(19)
(11)EP 2 948 212 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 13821257.6

(22)Date of filing:  17.12.2013
(51)International Patent Classification (IPC): 
A61M 39/22(2006.01)
(86)International application number:
PCT/US2013/075657
(87)International publication number:
WO 2014/116368 (31.07.2014 Gazette  2014/31)

(54)

REGULATING FLOW PATHS IN A MEDICAL INJECTION SYSTEM

DURCHFLUSSREGULIERUNG IN EINEM MEDIZINISCHEN INJEKTIONSSYSTEM

CONTRÔLE DE DÉBIT DANS UN SYSTÉM MÉDICAL D'INJECTION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 25.01.2013 US 201313750724

(43)Date of publication of application:
02.12.2015 Bulletin 2015/49

(73)Proprietor: Acist Medical Systems, Inc.
Eden Prairie, MN 55344 (US)

(72)Inventors:
  • SCOTT, David, Duane
    Minneapolis, MN 55410 (US)
  • BORLAUG, Tom, H.
    Prior Lake, MN 55372 (US)
  • SOLTIS, Scott, Jacob
    St. Paul, MN 55117 (US)

(74)Representative: Pistolesi, Roberto et al
Dragotti & Associati S.r.l. Via Nino Bixio, 7
20129 Milano
20129 Milano (IT)


(56)References cited: : 
EP-A1- 1 754 505
US-A- 4 950 230
US-A1- 2006 089 603
WO-A2-03/057070
US-A- 4 967 797
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present disclosure pertains to medical injection systems and more particularly to apparatus for regulating flow paths therein.

    BACKGROUND



    [0002] Figure 1A is a perspective view of an exemplary medical injection system 100 (the ACIST CVi® system) for delivering a contrast agent into a patient's vascular system for medical imaging. Figure 1A illustrates a first fluid reservoir 132 for supplying a syringe-type positive displacement pump 130 of a pressurizing unit, via a fill tubing line 102, and an injection tubing line 104, which is coupled to pump 130 for injection of, for example, a radiopaque contrast agent, into a patient's vascular system via an inserted catheter (not shown) that may be coupled to a patient tubing line 122 at a connector 120 thereof. Figure 1A further illustrates a second fluid reservoir 138 from which a diluent, such as saline, is drawn by a peristaltic pump 106 through yet another tubing line 128 that feeds into tubing line 122. A manifold valve 124 and associated sensor 114 control the flow of fluids into tubing line 122, from pump 130 and from tubing line 128.

    [0003] Although not shown in Figure 1, the syringe-type positive displacement pump of unit 130 includes a fill port and an injection port to which tubing lines 102 and 104, respectively are coupled. An apparatus that allows fluid to flow into pump 130, via fill tubing line 102, while blocking flow to injection tubing line 104, and then allows fluid to flow out from pump 130, via injection tubing line 104, while blocking flow to fill tubing line 104, is desired in order to prevent back flow through line 104 during filling, and back flow through line 102 during injection. Such an apparatus may be integrated into system 100 in the general area designated by reference numeral 125, and may be in the form of a stop cock-type manifold. Although various configurations of this type manifold apparatus are known in the art, there is a need for new and improved configurations of manifold assemblies for regulating flow paths in medical injection systems, for example, like system 100.

    [0004] WO 03/057070 discloses a vacuum bandage comprising a switch valve connecting a plurality of conduits and is considered forming the closest prior art document. It shows a flow control core having two flow channels in order to selectively connect in- and outlet ports within the flow control core.

    SUMMARY



    [0005] Embodiments of the present invention are directed toward medical injection systems that incorporate a manifold apparatus that is employed to regulate flow paths. A flow control core is rotatably fitted within an inner perimeter surface of a body to form the manifold assembly, wherein the core includes a single flow channel extending therethrough, and the body includes a first port extending from an opening located in a first quadrant of the inner perimeter surface, a second port extending from an opening located in a second quadrant of the inner perimeter surface, a third port extending from an opening located in a third quadrant of the inner perimeter surface, and a fourth port extending from an opening located in a fourth quadrant of the inner perimeter surface; the configuration of the flow channel is such that, when the core is rotated 360 degrees within the body, fluid communication between ports of the body is only established by the flow channel of the core in two positions: at a first position, between the first and second ports of the body, and at a second position, between the third and fourth ports of the body. Thus, fluid communication between any of the ports at any other position besides the first and second positions is prevented. The flow channel of the core may extend in two sections that define an angle which is greater than 90 degrees and less than 180 degrees, preferably 120 degrees. According to some preferred embodiments, the rotation of the core, between the first and second positions, is approximately 180 degrees.

    [0006] In a medical injection system of the present invention, the aforementioned first and second ports are fill ports of the manifold assembly, wherein the first is coupled to a reservoir of fluid, for example, contrast agent, and the second is coupled to a fill port of a positive displacement pump; and the aforementioned third and fourth ports are injection ports of the manifold assembly, wherein the third is coupled to an injection port of the pump, and the fourth is coupled to an injection tubing line. The system preferably includes a drive member for rotating the flow control core of the manifold assembly, so that, according to some embodiments, the flow control core of the manifold assembly further includes an actuation member, which is engaged by drive member of the system. According to preferred embodiments, the manifold assembly is integrated into the medical injection system such that the fill ports (first and second ports) of the manifold assembly are located at a higher elevation than the injection ports (third and fourth ports).

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0007] The following drawings are illustrative of particular methods and embodiments of the present disclosure and, therefore, do not limit the scope of the invention, which is solely defined by the scope of the claims. The drawings are not to scale (unless so stated) and are intended for use in conjunction with the explanations in the following detailed description. Methods and embodiments will hereinafter be described in conjunction with the appended drawings, wherein like numerals denote like elements, and:

    Figure 1 is a perspective view of an exemplary medical injection system that embodies the present invention;

    Figure 2 is a schematic illustration of a manifold assembly coupled to a positive displacement pump, which may incorporated in the system of Figure 1, according to the present invention;

    Figure 3A is an exploded perspective view of a manifold assembly, according to some embodiments;

    Figure 3B is a cross-section view through section line A-A of Figure 3A, according to some embodiments;

    Figure 3C is another view of a flow control core of the assembly shown in Figure 3A; and

    Figure 4 is a schematic depicting operation of a manifold assembly, according to some embodiments.


    DETAILED DESCRIPTION



    [0008] The following detailed description is exemplary in nature and is not intended to limit the scope, applicability, or configuration of the invention in any way. The scope of the invention is defined by the appended claims. Rather, the following description provides practical illustrations for implementing exemplary methods and embodiments. Examples of constructions, materials and dimensions are provided for selected elements, and all other elements employ that which is known to those of skill in the field of the invention. Those skilled in the art will recognize that many of the examples provided have suitable alternatives that can be utilized within the scope defined by the claims.

    [0009] Figure 2 is a schematic illustration of a manifold assembly 25, which is coupled to positive displacement pump 130, for example, of system 100 (Figure 1), according to some embodiments of the present invention. Figure 2 illustrates manifold assembly 25 including a body 260 and a flow control core 210, which is fitted within an inner perimeter surface 36 (Figure 3A) of body 260, such that a longitudinal axis 10 of core 210 is approximately aligned with a longitudinal axis 60 of body 260. Figure 2 further illustrates manifold assembly 25 including a first fill port MF1, a second fill port MF2, a first injection port MI1 and second injection port MI2, all of which are formed in body 260. First fill port MF1 is shown coupled to fill tubing line 102 that extends from reservoir 132, as described above, and second fill portion MF2 is shown coupled to a fill port PF of pump 130, for example, via a downstream fill tubing line 102-D. With further reference to Figure 2, first injection port MI1 is likewise coupled to an injection port PI of pump 130, via an upstream injection tubing line 104-U, and second injection port MI2 is coupled to injection tubing line 104, which as described above, extends to a terminal connector, for example, connector 120 of Figure 1, for connection to a patient line or catheter. According to the illustrated embodiment core 210 is rotatable within body 260, and with reference to Figures 3A-B, core 210 includes a flow channel 31 extending therethrough, from a first opening 311 at an outer perimeter surface 32 thereof to a second opening 312 at the outer perimeter surface 32. According to the illustrated embodiment, outer perimeter surface 32 of core 210 seals against inner perimeter surface 36 of body 260, when core 210 is fitted/inserted therein, per arrow A (Figure 3A), and the fitted core 210 is rotatable within body 260 between first and second positions, for example, positions P-1 and P-1 shown in the schematic of Figure 4. Both core 210 and body 260 of manifold assembly 25 may be formed of any suitable material (e.g., plastic, stainless steel) by any suitable method known to those skilled in the art.

    [0010] With reference to Figures 2, 3A, and 4, each of ports MF1, MF2, MI1, and MI2 extend from a corresponding opening 362 at inner surface 36 of body 260 (two openings 362 may be seen in Figure 3A, and the other two are shown with dashed lines in Figure 3A) to a corresponding opening 361 at an exterior of body 260 (two openings 361 may be seen in Figure 3A). Each port MF1, MF2, MI1, and MI2, around the corresponding external opening 361, is preferably configured with a fitting, such as a Luer fitting, for coupling with the corresponding tubing line. Alternately, each tubing line 102, 102-D, 104, 104-U may be bonded to the corresponding port of manifold assembly 25, for example, by adhesive bonding and/or ultrasonic welding methods known in the art. According to the present invention, each of internal openings 361 is located in a separate one of quadrants 1, 2, 3, 4 (Figure 2), and flow channel 31 of core 210 is configured such that, when core 210 is rotated within body 260, about axis 10, fluid communication between fill ports MF1 and MF2 is established at a first position P-1, and fluid communication between injection ports MI1 and MI2 is established at a second position P-2, as illustrated in Figure 4. With further reference to Figure 4, it may be appreciated that, due to the configuration of flow channel 31, when core 210 is rotated throughout 360 degrees, for example, clockwise, per dashed-line arrow R, only the two positions, first position P-1 and second position P-2, of channel 31 conduct fluid between two of the ports of assembly 25; and, throughout the 360 degree rotation, fluid communication between any of the ports of assembly 25 is prevented, except at first and second positions P-1, P-2. According to the illustrated embodiment, rotation of core 210 from first position P-1 to second position P-2 is approximately 180 degrees.

    [0011] With reference to Figure 3B, the configuration of flow channel 31 is such that a first section, which extends inward from first opening 311, and a second section, which extends inward from second opening 312, define an angle, which is between 90 degrees and 180 degrees. Figure 3B illustrates channel 31 defining an angle α, which is closer to 90 degrees, for example, preferably approximately 120 degrees, while a dashed line in Figure 3B designates an angle β that channel 31 may define in an alternate embodiment, which is closer to 180 degrees. Thus, with reference, again, to Figure 4, the configuration of flow channel 31, according to embodiments of the present invention, prevents unwanted connections between any two of ports MF1, MF2, MI1, MI2, while allowing continuous rotation of core 210 in a single direction, for example, clockwise, from position P-1 to P-2 and back to position P-1. This configuration may be compared to that of a flow channel in a prior art manifold assembly that defines a right angle and, thus, allows fluid conduction between ports that is not desired. Furthermore, the obtuse angle defined by alternate embodiments of flow channel 31 can provide for more laminar flow therethrough to mitigate entrapment of gases (e.g. air), which entrapment could be an issue for a right angle (or acute angle) flow channel.

    [0012] With further reference to Figure 2, a plane, which is designated with a vertical dashed line, extends through axes 10, 60 and divides manifold assembly 25 into two parts, such that, according to the invention, manifold assembly 25 is configured and integrated into system 100 so that the external portions of first fill port MF1 and second injection port MI2 are located on a fluid circuit side CS of the plane, and the external portions of second fill port MF2 and first injection port MI1 are located on a pump side PS of the plane. Furthermore, fill ports MF1, MF2 of manifold assembly 25 may be located at an elevation E1, which is higher than an elevation E2 of injection ports MI1, MI2 of assembly 25, for example, to facilitate purging of air bubbles from manifold assembly 25 and pump 130.

    [0013] With reference to Figure 3A, according to some embodiments, flow control core 210 further includes an actuation member 35 configured to engage with a drive member of the injection system that includes manifold assembly 25, for example, system 100 shown in Figure 1. With reference to Figure 1, reference letter D designates a general area in which a drive member, for example, a rotating shaft coupled to an electric motor, may be located. According to the embodiment illustrated in Figure 3A, when core 210 is fitted into body 260, per arrow A, for example, with a shoulder 33 of core 210 abutting a surface 303 of body 260, actuation member 35 protrudes from a surface 305 of body 260, which is generally opposite surface 303, to be accessible for engagement with the aforementioned drive member.

    [0014] Figure 3C is another view of flow control core 210 showing actuation member 35, according to some preferred embodiments. Figure 3C illustrates actuation member 35 having an asymmetrical shape for keyed engagement with the aforementioned drive member. Initial keyed engagement between core 210 and the drive member preferably corresponds to the illustrated locations of ports MF1, MF2, MI1 and MI2 (Figures 2 and 4) with flow control core 210 in either one of closed positions P10, P20 shown in Figure 4, at which a motor encoder for the drive member may be homed at start up. With further reference to Figure 3A, an opposite surface 34 of core 210 may include indicia formed therein that provide a visual indication of the position of core 210 relative to ports MF1, MF2, MI1 and MI2.

    [0015] In the foregoing detailed description, the invention has been described with reference to specific embodiments. However, it may be appreciated that various modifications and changes can be made without departing from the scope of the invention as set forth in the appended claims.


    Claims

    1. A medical injection system (100) comprising a pump (130) and a tubing circuit, the pump including a fill port (PF) and an injection port (PI), and the tubing circuit including a fill tubing line (102) coupled to a fluid reservoir (132) and an injection tubing line (104); and wherein the system further comprises a manifold assembly (25) for coupling the tubing circuit to the pump, the manifold assembly being located between the pump and tubing circuit such that the assembly has a circuit side (CS) and a pump side (PS), opposite the circuit side; and the manifold assembly comprising:

    a flow control core (210) including a longitudinal axis (10), an outer perimeter surface (32), and a single flow channel (31), the flow channel including a first section extending inward, toward the axis, from a first opening (311) at the outer perimeter surface, and a second section extending inward, toward the axis, from a second opening (312) at the outer perimeter surface; and

    a body (260) including a longitudinal axis (60), an inner perimeter surface (36), a first fill port (MF1), a second fill port (MF2), a first injection port (MI1), and a second injection port (MI2), each port extending from a corresponding opening (362) at the inner perimeter surface to a corresponding opening (361) at an exterior of the body, and each port opening at the inner perimeter surface being located in a separate quadrant of four quadrants into which the inner surface is divided; whereby the first fill port (MF1) and the second injection port (MI2) are located at the fluid circuit side (CS) and the second fill port (MF2) and the first injection port (MI1) are located at the pump side (PS); and

    wherein the flow control core is fitted within the inner perimeter surface of the body such that the outer perimeter surface of the core seals against the inner perimeter surface of the body, the axis of the core is approximately aligned with the axis of the body, and the core is rotatable about the axis thereof between a first position (P-1) and a second position (P-2);

    when the core is at the first position, the first opening of the flow channel aligns with the inner surface opening of the first fill port of the body, and the second opening of the flow channel aligns with the inner surface opening of the second fill port of the body, such that the channel allows fluid communication between the first and second fill ports;

    when the core is at the second position, the first opening of the flow channel aligns with the inner surface opening of the first injection port of the body, and the second opening of the flow channel aligns with the inner surface opening of the second injection port of the body, such that the channel allows fluid communication between the first and second injection ports; and

    when the flow control core is rotated 360 degrees about the axis thereof, fluid communication between any ports of the body is prevented except at the first and second positions.


     
    2. The system (100) of claim 1, wherein rotation of the flow control core (210) is approximately 180 degrees from the first position (P-1) to the second position (P-2).
     
    3. The system (100) of claim 1, wherein the first and second sections of the flow channel (31) define an angle (α; β), the angle being greater than 90 degrees and less than 180 degrees.
     
    4. The system (100) of claim 3, wherein the angle (α) is approximately 120 degrees.
     
    5. The system (100) of claim 1, wherein the flow control core (210) further includes an actuation member (35) accessible from outside the body (260) and configured to engage with a drive member of the system (100).
     
    6. The system (100) of claim 5, wherein the actuation member (35) of the flow control core (210) has an asymmetrical shape for keyed engagement with the drive member.
     
    7. The system (100) of claim 1, wherein the circuit side and pump side fill ports (MF1, MF2) of the manifold assembly (25) are located at a higher elevation than the circuit side and pump side injection ports (MI1, MI2) of the manifold assembly.
     


    Ansprüche

    1. Medizinisches Injektionssystem (100), welches eine Pumpe (130) und ein Schlauchleitungssystem umfasst, worin die Pumpe eine Einfüllöffnung (PF) und eine Injektionsöffnung (PI) aufweist, und worin das Schlauchleitungssystem eine mit einem Fluid-Reservoir (132) gekoppelte Einfüllschlauchleitung (102) und eine Injektionsschlauchleitung (104) umfasst; und worin das System weiter einen Verteileraufbau (25) zum Koppeln des Schlauchleitungssystems mit der Pumpe umfasst, worin der Verteileraufbau zwischen der Pumpe und dem Schlauchleitungssystem angeordnet ist, so dass der Aufbau eine Leitungsseite (CS) und eine von der Leitungsseite abgewandte Pumpenseite (PS) aufweist; worin der Verteileraufbau umfasst:

    einen Strömungssteuerungs-Kern (210) mit einer Längsachse (10), einer äußeren Umfangsoberfläche (32) und einem einzelnen Strömungskanal (31), worin der Strömungskanal einen ersten Bereich aufweist, der sich von einer ersten Öffnung (311) an der äußeren Umfangsfläche nach innen auf die Achse zu erstreckt, und einen zweiten Bereich, der sich von einer zweiten Öffnung (312) an der äußeren Umfangsfläche nach innen auf die Achse zu erstreckt; und

    einen Körper (260) mit einer Längsachse (60), einer inneren Umfangsfläche (36), einer ersten Einfüllöffnung (MF1), einer zweiten Einfüllöffnung (MF2), einer ersten Injektionsöffnung (Ml1), und einer zweiten Injektionsöffnung (Ml2), worin sich jede Öffnung von einer entsprechenden Öffnung (362) an der inneren Umfangsfläche auf eine entsprechende Öffnung (361) an einem Äußeren des Körpers erstreckt, und worin jede Öffnung an der inneren Umfangsfläche in einem separaten Quadranten von vier Quadranten, in die die innere Oberfläche aufgeteilt ist, angeordnet ist; wobei die erste Einfüllöffnung (MF1) und die zweite Injektionsöffnung (Ml2) an der Fluid-Leitungsseite (CS) angeordnet sind und die zweite Einfüllöffnung (MF2) und die erste Injektionsöffnung (Ml1) an der Pumpenseite (PS) angeordnet sind; und

    worin der Strömungssteuerungs-Kern in der inneren Umfangsfläche des Körpers derart angepasst ist, dass die äußere Umfangsfläche des Kerns gegen die innere Umfangsfläche des Körpers abdichtet, worin die Achse des Kerns mit der Achse des Körpers annähernd ausgerichtet ist, und worin der Kern um die Achse davon zwischen einer ersten Position (P-1) und einer zweiten Position (P-2) drehbar ist;

    worin wenn der Kern an der ersten Position ist, die erste Öffnung des Strömungskanals mit der inneren Oberflächen-Öffnung der ersten Einfüllöffnung des Körpers ausgerichtet ist, und die zweite Öffnung des Strömungskanals mit der inneren Oberflächen-Öffnung der zweiten Einfüllöffnung des Körpers ausgerichtet ist, so dass der Kanal eine Fluid-Verbindung zwischen der ersten und zweiten Einfüllöffnung ermöglicht;

    worin wenn der Kern an der zweiten Position ist, die erste Öffnung des Strömungskanals mit der inneren Oberflächen-Öffnung der ersten Injektionsöffnung des Körpers ausgerichtet ist, und die zweite Öffnung des Strömungskanal mit der inneren Oberflächen-Öffnung der zweiten Injektionsöffnung des Körpers ausgerichtet ist, so dass der Kanal eine Fluid-Verbindung zwischen der ersten und zweiten Injektionsöffnung ermöglicht; und

    worin wenn der Strömungssteuerungs-Kern um 360 um dessen Achse gedreht wird, mit Ausnahme an der ersten und zweiten Position eine Fluid-Verbindung zwischen jeder Öffnung des Körpers verhindert wird.


     
    2. System (100) nach Anspruch 1, worin die Drehung des Strömungssteuerungs-Kerns (210) von der ersten Position (P-1) in die zweite Position (P-2) etwa 180 Grad ist.
     
    3. System (100) nach Anspruch 1, worin der erste und zweite Bereich des Strömungskanals (31) einen Winkel (α; β) definiert, worin der Winkel größer ist als 90 Grad und kleiner als 180 Grad.
     
    4. System (100) nach Anspruch 3, worin der Winkel (α) etwa 120 Grad ist.
     
    5. System (100) nach Anspruch 1, worin der Strömungssteuerungs-Kern (210) weiter ein Betätigungselement (35) umfasst, das von außerhalb des Körpers (260) zugänglich und ausgestaltet ist, mit einem Antriebselement des Systems (100) in Eingriff zu kommen.
     
    6. System (100) nach Anspruch 5, worin das Betätigungselement (35) des Strömungssteuerungs-Kerns (210) eine asymmetrische Form für einen Schlüssel-Eingriff mit dem Antriebselement aufweist.
     
    7. System (100) nach Anspruch 1, worin die Einfüllöffnungen (MF1, MF2) der Leitungsseite und die Pumpenseite des Verteileraufbaus (25) an einer höheren Position angeordnet sind als die Injektionsöffnungen (Ml1, Ml2) der Leitungsseite und Pumpenseite des Verteileraufbaus.
     


    Revendications

    1. Système médical d'injection (100) comprenant une pompe (130) et un circuit de tube, la pompe comprenant un orifice de remplissage (PF) et un orifice d'injection (PI), le circuit de tube comprenant une ligne de tube de remplissage (102) couplée à un réservoir de fluide (132) et une ligne de tube d'injection (104) ; et dans lequel le système comprend en outre un ensemble de collecteur (25) pour coupler le circuit de tube à la pompe, l'ensemble de collecteur étant positionné entre la pompe et le circuit de tube de sorte que l'ensemble a un côté de circuit (CS) et un côté de pompe (PS), opposé au côté de circuit ; et l'ensemble de collecteur comprenant :

    un noyau de contrôle d'écoulement (210) comprenant un axe longitudinal (10), une surface périmétrale externe (32), et un canal d'écoulement (31) unique, le canal d'écoulement comprenant une première section s'étendant vers l'intérieur, vers l'axe, à partir d'une première ouverture (311) au niveau de la surface périmétrale externe, et une seconde section s'étendant vers l'intérieur, vers l'axe, à partir d'une seconde ouverture (312) au niveau de la surface périmétrale externe ; et

    un corps (260) comprenant un axe longitudinal (60), une surface périmétrale interne (36), un premier orifice de remplissage (MF1), un second orifice de remplissage (MF2), un premier orifice d'injection (MI1), et un second orifice d'injection (MI2), chaque orifice s'étendant à partir d'une ouverture (362) correspondante au niveau de la surface périmétrale interne jusqu'à une ouverture (361) correspondante au niveau d'un extérieur du corps, et chaque ouverture d'orifice au niveau de la surface périmétrale interne étant positionnée dans un quadrant séparé de quatre quadrants dans lesquels la surface interne est divisée ; moyennant quoi le premier orifice de remplissage (MF1) et le second orifice d'injection (MI2) sont positionnés du côté du circuit de fluide (CS) et le second orifice de remplissage (MF2) et le premier orifice d'injection (MI1) sont positionnés du côté de la pompe (PS) ; et

    dans lequel le noyau de contrôle d'écoulement est monté à l'intérieur de la surface périmétrale interne du corps de sorte que la surface périmétrale externe du noyau réalise une étanchéité contre la surface périmétrale interne du corps, l'axe du noyau est approximativement aligné avec l'axe du corps, et le noyau peut tourner autour de son axe entre une première position (P-1) et une seconde position (P-2) ;

    lorsque le noyau est dans la première position, la première ouverture du canal d'écoulement s'aligne avec l'ouverture de surface interne du premier orifice de remplissage du corps, et la seconde ouverture du canal d'écoulement s'aligne avec l'ouverture de surface interne du second orifice de remplissage du corps, de sorte que le canal permet la communication de fluide entre les premier et second orifices de remplissage ;

    lorsque le noyau est dans la seconde position, la première ouverture du canal d'écoulement s'aligne avec l'ouverture de surface interne du premier orifice d'injection du corps, et

    la seconde ouverture du canal d'écoulement s'aligne avec l'ouverture de surface interne du second orifice d'injection du corps, de sorte que le canal permet la communication de fluide entre les premier et second orifices d'injection ; et

    lorsque le noyau de contrôle d'écoulement tourne à 360 degrés autour de son axe, la communication de fluide entre l'un quelconque des orifices du corps est empêchée, excepté aux première et seconde positions.


     
    2. Système (100) selon la revendication 1, dans lequel la rotation du noyau de contrôle d'écoulement (210) est d'approximativement 180 degrés de la première position (P-1) à la seconde position (P-2).
     
    3. Système (100) selon la revendication 1, dans lequel les première et seconde sections du canal d'écoulement (31) définissent un angle (α ; β), l'angle étant supérieur à 90 degrés et inférieur à 180 degrés.
     
    4. Système (100) selon la revendication 3, dans lequel l'angle (α) est d'approximativement 120 degrés.
     
    5. Système (100) selon la revendication 1, dans lequel le noyau de contrôle d'écoulement (210) comprend en outre un élément d'actionnement (35) accessible depuis l'extérieur du corps (260) et configuré pour se mettre en prise avec un élément d'entraînement du système (100).
     
    6. Système (100) selon la revendication 5, dans lequel l'élément d'actionnement (35) du noyau de contrôle d'écoulement (210) a une forme asymétrique pour la mise en prise clavetée avec l'élément d'entraînement.
     
    7. Système (100) selon la revendication 1, dans lequel les orifices de remplissage du côté du circuit et du côté de la pompe (MF1, MF2) de l'ensemble de collecteur (25) sont positionnés à une hauteur supérieure aux orifices d'injection du côté du circuit et du côté de la pompe (MI1, MI2) de l'ensemble de collecteur.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description