at block 120, typically because the vehicle 12 and its FCCP 24 are actually connected to the electrical power resource 20A, then the Power On mode is enteres as reflected in function step 122 at which the recirculation of air and hydrogen fuel is continued. Viewing the Power On mode in greater detail, the electical power is now supplied to the FCCPP 24 from the main power bus resource 20A of the station 10 to assure adequate power for the various pumps, blowers, valve actuators, etc, for an extended, potentially indefinite, period that may comprise many hours, e.g., 16 or 30, or days, or even weeks, being limited only by limits on the availability of other resources such as hydrogen. In this Power On mode, the air blower speed is reduced from the prior maximum, typically to less than 30% of that maximum speed, while continaing to recirculate cathdoe exhaust mixed with anode exhaust as the anode exhaust valve 56 continues to remain partly open. The pressure sensor 46 monitors the anode inlet 50 pressure and, via operation of the controller 36, serves to activate the hydrogen inlet valve 48 in a manner that maintains the pressure above some minimum threshold, as for example 2 kPa, but below about 10kPa as determined by the charactesistics of the stack and cell materials including crossover sensitivity and sealing properties. Similarly, the recirculation of the hydrogen exhaust from the anodes 40 back to the anode inlets 50 is continued via recycle pump or ejector 58.

    [0038] As noted, the Power On mode may be continued for a lengthy period, however for a variety of reasons it may become desirable or necessary to terminate it. One prime example is the need to restart the FCPP 24 for normal operation, another example being a cessation of the availability or connection with, the supplied external resource. Accordingly, the program routine which defines and controls the Power On mode includes provision for periodically returning to the Power On decision block 110 to chech that the Power On state should, or does, remain enabled. If at any time the check of the Power On state reveals the False, or "0", condition, the program routine of function block 122 immediately jumps, shown by broken line 125, to the shutdown routine depicted and described with respect to step 116 to complete a shutdown operation.

    [0039] Although the disclosure has been described and illustrated with respect to the exemplary embodiments thereof, it should be understood by those skilled in the art that the foregoing and various other changes, omissions and additions may be made without departing from the spirit and scope of the disclosure.


    Claims

    1. A method of shutdown Operation for a fuel cell power plant (24) contained with and supplying electrical power to a mobile vehicle (12), the vehicle (12) proceeding at intervals to a station (10) for receiving a resupply of one or more resources (20) thereat including at least electrical energy (20A), the fuel cell power plant (24) including a controller (36) for regulating Operation thereof including effecting a shutdown procedure of the fuel cell power plant, the method comprising the step of

    - operatively connecting the vehicle (12) to at least the electrical energy resource (20A) at the station (10);
    characterized in that the method further comprising the steps of H2 On passivation

    - removing oxygen from the air side of the fuel cell power plant

    - stabilizing hydrogen levels in both cathode and anode flow fields of the fuel cell power plant by providing a flow of hydrogen in the fuel cell power plant, and

    - in response to the vehicle (12) being connected to said electrical energy resource (20A), modifying control of the shutdown procedure, namely without connection to the electrical energy resource 20A, to divert from that procedure prior to reaching a full shutdown state to include a Power On mode (120, 122) comprising maintaining a flow of hydrogen in the fuel cell power plant sufficient to maintain H2 On passivation thereof while the Power On mode is activated, and to complete the shutdown procedure if a check reveals the condition that Power On mode is not enabled.


     
    2. The method of claim 1 wherein the vehicle fuel cell power plant includes electrically-powered equipment (36, 64, 58, 62, 48, 56, 71) to effect and regulate Operation of the power plant, and the step of maintaining a flow of hydrogen in the fuel cell power plant in the Power On mode comprises operating at least some (36, 64, 58, 62, 48, 56, 71) of said electrically-powered equipment,
     
    3. The method of claim 2 wherein the extended interval for which the H2 On passivation of the fuel cell power plant may be maintained during the Power On mode is greater than 16 hours,
     
    4. The method of claim 3 wherein the extended interval for which the H2 On passivation of the fuel cell power plant may be maintained during the Power On mode is greater than 30 hours.
     
    5. The method of claim 2 wherein the vehicle additionally includes an onboard source of hydrogen reactant (16), one of the resources (20) at the station (10) is hydrogen (20B), and including the steps of operatively connecting he vehicle (12) to the hydrogen resource at the station and controlling the hydrogen resource to re-supply the on-board source (16) of hydrogen reactant during the Power On mode.
     
    6. The method of claim 2 wherein the fuel cell power plant (24) includes a coolant circulation system (32), the resources (20) at the station (10) also include coolant (20C), and including the steps of operatively connecting the vehicle (12) to the coolant resource (20C) at the station and the controlling the coolant circulation system (32) to circulate coolant from the station resource coolant during the Power On mode.
     
    7. The method of claim 1 wherein the step of maintaining a flow of hydrogen in the fuel cell power plant sufficient to maintain H2 On passivation thereof for an extended interval includes the step of sensing pressure of hydrogen at a location in the fuel cell power plant and increasing the pressure of hydrogen thereat in response to a sensed pressure below a threshold.
     
    8. The method of claim 7 wherein the fuel cell power plant (24) includes a cell stack assembly (26) having an anode inlet (50), sensing pressure near the anode inlet (50), and wherein said threshold is about 2kPa.
     
    9. The method of claim 8 wherein the fuel cell power plant (24) includes a source of hydrogen reactant (16), a valve (48) controls flow of hydrogen between the source of hydrogen reactant (16) and the anode inlet (50), and the step of increasing the hydrogen pressure is by regulating the valve (48).
     
    10. The method of claim 1 wherein the vehicle additionally includes an onboard electrical energy storage system (25) of limited capacity for supplying limited electrical energy to the vehicle.
     
    11. The method of claim 1 wherein the fuel cell power plant (24) includes a cell stack assembly (26) for providing an electrical potential, and a voltage limiting device (34) controlling said electrical potential of said cell stack assembly.
     
    12. A mobile vehicle (12) comprising a fuel cell power plant (24) for supplying electrical power to the vehicle (12), the vehicle (12) proceeding at intervals to a station (10) for receiving a resupply of one or more resources (20) thereat including at least electrical energy (20A), and optionally hydrogen (20B) and/or coolant (20C), wherein the fuel cell power plant (24) comprises a controller (36) adapted to regulate Operation thereof, and adapted to effect a shutdown procedure of the fuel cell power plant (24) such that in response to the vehicle (12) being connected to said electrical energy resource (20A) control of the shutdown procedure without connection to the electrical energy resource (20 A) is modified, characterized in that the controller (36) is adapted to effect H2 On passivation with removing oxygen from the air side of the fuel cell power plant,
    stabilizing hydrogen levels in both cathode and anode flow fields of the fuel cell power plant by providing a flow of hydrogen in the fuel cell power plant, and adapted to include a Power On mode (120, 122) diverting from the shutdown procedure prior to reaching a full shutdown state, comprising maintaining a flow of hydrogen in the fuel cell power plant (24) sufficient to maintain H2 On passivation thereof while the Power On mode is activated, and completing the shutdown procedure if a check reveals the condition that Power On mode is not enabled.
     
    13. The vehicle (12) of claim 12, wherein the fuel cell power plant (24) includes electrically-powered equipment (64, 58, 62, 48, 56, 71) operable to effect and regulate Operation of the power plant (24), the electrically-powered equipment comprising at least one of the following:

    an air inlet valve (62) between an air source (30) and inlets (66) of cathodes (38),

    an air blower (64) between the air inlet valve (62) and the inlets (66) of the cathodes (38),

    a feedback valve (71) provided in a cathode recycle conduit (68, 70, 72),

    a fuel flow control valve (48) between a fuel source (16) and inlets (50) of anodes (40),

    an anode exhaust valve (56) between exits (52) of the anodes (40) and a mixing box (73), the mixing box (73) being adapted to mix anode exhaust and cathode exhaust, and

    an anode recycle pump (58) in a circuit (54, 57, 59) connecting the exits (52) to the inlets (50) of the anodes (40).


     
    14. The vehicle (12) of claim 12 or 13, further comprising hydrogen transfer means in communication with flow paths of the anodes (40) and flow paths of the cathodes (38), the hydrogen transfer means being adapted to selectively permit transfer of hydrogen between the flow paths of the anodes and the flow paths of the cathodes.
     
    15. The vehicle (12) of anyone of claims 12-14, further comprising a pressure transducer (76) connected between the fuel source (16) and the inlets (50) of the anodes (40)
     


    Ansprüche

    1. Verfahren für einen Abschaltbetrieb für eine Kraftstoffzellenkraftanlage (24), die mit elektrischer Energie versehen ist und diese zu einem mobilen Fahrzeug (12) leitet, wobei das Fahrzeug (12) in Intervallen zu einer Station (10) fährt, um dort eine Wiederauffüllung einer oder mehrerer Ressourcen (20) zu erhalten, enthaltend mindestens elektrische Energie (20A), wobei die Kraftstoffzellenkraftanlage (24) eine Steuerung (36) zum Regulieren ihres Betriebs enthält, enthaltend ein Ausführen einer Abschaltprozedur der Kraftstoffzellenkraftanlage, das Verfahren umfassend den Schritt zum

    - betriebsbereiten Verbinden des Fahrzeugs (12) mit mindestens der Elektroenergieressource (20A) an der Station (10);
    dadurch gekennzeichnet, dass das Verfahren weiter die Schritte umfasst zum H2 Ein-Passivierung,

    - Entfernen von Sauerstoff von der Luftseite der Kraftstoffzellenkraftanlage

    - Stabilisieren von Wasserstoffpegeln in den beiden Kathoden- und Anodenströmungsfeldern der Kraftstoffzellenkraftanlage durch Bereitstellen eines Wasserstoffstroms in der Kraftstoffzellenkraftanlage und

    - in Reaktion auf eine Verbindung des Fahrzeugs (12) mit der Elektroenergieressource (20A), Modifizieren einer Steuerung der Abschaltprozedur, nämlich ohne Verbindung mit der Elektroenergieressource 20A, um von dieser Prozedur vor Erreichen eines vollständigen Abschaltzustands abzugehen, um einen Einschaltmodus (120, 122) zu enthalten, umfassend ein Aufrechterhalten eines ausreichenden Wasserstoffstroms in der Kraftstoffzellenkraftanlage, um deren H2 Ein-Passivierung aufrechtzuerhalten, während der Einschaltmodus aktiviert ist, und die Abschaltprozedur zu beenden, falls eine Prüfung den Zustand zeigt, dass der Einschaltmodus nicht freigegeben ist.


     
    2. Verfahren nach Anspruch 1, wobei die Fahrzeugkraftstoffzellenkraftanlage elektrisch angetriebene Geräte (36, 64, 58, 62, 48, 56, 71) enthält, um einen Betrieb der Kraftanlage auszuführen und zu regulieren, und der Schritt zum Aufrechterhalten eines Wasserstoffstroms in der Kraftstoffzellenkraftanlage im Einschaltmodus einen Betrieb mindestens einiger (36, 64, 58, 62, 48, 56, 71) der elektrisch betriebenen Geräte umfasst.
     
    3. Verfahren nach Anspruch 2, wobei das verlängerte Intervall, für das die H2 Ein-Passivierung der Kraftstoffzellenkraftanlage während des Einschaltmodus aufrechterhalten werden kann, länger als 16 Stunden ist.
     
    4. Verfahren nach Anspruch 3, wobei das verlängerte Intervall, für das die H2 Ein-Passivierung der Kraftstoffzellenkraftanlage während des Einschaltmodus aufrechterhalten werden kann, länger als 30 Stunden ist.
     
    5. Verfahren nach Anspruch 2, wobei das Fahrzeug zusätzlich eine bordeigene Quelle eines Wasserstoffreaktionsmittels (16) enthält, eine der Ressourcen (20) an der Station (10) Wasserstoff (20B) ist, und enthaltend die Schritte zum betriebsbereiten Verbinden des Fahrzeugs (12) mit der Wasserstoffressource an der Station und Steuern der Wasserstoffressource, die bordeigene Quelle von Wasserstoffreaktionsmittel (16) während des Einschaltmodus wieder aufzufüllen.
     
    6. Verfahren nach Anspruch 2, wobei die Kraftstoffzellenkraftanlage (24) ein Kühlmittelkreislaufsystem (32) enthält, die Ressourcen (20) an der Station (10) auch ein Kühlmittel (20C) enthalten, und enthaltend die Schritte eines betriebsbereiten Verbindens des Fahrzeugs (12) mit der Kühlmittelressource (20C) an der Station und des Steuerns des Kühlmittelkreislaufsystems (32), um Kühlmittel von der Stationskühlmittelressource während des Einschaltmodus zu zirkulieren.
     
    7. Verfahren nach Anspruch 1, wobei der Schritt zum Aufrechterhalten eines ausreichenden Wasserstoffstroms in der Kraftstoffzellenkraftanlage, um deren H2 Ein-Passivierung für ein verlängertes Intervall aufrechtzuerhalten, den Schritt zum Erfassen von Wasserstoffdruck an einer Stelle in der Kraftstoffzellenkraftanlage und Erhöhen des Wasserstoffdrucks dort in Reaktion auf einen erfassen Druck unter einem Schwellenwert enthält.
     
    8. Verfahren nach Anspruch 7, wobei die Kraftstoffzellenkraftanlage (24) eine Zellenstapelbaugruppe (26) mit einem Anodeneinlass (50) enthält, wobei Druck nahe dem Anodeneinlass (50) erfasst wird und wobei der Schwellenwert etwa 2kPa ist.
     
    9. Verfahren nach Anspruch 8, wobei die Kraftstoffzellenkraftanlage (24) eine Quelle von Wasserstoffreaktionsmittel (16) enthält, ein Ventil (48) einen Wasserstoffstrom zwischen der Quelle von Wasserstoffreaktionsmittel (16) und dem Anodeneinlass (50) steuert und der Schritt zum Erhöhen des Wasserstoffdrucks durch Regulieren des Ventils (48) erfolgt.
     
    10. Verfahren nach Anspruch 1, wobei das Fahrzeug zusätzlich ein bordeigenes Elektroenergiespeichersystem (25) begrenzter Kapazität zum Zuleiten begrenzter elektrischer Energie zum Fahrzeug enthält.
     
    11. Verfahren nach Anspruch 1, wobei die Kraftstoffzellenkraftanlage (24) eine Zellenstapelbaugruppe (26) zum Bereitstellen eines elektrischen Potentials und eine Spannungsbegrenzervorrichtung (34), die das elektrische Potential der Zellenstapelbaugruppe steuert, enthält.
     
    12. Mobiles Fahrzeug (12), umfassend eine Kraftstoffzellenkraftanlage (24) zum Zuleiten von elektrischer Energie zu dem Fahrzeug (12), wobei das Fahrzeug (12) in Intervallen zu einer Station (10) fährt, um dort eine Wiederauffüllung einer oder mehrerer Ressourcen (20) zu erhalten, enthaltend mindestens elektrische Energie (20A) und optional Wasserstoff (20B) und/oder Kühlmittel (20C), wobei die Kraftstoffzellenkraftanlage (24) eine Steuerung (36) umfasst, die zum Regulieren ihres Betriebs ausgebildet ist und ausgebildet ist, eine Abschaltprozedur der Kraftstoffzellenkraftanlage (24) auszuführen, sodass in Reaktion auf ein Verbinden des Fahrzeugs (12) mit der Elektroenergieressource (20A) eine Steuerung der Abschaltprozedur ohne Verbindung mit der Elektroenergieressource (20A) modifiziert ist, dadurch gekennzeichnet, dass die Steuerung (36) ausgebildet ist, eine H2 Ein-Passivierung mit Entfernung von Sauerstoff von der Luftseite der Kraftstoffzellenkraftanlage auszuführen,
    Wasserstoffpegel in den beiden Kathoden- und Anodenströmungsfeldern der Kraftstoffzellenkraftanlage durch Bereitstellen eines Wasserstoffstroms in der Kraftstoffzellenkraftanlage zu stabilisieren, und ausgebildet ist, einen Einschaltmodus (120, 122) zu enthalten, um von der Abschaltprozedur vor Erreichen eines vollständigen Abschaltzustands abzugehen, umfassend ein Aufrechterhalten eines ausreichenden Wasserstoffstroms in der Kraftstoffzellenkraftanlage (24), um deren H2 Ein-Passivierung aufrechtzuerhalten, während der Einschaltmodus aktiviert ist, und Beenden der Abschaltprozedur, falls eine Prüfung den Zustand zeigt, dass der Einschaltmodus nicht freigegeben ist.
     
    13. Fahrzeug (12) nach Anspruch 12, wobei die Kraftstoffzellenkraftanlage (24) elektrisch angetriebene Geräte (64, 58, 62, 48, 56, 71) enthält, die betriebsbereit sind, um einen Betrieb der Kraftanlage (24) auszuführen und zu regulieren, wobei die elektrisch angetriebenen Geräte mindestens eines der folgenden umfassen:

    ein Lufteinlassventil (62) zwischen einer Luftquelle (30) und Einlässen (66) von Kathoden (38),

    ein Luftgebläse (64) zwischen dem Lufteinlassventil (62) und den Einlässen (66) der Kathoden (38),

    ein Rückschlagventil (71), das in einem Kathodenrückführkanal (68, 70, 72) bereitgestellt ist,

    ein Kraftstoffstromregelventil (48) zwischen einer Kraftstoffquelle (16) und Einlässen (50) von Anoden (40),

    ein Anodenabgasventil (56) zwischen Ausgängen (52) der Anoden (40) und einem Mischkasten (73), wobei der Mischkasten (73) ausgebildet ist, Anodenabgas und Kathodenabgas zu mischen, und

    eine Anodenrückführungspumpe (58) in einer Schaltung (54, 57, 59), die die Ausgänge (52) mit den Einlässen (50) der Anoden (40) verbindet.


     
    14. Fahrzeug (12) nach Anspruch 12 oder 13, weiter umfassend Wasserstoffüberführungsmittel in Kommunikation mit Strömungswegen der Anoden (40) und Strömungswegen der Kathoden (38), wobei das Wasserstoffüberführungsmittel ausgebildet ist, selektiv eine Überführung von Wasserstoff zwischen den Strömungswegen der Anoden und den Strömungswegen der Kathoden zu ermöglichen.
     
    15. Fahrzeug (12) nach einem der Ansprüche 12-14, weiter umfassend einen Druckwandler (76) der zwischen der Kraftstoffquelle (16) und den Einlässen (50) der Anoden (40) verbunden ist.
     


    Revendications

    1. Procédé d'opération d'arrêt pour un groupe propulseur à élément à carburant (24) contenu dans un véhicule mobile (12) et fournissant de l'énergie électrique à celui-ci, le véhicule (12) se rendant à intervalles à une station (10) pour y recevoir un ravitaillement en une ou plusieurs ressources (20), incluant au moins de l'énergie électrique (20A), le groupe propulseur à élément à carburant (24) incluant une commande (36) pour régler son opération, incluant l'exécution d'une procédure d'arrêt du groupe propulseur à élément à carburant, le procédé comprenant l'étape

    - de liaison opérationnelle du véhicule (12) à au moins la source d'énergie électrique (20A) de la station (10) ;
    caractérisé en ce que le procédé comprend en outre les étapes de passivation H2 On

    - retirer l'oxygène de la partie air du groupe propulseur à élément à carburant

    - stabiliser les niveaux d'hydrogène dans les champs de propagation de la cathode et de l'anode du groupe propulseur à élément à carburant en fournissant un flux d'hydrogène au groupe propulseur à élément à carburant, et

    - modifier, en réaction à la liaison du véhicule (12) à la source d'énergie électrique (20A), la commande de la procédure d'arrêt, en l'occurrence sans liaison à la source d'énergie électrique 20A, pour dévier de la procédure avant que l'état d'arrêt complet soit atteint pour inclure un mode Power On (120, 122) comprenant le maintien du flux d'hydrogène dans le groupe propulseur à élément à carburant à un niveau suffisant pour maintenir sa passivation H2 On tandis que le mode Power On est activé, et pour achever la procédure d'arrêt si un contrôle révèle que le mode Power On n'a pas été enclenché.


     
    2. Procédé selon la revendication 1, dans lequel le groupe propulseur à élément à carburant du véhicule inclut un équipement à alimentation électrique (36, 64, 58, 62, 48, 56, 71) pour faire exécuter et régler l'opération du groupe propulseur, et l'étape de maintien d'un flux d'hydrogène dans le groupe propulseur à élément à carburant en mode Power On comprend l'opération d'au moins certaines parties (36, 64, 58, 62, 48, 56, 71) de l'équipement à alimentation électrique.
     
    3. Procédé selon la revendication 2, dans lequel l'intervalle étendu durant lequel la passivation H2 On du groupe propulseur à élément à carburant peut être maintenu en mode Power On est supérieur à 16 heures.
     
    4. Procédé selon la revendication 3, dans lequel l'intervalle étendu durant lequel la passivation H2 On du groupe propulseur à élément à carburant peut être maintenu en mode Power On est supérieur à 30 heures.
     
    5. Procédé selon la revendication 2, dans lequel le véhicule inclut par ailleurs une source embarquée de charge hydrogène (16), une des ressources (20) de la station (10) est de l'hydrogène (20B), et incluant les étapes qui consistent à lier de façon opérationnelle le véhicule (12) à la source d'hydrogène de la station et à contrôler la source d'hydrogène pour ravitailler la source embarquée de charge hydrogène (16) en mode Power On.
     
    6. Procédé selon la revendication 2, dans lequel le groupe propulseur à élément à carburant (24) inclut un système de circulation de liquide de refroidissement (32), les ressources (20) de la station (10) incluent également du liquide de refroidissement (20C), et incluant les étapes qui consistent à lier de façon opérationnelle le véhicule (12) à la source de liquide de refroidissement (20C) de la station et à contrôler le système de circulation du liquide de refroidissement (32) qui fait circuler le liquide de refroidissement de la source de la station en mode Power On.
     
    7. Procédé selon la revendication 1, dans lequel l'étape de maintien du flux d'hydrogène dans le groupe propulseur à élément à carburant à un niveau suffisant pour maintenir sa passivation H2 On pendant un intervalle étendu inclut l'étape qui consiste à capter la pression d'hydrogène en un lieu du groupe propulseur à élément à carburant et à augmenter la pression d'hydrogène en réaction à une pression captée inférieure à un seuil.
     
    8. Procédé selon la revendication 7, dans lequel le groupe propulseur à élément à carburant (24) inclut un ensemble d'empilement d'éléments (26) avec une entrée anode (50) qui capte la pression près de l'entrée anode (50), et dans lequel le seuil est d'environ 2kPa.
     
    9. Procédé selon la revendication 8, dans lequel le groupe propulseur à élément à carburant (24) inclut une source de charge hydrogène (16), une soupape (48) contrôle le flux d'hydrogène entre la source de charge hydrogène (16) et l'entrée anode (50), et l'étape d'augmentation de la pression d'hydrogène consiste à régler la soupape (48).
     
    10. Procédé selon la revendication 1, dans lequel le véhicule inclut par ailleurs un système embarqué accumulateur d'énergie électrique (25) de capacité limitée pour la fourniture d'une quantité limitée d'énergie électrique au véhicule.
     
    11. Procédé selon la revendication 1, dans lequel le groupe propulseur à élément à carburant (24) inclut un ensemble d'empilement d'éléments (26) pour fournir un potentiel électrique, et un dispositif de limitation du voltage (34) qui contrôle le potentiel électrique de l'unité d'élément à carburant.
     
    12. Véhicule mobile (12) comprenant un groupe propulseur à élément à carburant (24) pour fournir de l'énergie électrique au véhicule (12), le véhicule (12) se rendant à intervalles à une station (10) pour y recevoir un ravitaillement en une ou plusieurs ressources (20), incluant au moins de l'énergie électrique (20A) et, de façon optionnelle, de l'hydrogène (20B) et/ou du liquide de refroidissement (20C), dans lequel le groupe propulseur à élément à carburant (24) comprend une commande (36) adaptée pour régler son opération, et adaptée pour exécuter une procédure d'arrêt du groupe propulseur à élément à carburant (24) de façon à ce que, en réaction à la liaison du véhicule (12) à la source d'énergie électrique (20A), le contrôle de la procédure d'arrêt sans liaison à la source d'énergie électrique (20A) est modifié, caractérisé en ce que la commande (36) est adaptée pour exécuter une passivation H2 On en retirant de l'oxygène de la partie air du groupe propulseur à élément à carburant,
    stabilisant les niveaux d'hydrogène dans les champs de propagation de la cathode et de l'anode du groupe propulseur à élément carburant en fournissant un flux d'hydrogène dans le groupe propulseur à élément à carburant, et adapté pour inclure un mode Power On (120, 122) pour dévier de la procédure d'arrêt avant que l'état d'arrêt complet soit atteint, comprenant le maintien du flux d'hydrogène dans le groupe propulseur à élément à carburant (24) à un niveau suffisant pour maintenir sa passivation H2 On tandis que le mode Power On est activé, et pour achever la procédure d'arrêt si un contrôle révèle que le mode Power On n'a pas été enclenché.
     
    13. Véhicule (12) selon la revendication 12, dans lequel le groupe propulseur à élément à carburant (24) inclut un équipement à alimentation électrique (64, 58, 62, 48, 56, 71) pour faire exécuter et régler l'opération du groupe propulseur (24), l'équipement à alimentation électrique comprenant au moins un des éléments suivants :

    une soupape d'entrée d'air (62) entre une source d'air (30) et des entrées (66) des cathodes (38),

    une soufflerie d'air (64) entre la soupape d'entrée d'air (62) et les entrées (66) des cathodes (38),

    une soupape à rétroaction (71) fournie dans un conduit de recyclage (68, 70, 72) des cathodes,

    une soupape de contrôle de flux de carburant (48) entre la source de carburant (16) et les entrées (50) des anodes (40),

    une soupape d'échappement des anodes (56) entre les sorties (52) des anodes (40) et une chambre de mélange (73), la chambre de mélange (73) étant adaptée pour mélanger l'échappement des anodes et l'échappement des cathodes, et

    une pompe de recyclage des anodes (58) dans un circuit (54, 57, 59) reliant les sorties (52) vers les entrées (50) des anodes (40).


     
    14. Véhicule (12) selon la revendication 12 ou 13, comprenant en outre des moyens de transfert d'hydrogène en communication avec les trajectoires des anodes (40) et les trajectoires des cathodes (38), les moyens de transfert d'hydrogène étant adaptés pour permettre le transfert sélectif de l'hydrogène entre les trajectoires des anodes et les trajectoires des cathodes.
     
    15. Véhicule (12) selon l'une quelconque des revendications 12 à 14, comprenant en outre un capteur de pression (76) lié entre la source de carburant (16) et les entrées (50) des anodes (40).
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description