(19)
(11)EP 2 947 781 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 15171398.9

(22)Date of filing:  19.03.2012
(51)International Patent Classification (IPC): 
H04B 1/40(2015.01)

(54)

SYSTEM AND METHOD FOR TUNING AN ANTENNA IN A WIRELESS COMMUNICATION DEVICE

SYSTEM UND VERFAHREN ZUR EINSTELLUNG EINER ANTENNE IN EINER DRAHTLOSEN KOMMUNIKATIONSVORRICHTUNG

SYSTÈME ET PROCÉDÉ DE RÉGLAGE D'UNE ANTENNE DANS UN DISPOSITIF DE COMMUNICATION SANS FIL


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 22.03.2011 US 201113053966

(43)Date of publication of application:
25.11.2015 Bulletin 2015/48

(62)Application number of the earlier application in accordance with Art. 76 EPC:
12160085.2 / 2503701

(73)Proprietor: Intel IP Corporation
Santa Clara, CA 95054 (US)

(72)Inventors:
  • Premakanthan, Pravin
    Chandler, AZ Arizona 85224 (US)
  • Xu, Bing
    Chandler, AZ Arizona 85225 (US)
  • Kirschenmann, Mark
    Chandler, AZ Arizona 85224 (US)
  • Bavisi, Amit
    Los Gatos, CA 95032 (US)
  • Schwartz, Daniel
    Scottsdale, AZ Arizona 85251 (US)
  • Rahman, Mahibur
    Chandler, AZ Arizona 85248 (US)

(74)Representative: 2SPL Patentanwälte PartG mbB 
Postfach 15 17 23
80050 München
80050 München (DE)


(56)References cited: : 
WO-A1-2004/008634
US-A1- 2007 197 180
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present disclosure relates generally to wireless communication and, more particularly, to tuning of an antenna in a wireless communication device.

    BACKGROUND



    [0002] Wireless communications systems are used in a variety of telecommunications systems, television, radio and other media systems, data communication networks, and other systems to convey information between remote points using wireless transmitters and wireless receivers. A transmitter is an electronic device which, usually with the aid of an antenna, propagates an electromagnetic signal such as radio, television, or other telecommunications. Transmitters often include digital signal processing circuits which encode a data signal, upconverts it to a radio frequency signal, and passes it signal amplifiers which receive the radio-frequency, amplify the signal by a predetermined gain, and transmit the amplified signal through an antenna. On the other hand, a receiver is an electronic device which, also usually with the aid of an antenna, receives and processes a wireless electromagnetic signal. In certain instances, a transmitter and receiver may be combined into a single device called a transceiver.

    [0003] Many wireless transceivers, particularly in those integral to handheld wireless devices (e.g., cellular phones) may suffer from over-the-air performance degradation due to what has been termed in the industry as "hand and head effects." Hand and head effects may occur as a result of proximity of a user's head, hand, or other body part to an antenna of the transceiver. The proximity of such body parts to an antenna may cause a change in electrical properties of the antenna, for example changes in the effective load resistance, load capacitance, or load inductance. These changes in electrical characteristics can cause variations in the ratio of incident power to reflected power transmitted to an antenna, which may lead to performance degradation in transmitted signals.

    [0004] US 2009/0253385 discloses a method for automatically adjusting an antenna impedance match. The above mentioned document discloses that the receiver digitizes the reflected signal and then processes it to determine the complex antenna reflection coefficient, and use the complex antenna reflection coefficient to determine any adjustment needed to the antenna matching network. It further discloses that the baseband processor provides impedance matching control signals to matching network based on its processing of the baseband signals.

    SUMMARY



    [0005] The scope of the invention is defined in the appended claims.

    [0006] The following embodiments are merely illustrative of the related subject-matter.

    [0007] In accordance with some embodiments of the present disclosure, a control path for a wireless communication device may include a radio frequency coupler having a coupled port and a terminated port, the radio frequency coupler configured to couple at least a portion of a transmission power of a transmission line coupled to the antenna tuner such that the coupled port carries a first signal indicative of an incident power transmitted to an antenna coupled to the antenna tuner and the terminated port carries a second signal indicative of a reflected power reflected by the antenna. The control path may also include a control module configured to communicate the one or more control signals to the antenna tuner for controlling the impedance of the antenna tuner based at least on the first signal and the second signal.

    [0008] The control path may further comprise:

    a downconverter configured to:

    downconvert the first signal to a baseband incident power signal having an in-phase channel component and a quadrature channel component; and

    downconvert the second signal to a baseband reflected power signal having an in-phase channel component and a quadrature channel component; and

    the control module configured to communicate the one or more control signals to the antenna tuner for controlling the impedance of the antenna tuner based on at least on the baseband incident power signal and the baseband reflected power signal.

    In addition, the control path may comprise:
    one or more analog-to-digital converters configured to:

    convert the baseband incident power signal into a digital incident power signal having an in-phase channel component and a quadrature channel component; and

    convert the baseband reflected power signal into a digital reflected power signal having an in-phase channel component and a quadrature channel component; and

    the control module configured to communicate the one or more control signals to the antenna tuner for controlling the impedance of the antenna tuner based on at least on the digital incident power signal and the digital reflected power signal.



    [0009] The above-mentioned control path may additionally comprise one or more filters configured to:

    filter the digital incident power signal to produce an averaged digital incident power signal having an in-phase channel component and a quadrature channel component;

    filter the digital reflected power signal to produce an averaged digital reflected power signal having an in-phase channel component and a quadrature channel component; and

    the control module configured to communicate the one or more control signals to the antenna tuner for controlling the impedance of the antenna tuner based on at least on the averaged digital incident power signal and the averaged digital reflected power signal.



    [0010] In this case the control path may also comprise a power measurement module configured to:

    calculate an incident power based at least on the in-phase channel component and the quadrature channel component of the averaged digital incident power signal;

    calculate a reflected power based at least on the in-phase channel component and the quadrature channel component of the averaged digital reflected power signal; and

    the control module configured to communicate the one or more control signals to the antenna tuner for controlling the impedance of the antenna tuner based on at least on the incident power and the reflected power.



    [0011] Alternatively the control path may also comprise a phase measurement module configured to:

    calculate an incident power phase based at least on the in-phase channel component and the quadrature channel component of the averaged digital incident power signal;

    calculate a reflected power phase based at least on the in-phase channel component and the quadrature channel component of the averaged digital reflected power signal; and

    the control module configured to communicate the one or more control signals to the antenna tuner for controlling the impedance of the antenna tuner based on at least on the incident power phase and the reflected power phase.



    [0012] In another embodiment the control path further comprises one or more filters configured to:

    filter the digital incident power signal to produce an averaged digital incident power signal having an in-phase channel component and a quadrature channel component;

    filter the digital reflected power signal to produce an averaged digital reflected power signal having an in-phase channel component and a quadrature channel component; and

    the control module configured to communicate the one or more control signals to the antenna tuner for controlling the impedance of the antenna tuner based on at least on the averaged digital incident power signal and the averaged digital reflected power signal.



    [0013] In a further embodiment, the control path is configured to:

    calculate an incident power phase based at least on the in-phase channel component and the quadrature channel component of the averaged digital incident power signal;

    calculate a reflected power phase based at least on the in-phase channel component and the quadrature channel component of the averaged digital reflected power signal; and

    communicate the one or more control signals to the antenna tuner for controlling the impedance of the antenna tuner based on at least on the incident power phase and the reflected power phase.



    [0014] Technical advantages of one or more embodiments of the present disclosure may include a dynamically tuned antenna that may reduce or eliminate degradation to transmission performance due to the head and hand effect, or other undesired effects.

    [0015] It will be understood that the various embodiments of the present disclosure may include some, all, or none of the enumerated technical advantages. In addition, other technical advantages of the present disclosure may be readily apparent to one skilled in the art from the figures, description and claims included herein.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0016] For a more complete understanding of the present disclosure and its features and advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:

    FIGURE 1 illustrates a block diagram of an example wireless communication system, in accordance with certain embodiments of the present disclosure;

    FIGURE 2 illustrates a block diagram of selected components of an example transmitting and/or receiving element, in accordance with certain embodiments of the present disclosure; and

    FIGURE 3 illustrates a flow chart of an example method for controlling an antenna tuner, in accordance with certain embodiments of the present disclosure.


    DETAILED DESCRIPTION



    [0017] FIGURE 1 illustrates a block diagram of an example wireless communication system 100, in accordance with certain embodiments of the present disclosure. For simplicity, only two terminals 110 and two base stations 120 are shown in FIGURE 1. A terminal 110 may also be referred to as a remote station, a mobile station, an access terminal, user equipment (UE), a wireless communication device, a cellular phone, or some other terminology. A base station 120 may be a fixed station and may also be referred to as an access point, a Node B, or some other terminology.

    [0018] A terminal 110 may or may not be capable of receiving signals from satellites 130. Satellites 130 may belong to a satellite positioning system such as the well-known Global Positioning System (GPS). Each GPS satellite may transmit a GPS 20 signal encoded with information that allows GPS receivers on earth to measure the time of arrival of the GPS signal. Measurements for a sufficient number of GPS satellites may be used to accurately estimate a three-dimensional position of a GPS receiver. A terminal 110 may also be capable of receiving signals from other types of transmitting sources such as a Bluetooth transmitter, a Wireless Fidelity (Wi-Fi) transmitter, a wireless local area network (WLAN) transmitter, an IEEE 802.11 transmitter, and any other suitable transmitter.

    [0019] In FIGURE 1, each terminal 110 is shown as receiving signals from multiple transmitting sources simultaneously, where a transmitting source may be a base station 120 or a satellite 130. In certain embodiments, a terminal 110 may also be a transmitting source. In general, a terminal 110 may receive signals from zero, one, or multiple transmitting sources at any given moment.

    [0020] System 100 may be a Code Division Multiple Access (CDMA) system, a Time Division Multiple Access (TDMA) system, or some other wireless communication system. A CDMA system may implement one or more CDMA standards such as IS-95, IS-2000 (also commonly known as "lx"), IS-856 (also commonly known as "lxEV-DO"), Wideband-CDMA (W-CDMA), and so on. A TDMA system may implement one or more TDMA standards such as Global System for Mobile Communications (GSM). The W-CDMA standard is defined by a consortium known as 3GPP, and the IS-2000 and IS-856 standards are defined by a consortium known as 3GPP2.

    [0021] FIGURE 2 illustrates a block diagram of selected components of an example transmitting and/or receiving element 200 (e.g., a terminal 110, a base station 120, or a satellite 130), in accordance with certain embodiments of the present disclosure. Element 200 may include a transmit path 201, a receive path 221, and an antenna tuner control path 241. Depending on the functionality of element 200, element 200 may be considered a transmitter, a receiver, or a transceiver.

    [0022] As depicted in FIGURE 2, element 200 may include digital circuitry 202. Digital circuitry 202 may include any system, device, or apparatus configured to process digital signals and information received via receive path 221, and/or configured to process signals and information for transmission via transmit path 201. Such digital circuitry 202 may include one or more microprocessors, digital signal processors, and/or other suitable devices. As shown in FIGURE 2, digital circuitry 202 may communicate in-phase (I) channel and quadrature (Q) channel components of a digital signal to transmit path 201.

    [0023] Transmit path 201 may include a digital-to-analog converter (DAC) 204 for each of the I channel and Q channel. Each DAC 204 may be configured to receive its respective I or Q channel component of the digital signal from digital circuitry 202 and convert such digital signal into an analog signal. Such analog signal may then be passed to one or more other components of transmit path 201, including upconverter 208.

    [0024] Upconverter 208 may be configured to frequency upconvert an analog signal received from DAC 204 to a wireless communication signal at a radio frequency based on an oscillator signal provided by oscillator 210. Oscillator 210 may be any suitable device, system, or apparatus configured to produce an analog waveform of a particular frequency for modulation or upconversion of an analog signal to a wireless communication signal, or for demodulation or downconversion of a wireless communication signal to an analog signal. In some embodiments, oscillator 210 may be a digitally-controlled crystal oscillator.

    [0025] Transmit path 201 may include a variable-gain amplifier (VGA) 214 to amplify an upconverted signal for transmission, and a power amplifier 220 to further amplify the analog upconverted signal for transmission via antenna 218. The output of power amplifier 220 may be communicated to duplexer 223. A duplexer 223 may be interfaced between antenna switch 216 and each transmit path 201 and receive path 221. Accordingly, duplexer 223 may allow bidirectional communication through antenna tuner 217 and antenna 218 (e.g., from transmit path 201 to antenna 218, and from antenna 218 to receive path 221).

    [0026] Antenna switch 216 may be coupled between duplexer 224 and antenna tuner 217. Antenna switch 216 may configured to multiplex the output of two or more power amplifiers (e.g., similar to power amplifier 220), in which each power amplifier may correspond to a different band or band class. Antenna switch 216 may allow duplexing of signals received by antenna 218 to a plurality of receive paths of different bands or band classes.

    [0027] An antenna tuner 217 may be coupled between antenna switch 216 and antenna 218. Antenna tuner 217 may include any device, system, or apparatus configured to improve efficiency of power transfer between antenna 218 and transmit path 201 by matching (or attempting to closely match) the impedance of transmit path 201 to antenna 218. Such matching or close matching may reduce the ratio of reflected power to incident power transferred to the antenna from transmit path 201, thus increasing efficiency of power transfer. As shown in FIGURE 2, antenna tuner 217 may include one or more variable capacitors 215 and an inductor 219. As discussed in greater detail below, the capacitances of variable capacitors 215 may be varied based on one or more control signals communicated from antenna tuner control path 241. As such capacitances are varied, the effective impedance of the combination of antenna tuner 217 and antenna 218 is varied. Thus, by setting the capacitances appropriately, the effective impedance of the combination of antenna tuner 217 and antenna 218 may be approximately matched to that of the remainder of transmit path 201.

    [0028] Antenna 218 may receive the amplified signal and transmit such signal (e.g., to one or more of a terminal 110, a base station 120, and/or a satellite 130). As shown in FIGURE 2, antenna 218 may be coupled to each of transmit path 201 and receive path 221. Duplexer 223 may be interfaced between antenna 218 and each of receive path and

    [0029] Receive path 221 may include a low-noise amplifier 234 configured to receive a wireless communication signal (e.g., from a terminal 110, a base station 120, and/or a satellite 130) via antenna 218, antenna tuner 217, and duplexer 223. LNA 224 may be further configured to amplify the received signal.

    [0030] Receive path 221 may also include a downconverter 228. Downconverter 228 may be configured to frequency downconvert a wireless communication signal received via antenna 218 and amplified by LNA 234 by an oscillator signal provided by oscillator 210 (e.g., downconvert to a baseband signal). Receive path 221 may further include a filter 238, which may be configured to filter a downconverted wireless communication signal in order to pass the signal components within a radio- frequency channel of interest and/or to remove noise and undesired signals that may be generated by the downconversion process. In addition, receive path 221 may include an analog-to-digital converter (ADC) 224 configured to receive an analog signal from filter 238 and convert such analog signal into a digital signal. Such digital signal may then be passed to digital circuitry 202 for processing.

    [0031] Antenna tuner control path 241 may in general be configured to sense signals representative of the incident power transmitted to antenna 218 and reflected power from antenna 218, and based at least on such sensed signals, communicate a control signal to antenna tuner 217 for tuning the impedance of antenna tuner 217 (e.g., tuning variable capacitors 215 to desired capacitances). As shown in FIGURE 2, antenna tuner control path 241 may include a radio frequency (RF) coupler 242. RF coupler 242 may be any system, device or apparatus configured to couple at least a portion of the transmission power in the transmission line coupling antenna switch 216 to antenna tuner 217 to one or more output ports. As known in the art, one of the output ports may be known as a coupled port (e.g., coupled port 246 as shown in FIGURE 2) while the other output port may be known as a terminated or isolated port (e.g., terminated port 247 as shown in FIGURE 2). In many cases, each of coupled port 246 and terminated port 247 may be terminated with an internal or external resistance of a particular resistance value (e.g., 50 ohms). Due to the physical properties of RF coupler 242, during operation of element 200, coupled port 246 may carry an analog signal (e.g., a voltage) indicative of incident power transmitted to antenna 218 while terminated port 247 may carry an analog signal (e.g., a voltage) indicative of power reflected from antenna 218.

    [0032] Input terminals of a switch 250 may be coupled to coupled port 246 and terminated port 247. At predefined or desired intervals, switch 250 may switch between closing a path between coupled port 246 and the input terminal of variable gain amplifier (VGA) 254 and closing a path between terminated port 247 and the input terminal of VGA 254. VGA 254 may amplify the signals alternatingly communicated via switch 250, and communicate such amplified signals to downconverter 248.

    [0033] Downconverter 248 may be configured to frequency downconvert the alternating incident power signal and reflected power signal by an oscillator signal provided by oscillator 210 (e.g., downconvert to a baseband signal) and output an in- phase (I) channel and quadrature (Q) channel components of for each of the baseband incident power signal and baseband reflected power signal. In addition, control path 214 may include an analog-to-digital converter (ADC) 244 for each of the I channel and Q channel, each ADC 244 configured to receive the appropriate component of the baseband incident power signal and reflected power signal and convert such components from analog signals into a digital signals.

    [0034] Control path 241 may also include a filter 258 for each of the I channel and Q channel components of the digital incident power signal and digital reflected power signal. In some embodiments, each filter 258 may comprise a moving-average filter (e.g., a cascaded integrator-comb filter) configured to produce at its output a moving average of signals received at its input. As a result, filters 258 may output I channel and Q channel components of the averaged digital incident power signal and I channel and Q channel components of the averaged digital reflected power signal.

    [0035] As depicted in FIGURE 2, control path 241 may also include a power measurement module 262. Power measurement module 262 may include any system, device, or apparatus configured to, based on the I channel and Q channel components of the averaged digital incident power signal and the I channel and the Q channel components of the averaged digital reflected power signal, calculate and output signals indicative of the magnitude of the incident power |Pi| transmitted to antenna 218 and the magnitude of the reflected power |Pr| reflected from antenna 218. For example, power measurement module 262 may calculate incident power in accordance with the equation |Pi| = √(|PiI|2+-|PiQ|2) and reflected power in accordance with the equation |Pr| =√(|PrI|2+-|PrQ2|), where |PiI| is the magnitude of the I channel component of the average digital incident power signal, lPiQ| is the magnitude of the Q channel component of the average digital incident power signal, |PrI | is the magnitude of the I channel component of the average digital reflected power signal, and |PrQ| is the magnitude of the Q channel component of the average digital reflected power signal.

    [0036] Control path 241 may further include phase measurement module 264. Phase measurement module 264 may include any system, device, or apparatus configured to, based on the I channel and Q channel components of the averaged digital incident power signal and the I channel and the Q channel components of the averaged digital reflected power signal, calculate and output signals indicative of the phase ϕi of the incident power transmitted to antenna 218 and the phase ϕr of the reflected power reflected from antenna 218. For example, phase measurement module 264 may calculate incident power phase in accordance with the equation ϕi = tan-1 (PiQ/PiI) and reflected power phase in accordance with the equation ϕi = tan-1 (PrQlPrI), where PiI is the I channel component of the average digital incident power signal, PiQ is the Q channel component of the average digital incident power signal, PrI is the I channel component of the average digital reflected power signal, and PrQ is the Q channel component of the average digital reflected power signal.

    [0037] Control path 241 may additionally include a control module 266 configured to receive signals indicative of the incident power |Pi|, the magnitude of the reflected power |Pr|, the phase ϕi of the incident power, and the phase ϕr of the reflected power, and based at least on such received signals, output one or more control signals to antenna tuner 217 to control the impedance of antenna tuner 217 (e.g., by controlling the capacitances of variable capacitors 215). For example, to reduce reflected power relative to incident power (and thus improve power transmission), control module 266 may communicate control signals to antenna tuner 217 in order control the effective impedance of antenna tuner 217 such that the ratio of reflected power to incident power is minimized. As a specific example, the complex reflection coefficient for antenna 218 may be given by the equation Γ = A+jB = Vrϕr/Viϕi, where A and B are the real and imaginary components of the complex reflection coefficient, and Vr and Vi and are the reflected voltage and incident voltage. The reflection coefficient describes the return loss and, as shown above, may be given as the ratio between the reflected and incident power. The voltage standing wave ratio (VSWR) may be given as (1+|Γ|)/(1-|Γ|). Given that Γ = (ZL-Z0)/(ZL+ Z0), where ZL is the present complex impedance of the antenna tuner and Z0 represents known characteristic impedance of the transmission line coupled to antenna 218 (e.g., often equal to 50 ohms for many applications), control module 266 may solve for the impedance ZL, and modify such impedance accordingly to reduce the complex reflection coefficient Γ. To further illustrate, the magnitude of the reflection coefficient may be given by |Γ| = √(|Pr|/|Pi|) and the percentage of power delivered to antenna load ZL may be given as 1-|Γ|2.

    [0038] Thus, to reduce reflected power relative to incident power (and thus improve power transmission), control module 266 may communicate control signals to antenna tuner 217 in order to reduce the complex reflection coefficient Γ.

    [0039] Portions of control path 241 (e.g., filters 258, power measurement module 262, phase measurement module 264, and/or control module 266) may be implemented as one or more microprocessors, digital signal processors, and/or other suitable devices.

    [0040] FIGURE 3 illustrates a flow chart of an example method 300 for controlling an antenna tuner, in accordance with certain embodiments of the present disclosure. According to one embodiment, method 300 preferably begins at step 302. As noted above, teachings of the present disclosure may be implemented in a variety of configurations of system 100. As such, the preferred initialization point for method 300 and the order of the steps 302-322 comprising method 300 may depend on the implementation chosen.

    [0041] At step 302, control path 241 may set a tuner step size for antenna tuner 217 (e.g., based on the minimum amount of change in capacitance available by varying capacitance of varactors 215).

    [0042] At step 304, switch 250 may switch to couple coupled port 246 to other elements of control path 241. At step 306, power management module 262, phase management module 264, and/or other components of control path 241 may sense a signal indicative of the coupled port power, convert the measurement to decibels referenced to one milliwatt (dBm), and calculate incident power Pi (e.g., as described above in reference to FIGURE 2).

    [0043] At step 308, switch 250 may switch to couple terminated port 247 to other elements of control path 241. At step 310, power management module 262, phase management module 264, and/or other components of control path 241 may sense a signal indicative of the terminated port power, convert the measurement to decibels referenced to one milliwatt (dBm), and calculate reflected power Pr (e.g., as described above in reference to FIGURE 2).

    [0044] At step 312, control module 266 may estimate the square of the reflection coefficient Γ2 (e.g., by control module 266) based on the calculated incident power Pi and calculated reflected power Pr (e.g., Γ2 = |Pi-Pr|, after all quantities have been converted into dBm).

    [0045] At step 314, control module 266 may estimate εn = Directivity - Γ2, where directivity is an ideal ratio of incident and reflected power, which may be a characteristic of RF coupler 242 that measures the coupler's effectiveness in isolating two opposite-traveling (incident and reflected) signals. In a system with no transmission line mismatch, Directivity = Γ2. Accordingly, εn may represent an error value indicative of a estimated return loss of an for an antenna load, where n corresponds to a current step setting of an antenna tuner 217.

    [0046] At step 316, control module 266 may determine whether εn is greater or equal to a particular threshold (e.g., 3 decibels). If εn is greater or equal to the particular threshold, method 300 may proceed to step 318. Otherwise, method 300 may return to step 304.

    [0047] At step 318, in response to a determination that εn is greater or equal to the particular threshold, control module 266 may determine if εn is greater or equal to εn-1 where n-1 corresponds to the next lower step setting of antenna tuner 217. If εn is greater or equal to εn-1 method 300 may proceed to step 320. Otherwise, method 300 may proceed to step 322.

    [0048] At step 320, in response to a determination that εn is greater or equal to εn-1, control module 266 may communicate control signals to antenna tuner 217 such that antenna tuner 217 is stepped to its next higher setting (e.g., capacitances of varactors 215 increases by the smallest amount possible). After completion of step 320, method 300 may proceed again to step 304.

    [0049] At step 322, in response to a determination that εn is not greater or equal to εn-1, control module 266 may communicate control signals to antenna tuner 217 such that antenna tuner 217 is stepped to its next lower setting (e.g., capacitances of varactors 215 decreases by the smallest amount possible). After completion of step 322, method 300 may proceed again to step 304.

    [0050] Although FIGURE 3 discloses a particular number of steps to be taken with respect to method 300, it is understood that method 300 may be executed with greater or lesser steps than those depicted in FIGURE 3. In addition, although FIGURE 3 disclose a certain order of steps to be taken with respect to method 300, the steps comprising method 300 may be completed in any suitable order.

    [0051] Method 300 may be implemented using system 100 or any other system operable to implement method 300. In certain embodiments, method 300 may be implemented partially or fully in software embodied in computer-readable media.

    [0052] Modifications, additions, or omissions may be made to system 100 from the scope of the disclosure. The components of system 100 may be integrated or separated. Moreover, the operations of system 100 may be performed by more, fewer, or other components. As used in this document, "each" refers to each member of a set or each member of a subset of a set.

    [0053] Although the present disclosure has been described with several embodiments, various changes and modifications may be suggested to one skilled in the art. It is intended that the present disclosure encompass such changes and modifications as fall within the scope of the appended claims.


    Claims

    1. A wireless communication apparatus, comprising:

    a transmit path (201) configured to convert a first signal into a wireless communication signal;

    an antenna tuner (217) coupled to the transmit path (201); and

    a control path (241) coupled to the antenna tuner (217), the control path (241) comprising:

    a radio frequency (RF) coupler (242);

    a switch (250) coupled to the RF coupler (242);

    a downconverter (248) coupled to the switch (250) to alternatingly receive an incident power signal from the RF coupler (242) and a reflected power signal from the RF coupler (242), the downconverter (248) configured to downconvert the incident power signal to a baseband incident power signal or the reflected power signal to a baseband reflected power signal;

    a power measurement module (262) configured to calculate an incident power based on the baseband incident power signal and calculate a reflected power based on the baseband reflected power signal; and

    a control module (266) configured to set a tuner step size for the antenna tuner (217), estimate a square of a reflection coefficient based on the incident power and the reflected power, estimate a first error value indicative of an estimated return loss for an antenna load for a current step setting of the antenna tuner (217), determine whether the first error value is greater than or equal to a threshold, if the first error value is greater or than or equal to the threshold, determine whether the first error value is greater than or equal to a second error value indicative of an estimated return loss for an antenna load for a next lower step setting of the antenna tuner (217), if the first error value is greater than or equal to the second error value, send a control signal to the antenna tuner (217) to set the antenna tuner (217) to a next higher step setting and if the first error value is not greater than or equal to the second error value, send a control signal to the antenna tuner (217) to set the antenna tuner (217) to a next lower step setting.


     
    2. The wireless communication apparatus of Claim 1, further comprising an antenna coupled to the antenna tuner (217).
     
    3. The wireless communication apparatus of Claim 1 or 2, wherein the transmit path (201) is further configured to transmit the wireless communication signal via the antenna.
     
    4. The wireless communication apparatus of Claim 2, wherein the antenna tuner (217) is configured to match an impedance of the transmit path (201) to the antenna.
     
    5. The wireless communication apparatus of any of the preceding claims, further comprising an oscillator configured to generate an oscillator signal.
     
    6. The wireless communication apparatus of Claim 5, wherein the transmit path (201) is configured to convert the first signal into the wireless communication signal based on the oscillator signal.
     
    7. The wireless communication apparatus of any of the preceding claims, further comprising at least a second switch (216) coupled to the transmit path (201).
     
    8. The wireless communication apparatus of any of the preceding claims, wherein the at least a second switch (216) is configured to multiplex a plurality of outputs from a plurality of power amplifiers, each of the plurality of power amplifiers corresponding to a different band.
     
    9. The wireless communication apparatus of any of the preceding claims, the antenna tuner (217) comprising a variable capacitance configured to be varied based on the control signal.
     
    10. The wireless communication apparatus of any of the preceding claims, further comprising:

    a receive path configured to receive a second wireless communication signal and convert the second wireless communication signal into a second signal; wherein

    the antenna tuner (217) is further coupled to the receive path.


     
    11. The wireless communication apparatus of Claim 10, wherein:
    the receive path is configured to convert the second wireless communication signal into the second signal based on the oscillator signal.
     
    12. A method, comprising:

    converting at a transmit path (201) first signal into a wireless communication signal;

    communicating, via a switch (250), an incident power signal from a radio frequency (RF) coupler to a downconverter (248);

    downconverting the incident power signal to a baseband incident power signal;

    communicating, via the switch (250), a reflected power signal from the RF coupler (242) to the downconverter (248);

    downconverting the reflected power signal to a baseband reflected power signal;

    calculating an incident power based on the baseband incident power signal and a reflected power based on the baseband reflected power signal;

    setting a tuner step size for an antenna tuner (217);

    estimating a square of a reflection coefficient based on the incident power and the reflected power;

    estimating a first error value indicative of an estimated return loss for an antenna load for a current step setting of the antenna tuner (217);

    determining whether the first error value is greater than or equal to a threshold;

    if the first error value is greater or than or equal to the threshold, determining whether the first error value is greater than or equal to a second error value indicative of an estimated return loss for an antenna load for a next lower step setting of the antenna tuner (217);

    if the first error value is greater than or equal to the second error value, sending a control signal to the antenna tuner (2117) to set the antenna tuner (217) to a next higher step setting; and

    if the first error value is not greater than or equal to the second error value, sending a control signal to the antenna tuner (2117) to set the antenna tuner (217) to a next lower step setting.


     
    13. The method of Claim 12, further comprising matching an impedance of the transmit path (201) to an antenna.
     
    14. The method of Claim 12 or 13, further comprising multiplexing a plurality of outputs from a plurality of power amplifiers wherein each of the plurality of power amplifiers corresponds to a different band.
     
    15. The method of any of Claims 12 to 14, wherein an impedance of the antenna tuner (217) is controlled by setting a capacitance of a variable capacitance in the antenna tuner (217).
     


    Ansprüche

    1. Drahtloskommunikationsvorrichtung, die Folgendes umfasst:

    einen Übertragungspfad (201), der dazu ausgelegt ist, ein erstes Signal in ein Drahtloskommunikationssignal umzuwandeln;

    einen Antennenabstimmer (217), der an den Übertragungspfad (201) gekoppelt ist; und

    einen Steuerpfad (241), der an den Antennenabstimmer (217) gekoppelt ist, wobei der Steuerpfad (241) Folgendes umfasst:

    einen Funkfrequenz(RF)-Koppler (242);

    einen Switch (250), der an den RF-Koppler (242) gekoppelt ist;

    einen Abwärtswandler (248), der an den Switch (250) gekoppelt ist, um abwechselnd ein einfallendes Leistungssignal vom RF-Koppler (242) und ein reflektiertes Leistungssignal vom RF-Koppler (242) zu empfangen, wobei der Abwärtswandler (248) dazu ausgelegt ist, das einfallende Leistungssignal zu einem einfallenden Basisbandleistungssignal oder das reflektierte Leistungssignal zu einem reflektierten Basisbandleistungssignal abwärts zu wandeln;

    ein Leistungsmessmodul (262), das dazu ausgelegt ist, eine einfallende Leistung auf Basis des einfallenden Basisbandleistungssignals zu berechnen und eine reflektierte Leistung auf Basis des reflektierten Basisbandleistungssignals zu berechnen; und

    ein Steuermodul (266), das dazu ausgelegt ist, eine Abstimmerschrittgröße für den Antennenabstimmer (217) einzustellen, auf Basis der einfallenden Leistung und der reflektierten Leistung ein Quadrat eines Reflexionskoeffizienten zu schätzen, einen ersten Fehlerwert, der eine geschätzte Rückflussdämpfung für eine Antennenlast für eine aktuelle Schritteinstellung des Antennenabstimmers (217) zu schätzen, zu bestimmen, ob der erste Fehlerwert größer als ein Schwellwert oder mit diesem gleich ist, wenn der erste Fehlerwert größer als der Schwellwert oder mit diesem gleich ist, zu bestimmen, ob der erste Fehlerwert größer ist als ein zweiter Fehlerwert, der eine geschätzte Rückflussdämpfung für eine Antennenlast für eine nächstniedrigere Schritteinstellung des Antennenabstimmers (217) anzeigt, oder mit diesem gleich ist, wenn der erste Fehlerwert größer als der zweite Fehlerwert oder mit diesem gleich ist, ein Steuersignal an den Antennenabstimmer (217) zu senden, um den Antennenabstimmer (217) auf eine nächsthöhere Schritteinstellung einzustellen, und wenn der erste Fehlerwert nicht größer als der zweite Fehlerwert oder mit diesem gleich ist, ein Steuersignal an den Antennenabstimmer (217) zu senden, um den Antennenabstimmer (217) auf eine nächstniedrigere Schritteinstellung einzustellen.


     
    2. Drahtloskommunikationsvorrichtung nach Anspruch 1, die ferner eine Antenne umfasst, die an den Antennenabstimmer (217) gekoppelt ist.
     
    3. Drahtloskommunikationsvorrichtung nach Anspruch 1 oder 2, wobei der Übertragungspfad (201) ferner dazu ausgelegt ist, das Drahtloskommunikationssignal via die Antenne zu übertragen.
     
    4. Drahtloskommunikationsvorrichtung nach Anspruch 2, wobei der Antennenabstimmer (217) dazu ausgelegt ist, eine Impedanz des Übertragungspfads (201) mit der Antenne abzugleichen.
     
    5. Drahtloskommunikationsvorrichtung nach einem der vorhergehenden Ansprüche, die ferner einen Oszillator umfasst, der dazu ausgelegt ist, ein Oszillatorsignal zu erzeugen.
     
    6. Drahtloskommunikationsvorrichtung nach Anspruch 5, wobei der Übertragungspfad (201) dazu ausgelegt ist, das erste Signal auf Basis des Oszillatorsignals in das Drahtloskommunikationssignal umzuwandeln.
     
    7. Drahtloskommunikationsvorrichtung nach einem der vorhergehenden Ansprüche, die ferner mindestens einen zweiten Switch (216) umfasst, der an den Übertragungspfad (201) gekoppelt ist.
     
    8. Drahtloskommunikationsvorrichtung nach einem der vorhergehenden Ansprüche, wobei der mindestens eine zweite Switch (216) dazu ausgelegt ist, eine Vielzahl von Ausgaben von einer Vielzahl von Leistungsverstärkern zu multiplexen, wobei jeder der Vielzahl von Leistungsverstärkern einem anderen Band entspricht.
     
    9. Drahtloskommunikationsvorrichtung nach einem der vorhergehenden Ansprüche, wobei der Antennenabstimmer (217) eine variable Kapazität umfasst, die dazu ausgelegt ist, auf Basis des Steuersignals variiert zu werden.
     
    10. Drahtloskommunikationsvorrichtung nach einem der vorhergehenden Ansprüche, die ferner Folgendes umfasst:

    einen Empfangspfad, der dazu ausgelegt ist, ein zweites Drahtloskommunikationssignal zu empfangen und das zweite Drahtloskommunikationssignal in ein zweites Signal umzuwandeln; wobei

    der Antennenabstimmer (217) ferner an den Empfangspfad gekoppelt ist.


     
    11. Drahtloskommunikationsvorrichtung nach Anspruch 10, wobei:
    der Empfangspfad dazu ausgelegt ist, das zweite Drahtloskommunikationssignal auf Basis des Oszillatorsignals in das zweite Signal umzuwandeln.
     
    12. Verfahren, das Folgendes umfasst:

    auf einem Übertragungspfad (201) Umwandeln eines ersten Signals in ein Drahtloskommunikationssignal;

    Kommunizieren eines einfallenden Leistungssignals von einem Funkfrequenz(RF)-Koppler via einen Switch (250) zu einem Abwärtswandler (248);

    Abwärtswandeln des einfallenden Leistungssignals zu einem einfallenden Basisbandleistungssignal;

    Kommunizieren eines reflektierten Leistungssignals vom RF-Koppler (242) via den Switch (250) zum Abwärtswandler (248);

    Abwärtswandeln des reflektierten Leistungssignals zu einem reflektierten Basisbandleistungssignal;

    Berechnen einer einfallenden Leistung auf Basis des einfallenden Basisbandleistungssignals und Berechnen einer reflektierten Leistung auf Basis des reflektierten Basisbandleistungssignals;

    Einstellen einer Abstimmerschrittgröße für einen Antennenabstimmer (217);

    Schätzen eines Quadrats eines Reflexionskoeffizienten auf Basis der einfallenden Leistung und der reflektierten Leistung;

    Schätzen eines ersten Fehlerwerts, der eine geschätzte Rückflussdämpfung für eine Antennenlast für eine aktuelle Schritteinstellung des Antennenabstimmers (217) anzeigt;

    Bestimmen, ob der erste Fehlerwert größer als ein Schwellwert oder mit diesem gleich ist;

    wenn der erste Fehlerwert größer als der Schwellwert oder mit diesem gleich ist, Bestimmen, ob der erste Fehlerwert größer ist als ein zweiter Fehlerwert, der eine geschätzte Rückflussdämpfung für eine Antennenlast für eine nächstniedrigere Schritteinstellung des Antennenabstimmers (217) anzeigt, oder mit diesem gleich ist;

    wenn der erste Fehlerwert größer als der zweite Fehlerwert oder mit diesem gleich ist, Senden eines Steuersignals an den Antennenabstimmer (2117), um den Antennenabstimmer (217) auf eine nächsthöhere Schritteinstellung einzustellen; und

    wenn der erste Fehlerwert nicht größer als der zweite Fehlerwert oder mit diesem gleich ist, Senden eines Steuersignals an den Antennenabstimmer (2117), um den Antennenabstimmer (217) auf eine nächstniedrigere Schritteinstellung einzustellen.


     
    13. Verfahren nach Anspruch 12, das ferner das Abgleichen einer Impedanz des Übertragungspfads (201) mit der Antenne umfasst.
     
    14. Verfahren nach Anspruch 12 oder 13, das ferner das Multiplexen einer Vielzahl von Ausgaben von einer Vielzahl von Leistungsverstärkern umfasst, wobei jeder der Vielzahl von Leistungsverstärkern einem anderen Band entspricht.
     
    15. Verfahren nach einem der Ansprüche 12 bis 14, wobei eine Impedanz des Antennenabstimmers (217) durch Einstellen einer Kapazität einer variablen Kapazität im Antennenabstimmer (217) gesteuert wird.
     


    Revendications

    1. Appareil de communication sans fil, comprenant :

    un trajet d'émission (201) configuré pour convertir un premier signal en un signal de communication sans fil ;

    un dispositif d'accord (217) d'antenne couplé au trajet d'émission (201) ; et

    un trajet de commande (241) couplé au dispositif d'accord (217) d'antenne, le trajet de commande (241) comprenant :

    un coupleur radiofréquence (RF) (242) ;

    un commutateur (250) couplé au coupleur RF (242) ;

    un convertisseur abaisseur (248) couplé au commutateur (250) pour recevoir de manière alternée un signal de puissance incidente en provenance du coupleur RF (242) et un signal de puissance réfléchie en provenance du coupleur RF (242), le convertisseur abaisseur (248) étant configuré pour convertir à la baisse le signal de puissance incidente en un signal de puissance incidente de bande de base ou le signal de puissance réfléchie en un signal de puissance réfléchie de bande de base ;

    un module de mesure de puissance (262) conçu pour calculer une puissance incidente sur la base du signal de puissance incidente de bande de base et pour calculer une puissance réfléchie sur la base du signal de puissance réfléchie de bande de base ; et

    un module de commande (266) configuré pour définir une taille de pas de dispositif d'accord pour le dispositif d'accord (217) d'antenne, estimer un carré d'un coefficient de réflexion sur la base de la puissance incidente et de la puissance réfléchie, estimer une première valeur d'erreur indiquant une perte de retour estimée pour une charge d'antenne pour une définition de pas actuelle du dispositif d'accord (217) d'antenne, déterminer si la première valeur d'erreur est supérieure ou égale à un seuil, si la première valeur d'erreur est supérieure ou égale au seuil, déterminer si la première valeur d'erreur est supérieure ou égale à une seconde valeur d'erreur indiquant une perte de retour estimée pour une charge d'antenne pour une définition de pas inférieur suivante du dispositif d'accord (217) d'antenne, si la première valeur d'erreur est supérieure ou égale à la seconde valeur d'erreur, envoyer un signal de commande au dispositif d'accord (217) d'antenne pour définir le dispositif d'accord (217) d'antenne sur une définition de pas supérieur suivante et si la première valeur d'erreur n'est pas supérieure ou égale à la seconde valeur d'erreur, envoyer un signal de commande au dispositif d'accord (217) d'antenne pour définir le dispositif d'accord (217) d'antenne sur une définition de pas inférieur suivante.


     
    2. Appareil de communication sans fil selon la revendication 1, comprenant en outre une antenne couplée au dispositif d'accord (217) d'antenne.
     
    3. Appareil de communication sans fil selon la revendication 1 ou 2, dans lequel le trajet d'émission (201) est en outre configuré pour émettre le signal de communication sans fil par l'intermédiaire de l'antenne.
     
    4. Appareil de communication sans fil selon la revendication 2, dans lequel le dispositif d'accord (217) d'antenne est configuré pour adapter une impédance du trajet d'émission (201) à l'antenne.
     
    5. Appareil de communication sans fil selon l'une quelconque des revendications précédentes, comprenant en outre un oscillateur configuré pour générer un signal d'oscillateur.
     
    6. Appareil de communication sans fil selon la revendication 5, dans lequel le trajet d'émission (201) est configuré pour convertir le premier signal en signal de communication sans fil sur la base du signal d'oscillateur.
     
    7. Appareil de communication sans fil selon l'une quelconque des revendications précédentes, comprenant en outre au moins un second commutateur (216) couplé au trajet d'émission (201).
     
    8. Appareil de communication sans fil selon l'une quelconque des revendications précédentes, dans lequel l'au moins un second commutateur (216) est configuré pour multiplexer une pluralité de sorties à partir d'une pluralité d'amplificateurs de puissance, chaque amplificateur de la pluralité d'amplificateurs de puissance correspondant à une bande différente.
     
    9. Appareil de communication sans fil selon l'une quelconque des revendications précédentes, le dispositif d'accord (217) d'antenne comprenant une capacité variable configurée pour être modifiée sur la base du signal de commande.
     
    10. Appareil de communication sans fil selon l'une quelconque des revendications précédentes, comportant en outre :

    un trajet de réception configuré pour recevoir un second signal de communication sans fil et pour convertir le second signal de communication sans fil en un second signal ; dans lequel

    le dispositif d'accord (217) d'antenne est en outre couplé au trajet de réception.


     
    11. Appareil de communication sans fil selon la revendication 10, dans lequel :
    le trajet de réception est configuré pour convertir le second signal de communication sans fil en second signal sur la base du signal d'oscillateur.
     
    12. Procédé, consistant à :

    convertir, au niveau d'un trajet d'émission (201), un premier signal en un signal de communication sans fil ;

    communiquer, par le biais d'un commutateur (250), un signal de puissance incidente d'un coupleur radiofréquence (RF) vers un convertisseur abaisseur (248) ;

    convertir à la baisse le signal de puissance incidente en un signal de puissance incidente de bande de base ;

    communiquer, par le biais du commutateur (250), un signal de puissance réfléchie du coupleur RF (242) vers le convertisseur abaisseur (248) ;

    convertir à la baisse le signal de puissance réfléchie en un signal de puissance réfléchie de bande de base ;

    calculer une puissance incidente sur la base du signal de puissance incidente de bande de base et d'une puissance réfléchie sur la base du signal de puissance réfléchie de bande de base ;

    définir une taille de pas de dispositif d'accord pour un dispositif d'accord (217) d'antenne ;

    estimer un carré d'un coefficient de réflexion sur la base de la puissance incidente et de la puissance réfléchie ;

    estimer une première valeur d'erreur indiquant une perte de retour estimée pour une charge d'antenne pour une définition de pas actuelle du dispositif d'accord (217) d'antenne ;

    déterminer si la première valeur d'erreur est supérieure ou égale à un seuil ;

    si la première valeur d'erreur est supérieure ou égale au seuil, déterminer si la première valeur d'erreur est supérieure ou égale à une seconde valeur d'erreur indiquant une perte de retour estimée pour une charge d'antenne pour une définition de pas inférieur suivante du dispositif d'accord (217) d'antenne ;

    si la première valeur d'erreur est supérieure ou égale à la seconde valeur d'erreur, envoyer un signal de commande au dispositif d'accord (2117) d'antenne pour définir le dispositif d'accord (217) d'antenne sur une définition de pas supérieur suivante ; et

    si la première valeur d'erreur n'est pas supérieure ou égale à la seconde valeur d'erreur, envoyer un signal de commande au dispositif d'accord (2117) d'antenne pour définir le dispositif d'accord (217) d'antenne sur une définition de pas inférieur suivante.


     
    13. Procédé selon la revendication 12, consistant en outre à adapter une impédance du trajet d'émission (201) à une antenne.
     
    14. Procédé selon la revendication 12 ou 13, consistant à multiplexer une pluralité de sorties à partir d'une pluralité d'amplificateurs de puissance, chaque amplificateur de la pluralité d'amplificateurs de puissance correspondant à une bande différente.
     
    15. Procédé selon l'une quelconque des revendications 12 à 14, dans lequel une impédance du dispositif d'accord (217) d'antenne est commandée en définissant une capacité d'une capacité variable dans le dispositif d'accord (217) d'antenne.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description