(19)
(11)EP 2 950 525 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
12.08.2020 Bulletin 2020/33

(21)Application number: 14173903.7

(22)Date of filing:  25.06.2014
(51)International Patent Classification (IPC): 
H04N 5/3745(2011.01)
H04N 5/365(2011.01)

(54)

Semiconductor image sensor with integrated pixel heating and method of operating a semiconductor image sensor

Halbleiter-Bildsensor mit integrierten Pixelaufheizen und Verfahren zu dessen Betrieb

Capteur d'image semiconducteur avec chauffage de pixel intégré et méthode pour opérer le capteur d'image semiconducteur


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 28.05.2014 EP 14170387

(43)Date of publication of application:
02.12.2015 Bulletin 2015/49

(73)Proprietor: ams AG
8141 Premstätten (AT)

(72)Inventors:
  • Stockmeier, Thomas
    5656 AE Eindhoven (NL)
  • Forsyth, Richard
    5656 AE Eindhoven (NL)
  • Troxler, Thomas
    5656 AE Eindhoven (NL)

(74)Representative: Epping - Hermann - Fischer 
Patentanwaltsgesellschaft mbH Schloßschmidstraße 5
80639 München
80639 München (DE)


(56)References cited: : 
WO-A1-2008/036289
US-A1- 2009 140 149
US-A- 6 133 572
US-A1- 2011 180 710
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] Pictures produced by a semiconductor image sensor may show slight non-uniformities from pixel to pixel, which can be caused by local temperature differences in the sensor chip, because leakage current and responsivity of a photodiode depend on the temperature. To avoid this problem, image sensor chips are preferably operated at a constant, spatially homogeneous temperature. Usual methods of maintaining a spatially and temporally constant temperature, especially by heating or cooling the whole image sensor chip, may not be appropriate to obtain optimal temperature conditions, especially if photo sensors are integrated in the vicinity of components generating heat.

    [0002] US 7, 480, 006 B1 discloses an integrated circuit package including a substrate with a surface disposed to receive an image sensor chip and with a heater element positioned underneath a sensor area of the image sensor chip.

    [0003] US 6, 046, 433 A discloses an integrated circuit die containing a metal heater resistor, which is disposed around the periphery of the die and provided with electrical terminals.

    [0004] US 4, 808, 009 A discloses an integrated sensing device including a resistance temperature sensor formed in a semiconductor substrate, and a resistance heater, which is formed on an insulating layer covering the substrate surface.

    [0005] WO 2008/036289 A1 discloses an image sensor device with an array of imaging pixels including transistors and photodiodes formed in an IC. At least one pixel is configured as a dummy-pixel to function as a non-volatile memory element. A film that is transparent or translucent at low temperature and partially or wholly blocks light when the temperature is increased is arranged above each dummy-pixel. Each dummy-pixel is provided with a resistive element, which allows to heat the film and thus to program the dummy-pixel.

    [0006] US 2009/0140149 A1 discloses a component for detecting electromagnetic radiation, especially infrared electromagnetic radiation. The component comprises a housing including a substrate made of a cofired ceramic and at least one microbolometer associated with an interfacing circuit, thus forming an assembly. For the purpose of continuously optimising thermal control of the assembly, the interfacing circuit is equipped with a thermal sensor. A heating resistive element is integrated in the substrate between ceramic layers to ensure uniform heating of the assembly in order to keep its temperature above ambient temperature.

    [0007] US 6 133 572 A discloses an infrared detector system including a substrate, which can be silicon and serves as a heat sink, and a support member or membrane, which can be silicon nitride and is connected to the substrate by a plurality of thermal conductors or support posts and an anchor structure or connection support assembly. Heat detectors are applied on the surface of the substrate and on the support member to allow a measurement of a temperature difference that occurs when incident infrared radiation is absorbed by the membrane. A heater unit is mounted on the surface of the anchor structure or connection support assembly and can include a number of heater elements positioned about the anchor structure.

    [0008] It is an object of the present invention to disclose a semiconductor image sensor that shows less non-uniformity in the pictures produced than conventional image sensors. It is a further object to disclose a method for obtaining improved pictures produced by a semiconductor image sensor.

    [0009] These objects are achieved with the semiconductor image sensor according to claim 1 and with the method according to claim 12. Further aspects of the invention are defined according to the dependent claims. References to embodiments which do not fall under the scope of the claims are to be understood as illustrative examples useful for understanding the invention.

    [0010] The semiconductor image sensor comprises a plurality of pixels, which are each provided with a photo sensor, and at least one heater, which is integrated with the photo sensors and is arranged in at least one of the pixels or in the vicinity of at least one of the pixels. At least one integrated readout circuit may also be integrated. An appropriate operation of the heater will increase the temperature of the photo sensor of the relevant pixel. The temperatures of the other photo sensors may be increased by a smaller degree or not affected by the heating.

    [0011] In an embodiment of the semiconductor image sensor comprising at least one integrated readout circuit, the heater is arranged in the relevant pixel between the photo sensor of this pixel and the integrated readout circuit.

    [0012] In a further embodiment, each further one of the pixels is provided with a further integrated readout circuit and with a further heater arranged between the further integrated readout circuit and the photo sensor of the respective further one of the pixels.

    [0013] The heater extends in at least one further pixel.

    [0014] In a further embodiment, at least a further one of the pixels is provided with a further heater, which is arranged in the further one of the pixels or in the vicinity of the further one of the pixels.

    [0015] In a further embodiment, the heater is formed by a plurality of individual heaters, which are arranged in the at least one of the pixels or in the vicinity of the at least one of the pixels.

    [0016] In a further embodiment, the individual heaters surround the photo sensor of the at least one of the pixels.

    [0017] A further embodiment comprises an integrated temperature sensor, which may especially be arranged in the vicinity of one of the photo sensors.

    [0018] A further embodiment comprises further integrated temperature sensors, and the integrated temperature sensor and each of the further integrated temperature sensors are arranged in the vicinity of a respective one of the photo sensors.

    [0019] A further embodiment comprises through-substrate vias electrically connected with the photo sensors and/or through-substrate vias electrically connected with the at least one heater.

    [0020] In the method of operating such a semiconductor image sensor, the at least one of the pixels is heated with the heater, so that the temperature of this pixel is increased by a larger degree than the temperature of at least a further one of the pixels. Some or all of the further pixels may essentially not be affected by the heating process. In particular, heating the pixel aims at a local compensation of a temperature difference that is due to an operation of the integrated readout circuit and/or further integrated readout circuits.

    [0021] In a variant of the method, the temperature is locally controlled by at least one integrated temperature sensor.

    [0022] The following is a detailed description of examples of the image sensor and the method of operating such an image sensor in conjunction with the appended figures.
    Figure 1
    schematically shows the arrangement of the photo sensor, heater and readout circuit in a pixel of an embodiment of the image sensor.
    Figure 2
    shows an arrangement according to Figure 1 for a further embodiment comprising a plurality of individual heaters surrounding the photo sensor.
    Figure 3
    shows an arrangement according to Figure 1 for a further embodiment with through-substrate vias.
    Figure 4
    shows a group of pixels of a further embodiment with a heater arranged close to this group of pixels.
    Figure 5
    shows an arrangement according to Figure 1 for a further embodiment comprising a temperature sensor.


    [0023] Figure 1 shows a pixel 1 of the semiconductor image sensor. The pixel 1 comprises a photo sensor 2, which is integrated in a semiconductor body or substrate. The details of the photo sensor 2, which may especially be a photodiode or a cluster of photodiodes, for instance, are not essential and are therefore not shown in Figure 1. A readout circuit 3 may optionally be integrated in the semiconductor body or substrate together with the photo sensor 2. The readout circuit 3 may be a CMOS circuit, for instance. Each pixel 1 may be provided with an individual readout circuit 3. Instead, a readout circuit 3 may be provided for some or all of the photo sensors 2 in common. In the embodiment according to Figure 1, the photo sensor 2 and the readout circuit 3 are integrated within the pixel 1 on the same side of the semiconductor body or substrate, but the arrangement of the photo sensor 2 and the readout circuit 3 can differ from this example.

    [0024] A heater 4 is integrated in the pixel 1 or in the vicinity of the pixel 1. The heater 4 may especially be a resistive heater and is preferably provided with electric connections 5 for an application of a voltage or electric current. Resistive heaters are known per se in semiconductor technology. In the embodiment according to Figure 1, the heater 4 is arranged between the photo sensor 2 and the readout circuit 3. An arrangement of the heater 4 in the vicinity of the readout circuit 3, like the arrangement shown in Figure 1, may be especially suitable, because such an arrangement allows to substitute or supplement the generation of heat by the readout circuit 3 with a similar generation of heat by the heater 4, especially during a mode of operation of the image sensor in which the readout circuit 3 does not generate the maximal or usual amount of heat. Thus a homogeneous temperature distribution can be maintained during every mode of operation of the image sensor.

    [0025] The heater 4 can be integrated in the image sensor by placing a resistor or a set of resistors close to the photo sensor 2. The resistor or set of resistors can particularly be formed by a layer of electrically resistive material in a way that is known per se in semiconductor technology. Several individual heating elements formed by resistors may be connected in parallel or in series to form the heater 4. A voltage or electric current is applied to the electric connections 5 in order to generate heat in the resistor or set of resistors. The voltage or current supply can be provided directly on the image sensor chip or externally via electric terminals of the image sensor chip. The heaters 4 of copies of the image sensor may be connected to one another via interconnections between the chips.

    [0026] Figure 2 shows a pixel 1 of a further embodiment of the semiconductor image sensor. Elements of the embodiment according to Figure 2 that correspond to elements of the embodiment according to Figure 1 are designated with the same reference numerals. In the embodiment according to Figure 2, the heater 4 comprises several individual heaters 4', which may be provided with separate electric connections 5. The individual heaters 4' may especially surround the photo sensor 2, as shown in Figure 2 by way of an example, but the arrangement of the photo sensor 2 and the individual heaters 4' can differ from this example.

    [0027] Figure 3 shows a pixel 1 of a further embodiment of the semiconductor image sensor. Elements of the embodiment according to Figure 3 that correspond to elements of the embodiments according to Figures 1 and 2 are designated with the same reference numerals. The embodiment according to Figure 3 comprises through-substrate vias 6, 7 for an electric connection of the photo sensor 2 and the heater 4. This arrangement is especially suitable if the readout circuit 3 is arranged on the side of the semiconductor body or substrate that is opposite the photo sensor 2. The heater 4 may also be arranged on the opposite side, especially in a location under the photo sensor 2, and in this case it may be sufficient to provide only the photo sensor 2 with through-substrate vias 6 for electric connection.

    [0028] Figure 4 shows an array of three neighbouring pixels 1 of a further embodiment of the semiconductor image sensor. Elements of the embodiment according to Figure 4 that correspond to elements of the embodiment according to Figure 1 are designated with the same reference numerals. The embodiment according to Figure 4 comprises a heater 4 arranged close to several pixels 1 in common. In the example shown in Figure 4, the heater 4 is arranged between the photo sensors 2 and the readout circuits 3 of these pixels 1. The heater 4 may be arranged in the vicinity of any number of pixels 1 in common, and the arrangement may differ from the example shown in Figure 4.

    [0029] Figure 5 shows a pixel 1 of a further embodiment of the semiconductor image sensor. Elements of the embodiment according to Figure 5 that correspond to elements of the embodiment according to Figure 1 are designated with the same reference numerals. The embodiment according to Figure 5 further comprises a temperature sensor 8, which is preferably arranged close to the photo sensor 2. The temperature sensor 8 serves to detect the temperature of the photo sensor 2, so that the heater 4 can be operated under control of the temperature sensor 8 in order to avoid deviations of the desired temperature. Similarly to the use of the heater 4 for several pixels 1 in common, according to Figure 4, the temperature sensor 8 may be used for a group of pixels 1 in common. Instead, each pixel 1 may be provided with an individual temperature sensor 8. The evaluation of the measurement of the temperature and the control of the corresponding operation of the heater 4 may be implemented in the readout circuit 3, for instance.

    [0030] By integrating the heater 4 or an array of heaters 4 each provided for one pixel 1 or for a small group of pixels 1 into the image sensor chip, the effort for the assembly and/or housing of the image sensor chip are substantially reduced. The integrated heater 4 or heaters 4 allow to heat different areas of the image sensor chip, in particular different pixels 1 or groups of pixels 1, independently of one another and thus to maintain a temperature distribution of the image sensor chip that is spatially and temporally essentially constant. The image production is thereby improved and non-uniformities can be avoided or at least substantially reduced.

    List of reference numerals



    [0031] 
    1
    pixel
    2
    photo sensor
    3
    readout circuit
    4
    heater
    4'
    individual heater
    5
    electric connection
    6
    through-substrate via
    7
    through-substrate via
    8
    temperature sensor



    Claims

    1. A semiconductor image sensor, comprising:

    - a semiconductor body or substrate,

    - a plurality of pixels (1), the pixels (1) forming an array provided for producing a picture, each pixel (1) being provided with a photo sensor (2) having a temperature, each of the photo sensors (2) comprising a photodiode or cluster of photodiodes integrated in the semiconductor body or substrate, and

    - at least one heater (4) arranged in at least one of the pixels (1) and integrated with the photo sensor (2) of said pixel , so that an operation of the heater (4) increases the temperature of the photo sensor (2) of said pixel (1), characterized in that the heater (4) extends in at least one further pixel (1).


     
    2. The semiconductor image sensor of claim 1, further comprising:

    at least one integrated readout circuit (3), wherein

    the heater (4) is arranged in the at least one of the pixels (1) between the photo sensor (2) of this pixel (1) and the at least one integrated readout circuit (3) and wherein the integrated readout circuit (3) is integrated in the semiconductor body or substrate together with the photo sensor (2).


     
    3. The semiconductor image sensor of claim 2, further comprising:
    each further one of the pixels (1) being provided with a further integrated readout circuit (3) and with a further heater (4) arranged between the further integrated readout circuit (3) and the photo sensor (2) of the respective further one of the pixels (1).
     
    4. The semiconductor image sensor of claim 1 or 2, wherein at least a further one of the pixels (1) is provided with a further heater (4), which is arranged in the further one of the pixels (1).
     
    5. The semiconductor image sensor of claim 1, wherein
    the heater (4) is formed by a plurality of individual heaters (4'), which are arranged in the at least one of the pixels (1) .
     
    6. The semiconductor image sensor of claim 5, wherein
    the individual heaters (4') surround the photo sensor (2) of the at least one of the pixels (1).
     
    7. The semiconductor image sensor of one of claims 1 to 6, further comprising:
    an integrated temperature sensor (8).
     
    8. The semiconductor image sensor of claim 7, wherein
    the integrated temperature sensor (8) is arranged in the vicinity of one of the photo sensors (2).
     
    9. The semiconductor image sensor of claim 7, further comprising:
    further integrated temperature sensors (8), the integrated temperature sensor (8) and each of further integrated temperature sensors (8) being arranged in the vicinity of a respective one of the photo sensors (2).
     
    10. The semiconductor image sensor of one of claims 1 to 9, further comprising:
    through-substrate vias (6) electrically connected with the photo sensors (2).
     
    11. The semiconductor image sensor of one of claims 1 to 10, further comprising:
    through-substrate vias (7) electrically connected with the at least one heater (4).
     
    12. A method of operating a semiconductor image sensor, wherein the semiconductor image sensor comprises:

    - a semiconductor body or substrate,

    - a plurality of pixels (1), the pixels (1) forming an array provided for producing a picture, each pixel (1) being provided with a photo sensor (2) having a temperature, each of the photo sensors (2) comprising a photodiode or cluster of photodiodes integrated in the semiconductor body or substrate, and

    - at least one heater (4) arranged in at least one of the pixels (1) and integrated with the photo sensor (2) of said pixel, so that an operation of the heater (4) increases the temperature of the photo sensor (2) of said pixel (1),
    J the method comprising:

    - using pixels (1) of the semiconductor image sensor for producing a picture,

    - heating the at least one of the pixels (1) by using the at least one heater (4), and thus increasing the temperature of this pixel (1) characterized in that

    - the heater (4) extends in at least one further pixel (1).


     
    13. The method of claim 12, further comprising:
    controlling the temperature locally by at least one integrated temperature sensor (8).
     


    Ansprüche

    1. Halbleiter-Bildsensor, umfassend:

    - einen Halbleiterkörper oder ein Halbleitersubstrat,

    - eine Vielzahl von Pixeln (1), wobei die Pixel (1) eine Anordnung bilden, die dazu vorgesehen ist, ein Bild zu erzeugen, wobei jedes Pixel (1) mit einem Fotosensor (2) versehen ist, der eine Temperatur hat, wobei jeder der Fotosensoren (2) eine Fotodiode oder eine Gruppe von Fotodioden umfasst, die in den Halbleiterkörper oder das Halbleitersubstrat integriert ist bzw. sind, und

    - mindestens eine Erwärmungsvorrichtung (4), die in mindestens einem der Pixel (1) angeordnet und mit dem Fotosensor (2) des Pixels integriert ist, so dass ein Betrieb der Erwärmungsvorrichtung (4) die Temperatur des Fotosensors (2) des Pixels (1) erhöht,

    dadurch gekennzeichnet, dass
    sich die Erwärmungsvorrichtung (4) in mindestens einem weiteren Pixel (1) erstreckt.
     
    2. Halbleiter-Bildsensor nach Anspruch 1, darüber hinaus umfassend:
    mindestens eine integrierte Ausleseschaltung (3), wobei die Erwärmungsvorrichtung (4) in dem mindestens einen der Pixel (1) zwischen dem Fotosensor (2) dieses Pixels (1) und der mindestens einen integrierten Ausleseschaltung (3) angeordnet ist, und wobei die integrierte Ausleseschaltung (3) in dem Halbleiterkörper oder dem Halbleitersubstrat zusammen mit dem Fotosensor (2) integriert ist.
     
    3. Halbleiter-Bildsensor nach Anspruch 2, darüber hinaus umfassend:
    jedes weitere der Pixel (1) ist mit einer weiteren integrierten Ausleseschaltung (3) und mit einer weiteren Erwärmungsvorrichtung (4) versehen, die zwischen der weiteren integrierten Ausleseschaltung (3) und dem Fotosensor (2) des jeweiligen weiteren der Pixel (1) angeordnet ist.
     
    4. Halbleiter-Bildsensor nach Anspruch 1 oder 2, wobei mindestens ein weiteres der Pixel (1) mit einer weiteren Erwärmungsvorrichtung (4) versehen ist, die in dem weiteren der Pixel (1) angeordnet ist.
     
    5. Halbleiter-Bildsensor nach Anspruch 1, wobei die Erwärmungsvorrichtung (4) durch mehrere einzelne Erwärmungsvorrichtungen (4') gebildet ist, die in dem mindestens einen der Pixel (1) angeordnet ist.
     
    6. Halbleiter-Bildsensor nach Anspruch 5, wobei die einzelnen Erwärmungsvorrichtungen (4') den Fotosensor (2) des mindestens einen der Pixel (1) umgeben.
     
    7. Halbleiter-Bildsensor nach einem der Ansprüche 1 bis 6, darüber hinaus umfassend:
    einen integrierten Temperatursensor (8).
     
    8. Halbleiter-Bildsensor nach Anspruch 7, wobei der integrierte Temperatursensor (8) in der Nähe eines der Fotosensoren (2) angeordnet ist.
     
    9. Halbleiter-Bildsensor nach Anspruch 1, darüber hinaus umfassend:
    weitere integrierte Temperatursensoren (8), wobei der integrierte Temperatursensor (8) und jeder der weiteren integrierten Temperatursensoren (8) in der Nähe eines jeweiligen der Fotosensoren (2) angeordnet sind.
     
    10. Halbleiter-Bildsensor nach einem der Ansprüche 1 bis 9, darüber hinaus umfassend:
    Substratdurchkontaktierungen (6), die elektrisch mit den Fotosensoren (2) verbunden sind.
     
    11. Halbleiter-Bildsensor nach einem der Ansprüche 1 bis 10, darüber hinaus umfassend:
    Substratdurchkontaktierungen (7), die elektrisch mit der mindestens einen Erwärmungsvorrichtung (4) verbunden sind.
     
    12. Verfahren zum Betätigen eines Halbleiter-Bildsensors, wobei der Halbleiter-Bildsensor umfasst:

    - einen Halbleiterkörper oder ein Halbleitersubstrat,

    - eine Vielzahl von Pixeln (1), wobei die Pixel (1) eine Anordnung bilden, die dazu vorgesehen ist, ein Bild zu erzeugen, wobei jedes Pixel (1) mit einem Fotosensor (2) versehen ist, der eine Temperatur hat, wobei jeder der Fotosensoren (2) eine Fotodiode oder eine Gruppe von Fotodioden umfasst, die in den Halbleiterkörper oder das Halbleitersubstrat integriert ist bzw. sind, und

    - mindestens eine Erwärmungsvorrichtung (4), die in mindestens einem der Pixel (1) angeordnet und mit dem Fotosensor (2) des Pixels integriert ist, so dass ein Betrieb der Erwärmungsvorrichtung (4) die Temperatur des Fotosensors (2) des Pixels (1) erhöht,

    wobei das Verfahren umfasst:

    - Verwenden der Pixel (1) des Halbleiter-Bildsensors, um ein Bild zu erzeugen,

    - Erwärmen des mindestens einen der Pixel (1), indem die mindestens eine Erwärmungsvorrichtung (4) verwendet und somit die Temperatur dieses Pixels (1) erhöht wird, dadurch gekennzeichnet, dass

    - sich die Erwärmungsvorrichtung (4) in mindestens einem weiteren Pixel (1) erstreckt.


     
    13. Verfahren nach Anspruch 12, darüber hinaus umfassend:
    die Temperatur durch mindestens einen integrierten Temperatursensor (8) lokal zu kontrollieren.
     


    Revendications

    1. Capteur d'image de semiconducteur, comprenant :

    - un corps ou substrat de semiconducteur,

    - une pluralité de pixels (1), les pixels (1) formant un réseau disposé pour produire un cliché, chaque pixel (1) étant pourvu d'un photocapteur (2) ayant une température, chacun des photocapteurs (2) comprenant une photodiode ou une grappe de photodiodes intégrée dans le corps ou substrat de semiconducteur, et

    - au moins un chauffage (4) agencé dans au moins un des pixels (1) et intégré avec le photocapteur (2) dudit pixel, de sorte qu'un fonctionnement du chauffage (4) augmente la température du photocapteur (2) dudit pixel (1) ,

    caractérisé en ce que
    le chauffage (4) s'étend dans au moins un pixel (1) supplémentaire.
     
    2. Le capteur d'image de semiconducteur de la revendication 1, comprenant en outre :
    au moins un circuit de lecture intégré (3), sachant que le chauffage (4) est agencé dans l'au moins un des pixels (1) entre le photocapteur (2) de ce pixel (1) et l'au moins un circuit de lecture intégré (3) et sachant que le circuit de lecture intégré (3) est intégré dans le corps ou substrat de semiconducteur conjointement avec le photocapteur (2).
     
    3. Le capteur d'image de semiconducteur de la revendication 2, comprenant en outre :
    le fait que chaque pixel supplémentaire parmi les pixels (1) est pourvu d'un circuit de lecture intégré (3) supplémentaire et d'un chauffage (4) supplémentaire agencé entre le circuit de lecture intégré (3) supplémentaire et le photocapteur (2) du pixel supplémentaire respectif parmi les pixels (1).
     
    4. Le capteur d'image de semiconducteur de la revendication 1 ou 2, sachant qu'au moins un pixel supplémentaire parmi les pixels (1) est pourvu d'un chauffage (4) supplémentaire, lequel est agencé dans le pixel supplémentaire parmi les pixels (1).
     
    5. Le capteur d'image de semiconducteur de la revendication 1, sachant que le chauffage (4) est formé par une pluralité de chauffages individuels (4'), lesquels sont agencés dans l'au moins un des pixels (1).
     
    6. Le capteur d'image de semiconducteur de la revendication 5, sachant que les chauffages individuels (4') entourent le photocapteur (2) de l'au moins un des pixels (1).
     
    7. Le capteur d'image de semiconducteur de l'une des revendications 1 à 6, comprenant en outre :
    un capteur de température intégré (8).
     
    8. Le capteur d'image de semiconducteur de la revendication 7, sachant que le capteur de température intégré (8) est agencé à proximité d'un des photocapteurs (2).
     
    9. Le capteur d'image de semiconducteur de la revendication 7, comprenant en outre :
    des capteurs de température intégrés (8) supplémentaires, le capteur de température intégré (8) et chacun des capteurs de température intégrés (8) supplémentaires étant agencés à proximité d'un photocapteur respectif parmi les photocapteurs (2).
     
    10. Le capteur d'image de semiconducteur de l'une des revendications 1 à 9, comprenant en outre :
    des interconnexions traversantes de substrat (6) connectées électriquement aux photocapteurs (2).
     
    11. Le capteur d'image de semiconducteur de l'une des revendications 1 à 10, comprenant en outre :
    des interconnexions traversantes de substrat (7) connectées électriquement à l'au moins un chauffage (4).
     
    12. Procédé de fonctionnement d'un capteur d'image de semiconducteur, sachant que le capteur d'image de semiconducteur comprend :

    - un corps ou substrat de semiconducteur,

    - une pluralité de pixels (1), les pixels (1) formant un réseau disposé pour produire un cliché, chaque pixel (1) étant pourvu d'un photocapteur (2) ayant une température, chacun des photocapteurs (2) comprenant une photodiode ou une grappe de photodiodes intégrée dans le corps ou substrat de semiconducteur, et

    - au moins un chauffage (4) agencé dans au moins un des pixels (1) et intégré avec le photocapteur (2) dudit pixel, de sorte qu'un fonctionnement du chauffage (4) augmente la température du photocapteur (2) dudit pixel (1) ,

    le procédé comprenant :

    - l'utilisation de pixels (1) du capteur d'image de semiconducteur pour produire un cliché,

    - le chauffage de l'au moins un des pixels (1) en utilisant l'au moins un chauffage (4), et de la sorte l'augmentation de la température de ce pixel (1),
    caractérisé en ce que

    - le chauffage (4) s'étend dans au moins un pixel (1) supplémentaire.


     
    13. Le procédé de la revendication 12, comprenant en outre :
    le fait de commander la température localement par au moins un capteur de température intégré (8).
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description