(19)
(11)EP 2 950 953 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.11.2019 Bulletin 2019/48

(21)Application number: 13818945.1

(22)Date of filing:  20.12.2013
(51)Int. Cl.: 
B22F 3/14  (2006.01)
B22F 3/087  (2006.01)
H05B 6/10  (2006.01)
B21D 26/021  (2011.01)
B22F 3/105  (2006.01)
C21D 1/18  (2006.01)
C21D 6/00  (2006.01)
B22F 3/00  (2006.01)
H05B 6/06  (2006.01)
B29C 70/00  (2006.01)
B21D 26/055  (2011.01)
B22F 3/03  (2006.01)
C21D 1/42  (2006.01)
C21D 9/42  (2006.01)
(86)International application number:
PCT/US2013/076912
(87)International publication number:
WO 2014/120360 (07.08.2014 Gazette  2014/32)

(54)

METHOD AND APPARATUS FOR CONSOLIDATING/MOLDING NEAR NET-SHAPED COMPONENTS MADE FROM POWDER

VERFAHREN UND VORRICHTUNG ZUR KONSOLIDIERUNG/FORMUNG VON ENDFORMNAHEN KOMPONENTEN AUS PULVER

PROCÉDÉ ET APPAREIL DE CONSOLIDATION/MOULAGE DE COMPOSANTS DE POUDRE DE DIMENSIONS PROCHES DES DIMENSIONS FINALES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 04.02.2013 US 201313758609

(43)Date of publication of application:
09.12.2015 Bulletin 2015/50

(60)Divisional application:
19201556.8

(73)Proprietor: The Boeing Company
Chicago, IL 60606-1596 (US)

(72)Inventors:
  • MATSEN, Marc R.
    Chicago, Illinois 60606-2016 (US)
  • NEGLEY, Mark A.
    Chicago, Illinois 60606-2016 (US)
  • MILLER, Robert J.
    Chicago, Illinois 60606-2016 (US)

(74)Representative: Lloyd, Robin et al
Kilburn & Strode LLP Lacon London 84 Theobalds Road
London WC1X 8NL
London WC1X 8NL (GB)


(56)References cited: : 
US-A- 5 728 309
US-A1- 2010 018 271
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] This disclosure generally relates to high-strength magnetic field processing of materials for developing customized microstructures and enhanced performance.

    [0002] In powder metallurgy, powder materials are typically consolidated at high temperatures with long exposure times under applied hydrostatic loads to produce a product without porosity and with enhanced performance. For example, it is known to compact cold powder to create a semi-solid pre-form and then consolidate/mold that pre-form by applying heat and pressure. Pre-forms made from compacted powder can be placed directly upon a tool or die having a forming surface contoured to the desired shape of the completed part. In hot press forming, the pre-form is placed between matched metal tools that include forming surfaces that define the internal, external, or both mold lines of the completed part. The tools and pre-form are placed within a press and then the tools and pre-form are heated under pressure to produce a consolidated, net-shaped part.

    [0003] It is known to consolidate and form pre-forms using inductively heated consolidation tools. Induction heating is a process in which an electrically conducting object (usually a metal) is heated by electromagnetic induction. During such heating, eddy currents are generated within the metal and the electrical resistance of the metal leads to Joule heating. An induction heater typically comprises an induction coil through which a high-frequency alternating current is passed. It is known to place a susceptor in or adjacent to the pre-form to achieve the necessary heating for consolidation or forming. The susceptor is heated inductively and transfers its heat principally through conduction to the pre-form sandwiched between opposing susceptor facesheets. During heating under pressure, the number of voids and/or the porosity of a pre-form can be reduced, i.e., the density can be increased.

    [0004] Alloying, processing and heat treating of materials has in the past been generally limited to achieving equilibrium microstructures as defined by a temperature-composition phase diagram or metastable microstructures that result from rapid cooling processes. Recent research on ferrous alloys has shown experimentally that phase stability can be altered by applying a high-strength magnetic field to an extent that enables the microstructure of a pre-form to be tailored and precisely controlled. Combining a strong magnetic field with thermal processing can lead to the development of alloys and microstructures with superior properties

    [0005] In particular, there is a need for processes that will enable rapid fabrication of near net-shaped components from powder. This includes components made of ferrous (i.e., ferrous-based) alloys having new improved chemistries along with improved affordability methods for part manufacture of titanium-based alloys. US2010/018271 discloses a forming method and apparatus and an associated perform having a hydrostatic pressing medium.

    SUMMARY



    [0006] This disclosure is directed to methods and apparatus for rapid (i.e., in a few minutes or less) fabrication of near net-shaped components from powder made of metal alloys having new improved chemistries, resulting in enhanced performance (e.g., high strength). The disclosed methods should be applicable to a wide range of metallic alloys including ferrous-based and titanium-based alloys. These elements (Fe and Ti) and their alloys provide the combination of an available crystallographic phase change at elevated temperatures along with the opportunity to manipulate the phase diagram via high-intensity magnetic fields. Other elements such as thorium, hafnium, manganese, and vanadium-based alloys could work as well.

    [0007] One aspect of the subject matter disclosed in detail below is a method for consolidating a pre-form made of powder, comprising: (a) placing the pre-form between smart susceptors; (b) heating the smart susceptors to a leveling temperature by applying a varying low-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors; (c) applying consolidation pressure to the pre-form at least during a time period subsequent to the temperature of the smart susceptors reaching the leveling temperature; and (d) while consolidation pressure is being applied, applying a pulsed high-strength magnetic field having a magnetic flux that passes through a surface of the pre-form. The strength of the high-strength magnetic field is greater than a peak strength of the low-strength magnetic field. The strength and pulse rate of the high-strength magnetic field are selected so that the crystallographic phase of the pre-form will rapidly oscillate at a substantially constant temperature. The pulsed high-strength magnetic field is applied sufficiently long that superplasticity of the pre-form is attained during phase oscillation.

    [0008] The strength of the high-strength magnetic field is greater than or equal to 0.5 tesla. The strength of the low-strength magnetic field is less than 0.1 tesla. Optionally, the pulse rate of the high-strength magnetic field is multiple pulses per second. Optionally, the consolidation pressure is in a range of 5 to 20 MPa. Optionally, the low-strength magnetic field alternates at a frequency that is in a range of 0.5 to 10 kHz. Optionally, the powder comprises a ferrous-based or titanium-based alloy. Optionally, the pre-form has a thickness in excess of the thickness limit for pre-forms consolidated using thermal oscillation.

    [0009] Another aspect is a method for fabricating a component from powder, comprising: (a) cold compacting powder to create a pre-form; (b) placing the pre-form between smart susceptors of an induction tool assembly; (c) flooding a space inside the induction tool assembly with an oxygen-free gas; (d) heating the smart susceptors to a leveling temperature by applying a varying low-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors; (e) applying consolidation pressure to the pre-form at least during a time period subsequent to the temperature of the smart susceptors reaching the leveling temperature; and (f) while consolidation pressure is being applied, applying a pulsed high-strength magnetic field having a magnetic flux that passes through a surface of the pre-form. After step (f), the method may further comprise: (g) quenching the pre-form; (h) tempering the quenched pre-form; and (i) removing the pre-form from the induction tool assembly. The strength of the high-strength magnetic field is greater than a peak strength of the low-strength magnetic field. The strength and pulse rate of the high-strength magnetic field are selected so that the crystallographic phase of the pre-form will rapidly oscillate at a substantially constant temperature. The pulsed high-strength magnetic field is applied sufficiently long that superplasticity of the pre-form is attained during phase oscillation

    [0010] The strength of the high-strength magnetic field is greater than or equal to 0.5 tesla. The strength of the low-strength magnetic field is less than 0.1 tesla. Advantageously, the pulse rate of the high-strength magnetic field is multiple pulses per second. Advantageously, the consolidation pressure is in a range of 5 to 20 MPa. Advantageously, the low-strength magnetic field alternates at a frequency that is in a range of 0.5 to 10 kHz. Advantageously, the powder comprises a ferrous-based or titanium-based alloy. Advantageously, the following steps are performed after the consolidation pressure being applied step, and while the pre-form remains between the first and second susceptors, such steps including quenching the pre-form, tempering the quenched pre-form, and removing the pre-form from the induction tool assembly.

    [0011] In accordance with a further aspect, a method for consolidating a pre-form made of metal alloy powder material is provided. The method comprises: (a) placing the pre-form between smart susceptors; (b) heating the smart susceptors to a leveling temperature by applying a varying low-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors; (c) applying consolidation pressure to the pre-form at least during a time period subsequent to the temperature of the smart susceptors reaching the leveling temperature; and (d) while consolidation pressure is being applied, applying a pulsed high-strength magnetic field having a magnetic flux that passes through a surface of the pre-form. A strength of the high-strength magnetic field is greater than 0.5 tesla, while a peak strength of the low-strength magnetic field is less than 0.1 tesla. The strength and pulse rate of the high-strength magnetic field are selected so that the crystallographic phase of the pre-form will rapidly oscillate at a substantially constant temperature. The pulsed high-strength magnetic field is applied sufficiently long that superplasticity of the pre-form is attained during phase oscillation.

    [0012] Advantageously, the pulse rate of the high-strength magnetic field is multiple pulses per second. Advantageously, the consolidation pressure is in a range of 5 to 20 MPa.

    [0013] Yet another aspect is an apparatus for consolidating a pre-form made of powder, comprising: first and second tool assemblies respectively comprising respective portions of at least one induction coil and first and second smart susceptors having mutually confronting surfaces, the first tool assembly being movable relative to the second tool assembly for applying compressive force pressure on a pre-form disposed between the confronting surfaces; an electrical power supply electrically connected to the at least one induction coil; means for applying force to one or both of the first and second tool assemblies so that the confronting surfaces will exert compressive force on a pre-form placed therebetween; and a controller programmed to control the electrical power supply and the means for applying force as follows: (a) controlling the electrical power supply to apply a varying low-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors until the smart susceptors are heated to a leveling temperature; (b) controlling the means for applying force to apply compressive force to the pre-form equal to a consolidation pressure at least during a time period subsequent to the time when the temperature of the smart susceptors reaches the leveling temperature; and (c) while consolidation pressure is being applied, controlling the electrical power supply to apply a pulsed high-strength magnetic field having a magnetic flux that passes through a surface of the pre-form. The strength of the high-strength magnetic field is greater than a peak strength of the low-strength magnetic field. The strength and pulse rate of the high-strength magnetic field are selected so that the crystallographic phase of the pre-form will rapidly oscillate at a substantially constant temperature. The pulsed high-strength magnetic field is applied sufficiently long that superplasticity of the pre-form is attained during phase oscillation. The strength of the high-strength magnetic field is greater than or equal to 0.5 tesla and the strength of the low-strength magnetic field is less than 0.1 tesla.

    [0014] Other aspects are disclosed and claimed below.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0015] Various embodiments will be hereinafter described with reference to drawings for the purpose of illustrating the foregoing and other aspects.

    FIG. 1 is a flowchart showing an induction process for consolidating metal alloys made from ferrous alloy powder in accordance with one embodiment.

    FIGS. 2A and 2B are predictions of a pseudobinary phase diagram for tested bainitic steel for both conventional equilibrium (FIG. 2A) and magnetically enhanced (using a 30-tesla magnetic field) equilibrium conditions. [These calculated phase diagrams were taken from the March 2005 Final Technical Report (ORNL/TM-2005/79) from Oak Ridge National Laboratory, entitled "Exploring Ultrahigh Magnetic Field Processing of Materials for Developing Customized Microstructures and Enhanced Performance" (Principal Investigator: Dr. Gerard M. Ludtka).]

    FIG. 3 is a diagram showing a sectional view of portions of a known apparatus, the apparatus comprising upper and lower tool assemblies with matched surfaces designed to consolidate and form a pre-form. The tool assemblies are shown in their retracted positions and the pre-form is shown in an uncompressed state.

    FIG. 4 is a diagram showing a sectional view of the apparatus depicted in FIG. 3, except that the tool assemblies are in their extended positions with the pre-form compressed therebetween.

    FIG. 5 is a diagram showing an end view of a portion of a lower tooling die in accordance with one embodiment.

    FIG. 6 is a diagram showing a sectional view of a portion of the lower tooling partially depicted in FIG. 5, the section being taken along line 6---6 seen in FIG. 5.

    FIG. 7 is a block diagram showing components of a computerized system for performing the consolidation/molding process disclosed herein.



    [0016] Reference will hereinafter be made to the drawings in which similar elements in different drawings bear the same reference numerals.

    DETAILED DESCRIPTION



    [0017] The following detailed disclosure describes a method and an apparatus for consolidating and molding/forming a pre-form made from ferrous-based or titanium-based metal alloy in powder form. However, the combination of inductive heating using smart susceptors followed by high-strength magnetic field processing (while consolidation pressure is applied) has application to other materials that undergo microstructural change in response to application of an oscillating high-strength magnetic field. At the magnetic field intensities disclosed herein, most materials will be magnetically saturated and the processing temperatures will drive many materials past their Curie temperature and into a non-magnetic state, but will still be affected by the high-strength magnetic field.

    [0018] The methodology disclosed below is suitable for fabricating bolts, pins, landing gear components, flap tracks, hydraulic cylinders and other components. The disclosed consolidation/molding process has particular application in the processing of ferrous-based and titanium-based alloys, but more generally can be applied to any material whose microstructure undergoes a crystallographic phase change at elevated temperatures, which phase change can be manipulated by application of a high-strength magnetic field.

    [0019] The specific method disclosed herein combines induction heating of a metal alloy powder pre-form followed by the imposition of a high-strength magnetic field while a consolidation pressure is applied. In cases where the powder is a ferrous-based alloy (hereinafter "ferrous alloy powder"), the system disclosed herein rapidly heats the pre-form to its ferrite-to-austenite phase change via inductive heating using smart susceptors. Then a consolidation pressure is applied to the pre-form. Thereafter, an intermittent high-strength magnetic field is applied by the induction coils to rapidly oscillate the crystallographic phase of the ferrous alloy powder pre-form to facilitate consolidation at a substantially constant temperature while consolidation pressure is being applied. Superplasticity is imparted via the phase oscillation. As a result, consolidation is rapid and complete even when a low consolidation pressure is applied.

    [0020] The use of a high-strength magnetic field is especially advantageous in the consolidation of pre-forms that have a thickness in excess of the thickness limit (e.g., about 4 inches) which attends consolidation using thermal oscillation techniques.

    [0021] FIG. 1 is a flowchart showing an induction process for consolidating metal alloys made from ferrous alloy powder in accordance with one embodiment. In step 100, ferrous alloy powder is cold compacted to create a semi-solid pre-form. In step 102, the pre-form is loaded in a laminated induction tool having a pair of mutually opposing smart susceptor tool faces. The pre-form is placed between the smart susceptors. The appropriate susceptor chemistry is selected to provide the desired initial leveling temperature at the surface of the tool during heating of the pre-form. The smart susceptors create the sheet metal shell that forms the face of the laminated induction tool.

    [0022] In step 104, the space inside the tool that surrounds the pre-form is flooded with an oxygen-free gas (e.g., hydrogen or nitrogen) to eliminate oxide formation during heating. In step 106, the smart susceptors are rapidly heated to a leveling temperature dictated by the smart susceptor chemistry by applying a varying (e.g., an alternating) low-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors. This low-strength magnetic field can be produced by supplying AC power to induction coils which are incorporated inside a pair of mutually opposing tooling dies (to be described in detail below with reference to FIGS. 5 and 6). 3. The peak (i.e., maximum) strength of the low-strength magnetic field is less than 0.1 tesla. Typical RMS values for the magnetic field strength during the induction heating portion of the process are in the range of 0.02 to 0.04 tesla, resulting in a peak field in the range of 0.03 and 0.06 tesla. Typical frequencies of oscillation would be in the range of 0.5 to 10 kHz (e.g., 1 kHz) for the induction heating portion of the process.

    [0023] Referring again to FIG. 1, in step 108, consolidation pressure is applied to the pre-form by actuators, which force the opposing tooling dies toward each other while the smart susceptors and the pre-form are sandwiched therebetween. The consolidation pressure is applied at least during a time period subsequent to the temperature of the smart susceptors reaching their leveling temperature. In step 110, an intermittent (i.e., pulsed) high-strength magnetic field (having a magnetic flux that passes through a surface of the pre-form) is applied to rapidly oscillate the crystallographic phase of the powder pre-form at a substantially constant temperature while the consolidation pressure is being applied. In accordance with one embodiment, the consolidation pressure is in a range of 5 to 20 MPa and the pulse rate of the high-strength magnetic field is multiple pulses per second. In accordance with claim 1, the strength of the high-strength magnetic field is greater than or equal to 0.5 tesla. The strength, pulse rate and number of high-strength magnetic field pulses applied are chosen such that the high-strength magnetic field changes the phase equilibrium diagram associated with the particular metallic alloy used to make the pre-form and produces rapid phase transformations that stimulate superplastic behavior for rapid and complete metallic alloy powder consolidation. Consolidation is rapid and complete even while using a low consolidation pressure.

    [0024] Following the application of the high-strength magnetic field, the pre-form can be quenched by supplying a cooling fluid to the back sides of the smart susceptors (step 112 in FIG. 1). After quenching, the heat treatment is completed by tempering the pre-form (step 114). Quenching and tempering are especially advantageous for ferrous-based components The heat-treated pre-form is then removed from the tool (step 116). The result is a powdered part having high strength properties.

    [0025] It is known that high-strength magnetic fields can dramatically affect the phase diagrams of carbon steel alloys. The March 2005 Final Technical Report ORNL/TM-2005/79 from Oak Ridge National Laboratory included predicted phase diagrams showing that high-strength (e.g., 30 tesla) magnetic fields raise phase transformation temperatures, increase the solubility of carbon in the various phases, and shift critical congruent points such as eutectoid chemistries and temperatures. FIGS. 2A and 2B (taken from the foregoing report) show calculated pseudobinary phase diagrams for tested bainitic steel for both conventional equilibrium (FIG. 2A) and magnetically enhanced equilibrium conditions (FIG. 2B). The strength of the applied magnetic field was 30 tesla. The calculation results depicted in FIGS. 2A and 2B demonstrate that the phase fields are shifted upward and to the right by the applied magnetic field, which means that the phase transformation temperatures are raised and that phase solubility for carbon is enhanced.

    [0026] The process disclosed herein employs the foregoing effect to rapidly change the crystallographic phase of powdered components during their consolidation at a substantially constant temperature. In accordance with one embodiment, a high-strength magnetic field is oscillated (i.e., pulsed) rapidly at a rate of multiple times per second while consolidation pressure is applied. In accordance with the disclosure, the magnetic field is oscillated between zero and a strength equal to at least 0.5 tesla, i.e., each magnetic pulse has an intensity of at least 0.5 tesla. The result is rapid change of the phase of the powdered component during consolidation. This change in phase imparts the superplasticity that enables rapid void-free consolidation. The utilization of metal alloy powder eliminates the constraints on alloying agents resulting from wrought processing requirements and enables higher alloying content. FIG. 2B shows the effect of a 30-tesla magnetic field, but smaller fields (even 0.5 tesla) would enable meaningful capabilities. This process enables the fabrication of near net-shaped components having improved properties from pre-forms having chemistries which are not possible using other fabrication methods.

    [0027] One known apparatus for matched tool consolidation of pre-forms using the process disclosed herein is partly depicted in FIGS. 3 and 4. FIG. 3 shows the apparatus in a pre-consolidation stage, while FIG. 4 shows the apparatus while consolidation is underway. The apparatus comprises a lower die frame 2, a lower tooling die 4 supported by the lower die frame 2 and having a first contoured die surface 6, an upper die frame 8, and an upper tooling die 10 supported by the upper die frame 8 and having a second contoured die surface 12 which is complementary to the first contoured die surface 6. The contoured die surfaces 6 and 12 may define a complex shape different than what is depicted in FIGS. 3 and 4. However, the novel means disclosed herein also have application when the die surfaces are planar. The die frames 2 and 8 act as mechanical constraints to keep the lower and upper tooling dies 4 and 10 together and to maintain the dimensional accuracy of the dies. The die frames 2 and 8 may be coupled to actuators (not shown in FIGS. 3 and 4), which move the dies toward and away from each other. In addition, one or more induction coils (not shown in FIGS. 3 and 4) may extend through each of the tooling dies 4 and 10 to form an induction heater for raising the temperature of the pre-form to at least its consolidation temperature. A thermal control system (not shown) may be connected to the induction coils.

    [0028] Still referring to FIGS. 3 and 4, the apparatus further comprises a lower susceptor 18 and an upper susceptor 20 made of electrically and thermally conductive material. The susceptors and the induction coils are positioned so that the susceptors can be heated by electromagnetic induction. The lower susceptor 18 may generally conform to the first contoured die surface 6 and the upper susceptor 20 may generally conform to the second contoured die surface 12. In some cases, it is preferred that the temperature at which a pre-form is consolidated should not exceed a certain temperature. To this end, susceptors 18 and 20 are preferably so-called "smart susceptors". A smart susceptor is constructed of a material, or materials, that generate heat efficiently until reaching a threshold (i.e., Curie) temperature. As portions of the smart susceptor reach the Curie temperature, the magnetic permeability of those portions falls to unity (i.e., the susceptor becomes paramagnetic) at the Curie temperature. This drop in magnetic permeability has two effects: it limits the generation of heat by those portions at the Curie temperature, and it shifts the magnetic flux to the lower temperature portions, causing those portions below the Curie temperature to more quickly heat up to the Curie temperature. Accordingly, thermal uniformity of the heated pre-form during the forming process can be achieved irrespective of the input power fed to the induction coils by judiciously selecting the material for the susceptor. In accordance with one embodiment, each susceptor is a layer or sheet of magnetically permeable material. Preferred magnetically permeable materials for constructing the susceptors include ferromagnetic materials that have an approximately 10-fold decrease in magnetic permeability when heated to a temperature higher than the Curie temperature. Such a large drop in permeability at the critical temperature promotes temperature control of the susceptor and, as a result, temperature control of the part being manufactured. Ferromagnetic materials include iron, cobalt, nickel, gadolinium and dysprosium, and alloys thereof.

    [0029] In accordance with one embodiment, the susceptors are formed of ferromagnetic materials including a combination of iron, nickel, chromium and/or cobalt, with the particular material composition chosen to produce a set temperature point to which the susceptor is heated in response to the electromagnetic energy generated by the induction heating coil. In this regard, the susceptor may be constructed such that the Curie point of the susceptor at which there is a transition between the ferromagnetic and paramagnetic phases of the material defines the set temperature point to which the susceptor is inductively heated. Moreover, the susceptor may be constructed such that the Curie point is greater, albeit typically only slightly greater, than the phase transformation temperature of the pre-form.

    [0030] The consolidation/molding apparatus shown in FIGS. 3 and 4 further comprises a cooling system 14 comprising respective sets of cooling conduits 16 (made, e.g., from SiN tubing) distributed in the tooling dies 4 and 10. Each set of coolant conduits 16 is coupled via respective manifolds to a source of cooling medium, which may liquid, gas or a gas/liquid mixture such as mist or aerosol. The cooling system can be activated in order to quench the back sides of the smart susceptors after high-strength magnetic field processing of the pre-form.

    [0031] In a typical implementation of a consolidation and molding process, the pre-form 22 is initially positioned between the upper and lower tooling dies of the stacked tooling apparatus, as shown in FIG. 3. Then the tooling dies 4 and 10 are moved toward each other by hydraulic, pneumatic or other actuators, until they reach their respective tool-closed positions, shown in FIG. 4. During the consolidation process, oscillating electrical power is supplied to the induction coils by a power supply (not shown). The supplied electrical power produces an oscillating magnetic flux which rapidly heats the susceptors 18 and 20 to their leveling temperature, which in turn heat the pre-form 22. During this process, the pre-form will be molded by the opposing contoured (or planar) surfaces of the susceptors 18 and 20.

    [0032] In accordance with the consolidation process disclosed herein, the induction coils are initially supplied with an alternating current to produce a varying low-strength magnetic field (e.g., less than 0.1 tesla) that heats the smart susceptors to their leveling temperature. Following application of the low-strength magnetic field, consolidation pressure is applied. While the consolidation pressure is being applied, the inductions coils are then supplied with an intermittent direct current to produce a pulsed high-strength magnetic field (e.g., at least 0.5 tesla) that causes the phase of the pre-form to oscillate rapidly, thereby imparting superplasticity to the pre-form material due to volumetric mismatch between the phases.

    [0033] After application of the high-strength magnetic field for a sufficiently long period of time, the cooling system 14 will be operated to apply a cooling medium to the tooling dies 4 and 10, thereby also cooling the susceptors 18 and 20 and the pre-form 22 therebetween. The pre-form 22 remains sandwiched between the susceptors for a predetermined period of time until quenching of the pre-form has been achieved. This allows the molded and consolidated pre-form 22 to retain the structural shape which is defined by the contoured surfaces of the susceptors 18 and 20 and a microstructure that provides enhanced strength properties. After consolidation and cooling, the actuators move the tool dies apart to allow removal of the consolidated product from the mold. The formed and cooled pre-form is removed from the stacked tooling apparatus without loss of dimensional accuracy when it is cooled at an appropriate property-enhancing rate.

    [0034] FIG. 5 is an end view of a portion of a lower tooling die 4 in accordance with one embodiment. The upper tooling die may have a similar construction. Each tooling die comprises a multiplicity of cavities 32, which may be mutually parallel. FIG. 5 shows only two such cavities 32, the upper portion of each cavity 32 having a portion of a respective turn of an induction coil 34 which passes through the uppermost portion of the cavity.

    [0035] The sectional view shown in FIG. 6 is taken along line 6---6 seen in FIG. 5 and passes through a cavity 32, but not through the portion of inductive coil 34 therein. One or more coils can be used. As the parts requiring fabrication get bigger, it may be necessary to break the coil into multiple coils connected in parallel in order to limit the voltage required by each coil. Without the smart susceptors, control of the current (and resulting temperature) to each parallel coil could become problematic. For the sake of simplicity, FIGS. 5 and 6 show a portion of a lower tooling die for which the corresponding portion of the attached susceptor is horizontal rather than angled.

    [0036] Still referring to FIGS. 5 and 6, the lower tooling die may comprise a lamination of alternating metal (e.g., an Inconel® austenitic nickel/chromium-based superalloy) plates 28 and dielectric spacers 30 which are trimmed to appropriate dimensions to form a plurality of parallel longitudinal cavities 32 in which the turns of one or more induction coils 34 reside. Each metal plate 28 may have a thickness in the range of about 0.0625 to about 0.5 inch. Air gaps 36 (see FIG. 6) may be provided between the upper portions of metal plates 28 to facilitate cooling of the susceptors. The stacked metal plates 28 may be attached to each other using clamps, fasteners and/or other suitable means (not shown) known to persons skilled in the art. The stacked metal plates 28 may be selected based on their electrical and thermal properties. The stacked metal plates 28 are typically formed of a strong and rigid material having a melting point well above the consolidation temperature of the pre-form. Additionally, the stacked metal plates 28 can be formed of a material characterized by a low thermal expansion, high thermal insulation, and a low electromagnetic absorption. The stacked metal sheets may be oriented in generally perpendicular relationship with respect to the respective contoured die surfaces. Each metal sheet may have a thickness of from about 1/16" to about 1/4", for example. An electrically insulating coating (not shown) may optionally be provided on each side of each stacked sheet to prevent flow of electrical current between the stacked metal sheets. The insulating coating may, for example, be a ceramic material. An air gap may be provided between adjacent stacked metal sheets to facilitate cooling of the dies, such as a gap of about 0.15".

    [0037] As best seen in FIG. 6, the smart susceptor 18 is attached directly to the metal plates 28 of the lower tooling die. (The smart susceptor 20 seen in FIG. 3 is likewise attached directly to the metal plates of the upper tooling die.) In accordance with one implementation, the metal plates 28 are made of austenitic (non-magnetic) stainless steel. The stacked metal plates 28 can have a space 36 between them to allow the quenching fluid (gas or liquid) to have direct impingement against the surface of the heated susceptor 18. This spacing is dictated by the thickness and strength of the smart susceptor surface shell and the consolidation pressures used. In addition, the susceptors do not require an electrical connection to one another. The metal plates 28 are interleaved with dielectric spacers 30 except near the susceptor and in places that are needed to allow the quenching medium to flow to the susceptor. The same considerations apply to the upper tooling die and the susceptor attached thereto.

    [0038] Preferably each induction coil 34 is fabricated from copper tubing which is lightly drawn. A lightly drawn condition of the tubing enables precision bending by numerically controlled bending machines. Numerically controlled bending of the tubes allows accurate placement of the tubing relative to the changing contours of the susceptors, thereby improving the degree to which the each susceptor is uniformly inductively coupled to the induction heater across the length and width of the susceptor. However, it should be understood that the compliant layer disclosed hereinafter can be employed also in cases wherein the susceptors are planar rather than concave/convex. Optionally the coils 34 also remove thermal energy by serving as a conduit for a coolant fluid, such as water. After being bent and installed, the coils include straight tubing sections connected by flexible tubing sections. The flexible tubing sections connect the straight tubing sections and also allow the dies to be separated. The accurate placement of the tubing of the induction coils 34 promotes uniformity in the amount of heat generated by the magnetic flux field and the amount of heat removed by flow of the coolant fluid.

    [0039] As disclosed in U.S. Patent No. 6,528,771, the induction coils 34 can be connected to a temperature control system that includes a power supply, a controlling element, a sensor and a fluid coolant supply preferably containing water (not shown). The power supply supplies an alternating current to the induction coils 34 which causes the coils to generate the electromagnetic flux field. The fluid coolant supply supplies water to the induction coils 34 for circulation through the coils and the removal of thermal energy from the dies. The sensor is capable of measuring the power supplied by the power supply. Alternatively, or in addition to measuring the power supply, the sensor may include a voltmeter that can measure the voltage drop across the induction coils 34. The controlling element receives the sensor output and uses the measurements in a feedback loop to adjust the power being supplied by the power supply. The controlling element can include hardware, software, firmware, or a combination thereof that is capable of using feedback to adjust the voltage output by the power supply.

    [0040] A computerized system for performing operations 106, 108, 110, 112, and 114 seen in FIG. 1 in accordance with a specified schedule is shown in FIG. 7. In this embodiment, an upper susceptor 20 is disposed below the upper tool die 10, while a lower susceptor 18 is disposed above the lower tool die 4. During the consolidation process, the upper and lower tool dies are moved toward each other by hydraulic actuators 46, which tool closing motion is indicated by arrows in FIG. 7. Electrical power is supplied to the induction coils (not shown) by an electrical power supply 48 in the manner previously described. After consolidation and cooling, the hydraulic actuators 46 move the tool dies apart to allow removal of the consolidated product from the mold. The hydraulic actuators 46 and the power supply 48 (and also the coolant supply, which is not shown in FIG. 9) operate under the control of a controller 44. The controller 44 may be a computer or processor comprising a processing unit (e.g., a central processing unit) and some form of memory (i.e., computer-readable medium) for storing a program which is readable by the processing unit.

    [0041] The computer program may include settable process parameters for controlling the operation of the electrical power supply and hydraulic actuators. For example, the controller 44 may be programmed to control the electrical power supply 48 and the hydraulic actuators 46 as follows: (a) controlling the electrical power supply 48 to apply a varying low-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors until the smart susceptors are heated to a leveling temperature; (b) controlling the hydraulic actuators 46 to apply compressive force to the pre-form equal to a consolidation pressure at least during a time period subsequent to the time when the temperature of the smart susceptors reaches the leveling temperature; and (c) while consolidation pressure is being applied, controlling the electrical power supply 48 to apply a pulsed high-strength magnetic field having a magnetic flux that passes through a surface of the pre-form (not shown in FIG. 7). The strength of the high-strength magnetic field is greater than a peak strength of the low-strength magnetic field. The strength and pulse rate of the high-strength magnetic field are selected so that the crystallographic phase of the pre-form will rapidly oscillate at a substantially constant temperature. The pulsed high-strength magnetic field is applied sufficiently long that superplasticity of the pre-form is attained during phase oscillation.


    Claims

    1. A method for consolidating a pre-form (22) made of powder, comprising:

    placing the pre-form (22) between smart susceptors (18, 20);

    heating the smart susceptors (18, 20) to a leveling temperature by applying a varying low-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors (18, 20);

    applying consolidation pressure to the pre-form (22) at least during a time period subsequent to the temperature of the smart susceptors (18, 20) reaching the leveling temperature; and

    while consolidation pressure is being applied, applying a pulsed high- strength magnetic field having a magnetic flux that passes through a surface of the pre-form (22),

    wherein a strength of the high-strength magnetic field is greater than a peak strength of the low strength magnetic field, the strength and pulse rate of the high-strength magnetic field are selected so that the crystallographic phase of the pre-form (22) will rapidly oscillate at a substantially constant temperature, and the pulsed high- strength magnetic field is applied sufficiently long that superplasticity of the pre-form (22) is attained during phase oscillation; and

    wherein the strength of the high-strength magnetic field is greater than or equal to 0.5 tesla and the strength of the low-strength magnetic field is less than 0.1 tesla.


     
    2. The method as recited in claim 1, wherein the pulse rate of the high-strength magnetic field is multiple pulses per second.
     
    3. The method as recited in claim 1, wherein the consolidation pressure is in a range of 5 to 20 MPa.
     
    4. The method as recited in claim 1, wherein the low-strength magnetic field alternates at a frequency that is in a range of 0.5 to 10 kHz.
     
    5. The method as recited in claim 1, wherein the powder comprises a ferrous-based or titanium-based alloy.
     
    6. The method as recited in claim 1, further comprising:

    cold compacting powder to create a pre-form (22); and

    flooding a space inside the induction tool assembly with an oxygen-free gas.


     
    7. The method as recited in claim 1, further comprising the following steps performed after the pulsed high-strength magnetic field application step and while the pre-form (22) remains between the first and second susceptors (18, 20):

    quenching the pre-form (22);

    tempering the quenched pre-form (22); and

    removing the pre-form (22) from the induction tool assembly.


     
    8. The method as recited in claim 1, wherein the pre-form (22) has a thickness in excess of the thickness limit for pre-forms consolidated using thermal oscillation.
     
    9. An apparatus for consolidating a pre-form (22) made of powder, comprising:

    first and second tool assemblies respectively comprising respective portions of at least one induction coil (34) and first and second smart susceptors (18, 20) having mutually confronting surfaces, said first tool assembly being movable relative to said second tool assembly for applying compressive force pressure on a pre-form (22) disposed between said confronting surfaces;

    an electrical power supply (48) electrically connected to said at least one induction coil (34);

    means for applying force to one or both of the first and second tool assemblies so that said confronting surfaces will exert compressive force on a pre-form (22) placed therebetween; and

    a controller (44) programmed to control said electrical power supply (48) and said means for applying force as follows:

    (a) controlling said electrical power supply (48) to apply a varying low-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors (18, 20) until the smart susceptors (18, 20) are heated to a leveling temperature;

    (b) controlling said means for applying force to apply compressive force to the pre-form (22) equal to a consolidation pressure at least during a time period subsequent to the time when the temperature of the smart susceptors (22) reaches the leveling temperature; and

    (c) while consolidation pressure is being applied, controlling said electrical power supply (48) to apply a pulsed high-strength magnetic field having a magnetic flux that passes through a surface of the pre-form (22),

    wherein a strength of the high-strength magnetic field is greater than a peak strength of the low-strengthmagnetic field, the strength and pulse rate of the high-strength magnetic field are selected so that the crystallographic phase of the pre-form (22) will rapidly oscillate at a substantially constant temperature, and the pulsed high-strength magnetic field is applied sufficiently long that superplasticity of the pre-form (22) is attained during phase oscillation; and

    wherein the strength of the high-strength magnetic field is greater than or equal to 0.5 tesla and the strength of the low-strength magnetic field is less than 0.1 tesla.


     


    Ansprüche

    1. Verfahren zur Konsolidierung eines Vorformlings (22), hergestellt aus Pulver, aufweisend:

    Anordnen des Vorformlings (22) zwischen intelligenten Suszeptoren (18, 20);

    Erwärmen der intelligenten Suszeptoren (18, 20) auf eine Ausgleichstemperatur durch Anwenden eines variierenden Magnetfelds niedriger Stärke mit einem magnetischen Fluss, der durch Oberflächen der intelligenten Suszeptoren (18, 20) verläuft;

    Anwenden von Konsolidierungsdruck auf den Vorformling (22), zumindest während eines Zeitraums, nachdem die Temperatur der intelligenten Suszeptoren (18, 20) die Ausgleichstemperatur erreicht hat; und

    während des Anwendens des Konsolidierungsdrucks, Anwenden eines gepulsten Magnetfelds hoher Stärke, das einen magnetischen Fluss aufweist, der durch die Oberfläche des Vorformlings (22) verläuft,

    wobei eine Stärke des Magnetfelds hoher Stärke größer als eine Spitzenstärke des Magnetfelds niedriger Stärke ist, die Stärke und Impulsrate des Magnetfelds hoher Stärke so ausgewählt sind, dass die kristallographische Phase des Vorformlings (22) bei einer im Wesentlichen konstanten Temperatur schnell oszilliert und das gepulste Magnetfeld hoher Stärke ausreichend lang angelegt wird, sodass Superplastizität des Vorformlings (22) während der Phasenoszillation erreicht wird; und

    wobei die Stärke des Magnetfelds hoher Stärke größer oder gleich 0,5 Tesla und die Stärke des Magnetfelds niedriger Stärke kleiner als 0,1 Tesla ist.


     
    2. Verfahren nach Anspruch 1, wobei die Impulsrate des Magnetfeldes hoher Stärke mehrere Impulse pro Sekunde beträgt.
     
    3. Verfahren nach Anspruch 1, wobei der Konsolidierungsdruck im Bereich von 5 bis 20 MPa liegt.
     
    4. Verfahren nach Anspruch 1, wobei das Magnetfeld niedriger Stärke bei einer Frequenz alterniert, die in einem Bereich von 0,5 bis 10 kHz liegt.
     
    5. Verfahren nach Anspruch 1, wobei das Pulver eine Eisenbasis- oder Titanbasislegierung aufweist.
     
    6. Verfahren nach Anspruch 1, ferner aufweisend:

    Kaltverdichtungspulver, um einen Vorformling (22) herzustellen; und

    Befluten eines Raums innerhalb der Induktionswerkzeuganordnung mit einem sauerstofffreien Gas.


     
    7. Verfahren nach Anspruch 1, ferner die folgenden Schritte aufweisend, die nach dem Schritt des Anlegens eines gepulsten Magnetfelds hoher Stärke und während der Vorformling (22) zwischen dem ersten und dem zweiten Suszeptor (18, 20) verbleibt, durchgeführt werden:

    Abschrecken des Vorformlings (22);

    Anlassen des abgeschreckten Vorformlings (22) und

    Entfernen des Vorformlings (22) aus der Induktionswerkzeuganordnung.


     
    8. Verfahren nach Anspruch 1, wobei der Vorformling (22) eine Dicke hat, die über der Dickengrenze für Vorformlinge liegt, die unter Verwendung thermischer Oszillation verfestigt werden.
     
    9. Vorrichtung zum Verfestigen eines aus Pulver hergestellten Vorformlings (22), aufweisend:

    eine erste bzw. zweite Werkzeuganordnung, die jeweils Abschnitte von mindestens einer Induktionsspule (34) und dem ersten und zweiten intelligenten Suszeptor (18, 20) mit einander zugewandten Oberflächen aufweisen, wobei die erste Werkzeuganordnung bezüglich der zweiten Werkzeuganordnung bewegbar ist, um Druckkraftdruck auf einen Vorformling (22) auszuüben, der zwischen den einander zugewandten Oberflächen angeordnet ist;

    eine elektrische Stromversorgung (48), die elektrisch mit mindestens einer Induktionsspule (34) verbunden ist;

    Mittel zum Aufbringen einer Kraft auf eine oder beide der ersten und zweiten Werkzeuganordnung, sodass die gegenüberliegenden Oberflächen eine Druckkraft auf einen Vorformling (22) ausüben, der dazwischen angeordnet ist; und

    eine Steuerung (44), die programmiert ist, die elektrische Stromversorgung (48) und die Mittel zum Aufbringen von Kraft wie folgt zu steuern:

    (a) Steuern der elektrischen Stromversorgung (48), um ein variierendes Magnetfeld niedriger Stärke mit einem magnetischen Fluss anzulegen, der durch Oberflächen der intelligenten Suszeptoren (18, 20) verläuft, bis die intelligenten Suszeptoren (18, 20) auf eine Ausgleichstemperatur erwärmt sind;

    (b) Steuern der Mittel zum Aufbringen einer Kraft zum Aufbringen einer Druckkraft auf den Vorformling (22), die gleich einem Konsolidierungsdruck ist, zumindest während eines Zeitraums, nachdem die Temperatur der intelligenten Suszeptoren (22) die Ausgleichstemperatur erreicht hat; und

    (c) Steuern der elektrischen Stromversorgung (48) während des Anwendens des Konsolidierungsdrucks, um ein gepulstes Magnetfeld hoher Stärke anzuwenden, das einen magnetischen Fluss hat, der durch die Oberfläche des Vorformlings (22) verläuft,

    wobei eine Stärke des Magnetfelds hoher Stärke größer als eine Spitzenstärke des Magnetfelds niedriger Stärke ist, die Stärke und Impulsrate des Magnetfelds hoher Stärke so ausgewählt werden, dass die kristallographische Phase des Vorformlings (22) bei einer im Wesentlichen konstanten Temperatur schnell oszilliert und das gepulste Magnetfeld hoher Stärke ausreichend lange angelegt wird, sodass Superplastizität des Vorformlings (22) während der Phasenoszillation erreicht wird; und

    wobei die Stärke des Magnetfelds hoher Stärke größer oder gleich 0,5 Tesla und die Stärke des Magnetfelds niedriger Stärke kleiner als 0,1 Tesla ist.


     


    Revendications

    1. Procédé de consolidation d'une préforme (22) constituée de poudre, comprenant :

    la mise en place de la préforme (22) entre des suscepteurs intelligents (18, 20) ;

    le chauffage des suscepteurs intelligents (18, 20) à une température de nivellement par application d'un champ magnétique de faible puissance variable ayant un flux magnétique qui passe à travers des surfaces des suscepteurs intelligents (18, 20) ;

    l'application d'une pression de consolidation sur la préforme (22) au moins pendant une période de temps suivant l'atteinte, par la température des suscepteurs intelligents (18, 20), de la température de nivellement ; et

    tandis qu'une pression de consolidation est appliquée, l'application d'un champ magnétique de puissance élevée pulsé ayant un flux magnétique qui passe à travers une surface de la préforme (22),

    dans lequel une puissance du champ magnétique de puissance élevée est supérieure à une puissance crête du champ magnétique de faible puissance, la puissance et le taux d'impulsions du champ magnétique de puissance élevée sont sélectionnés de telle sorte que la phase cristallographique de la préforme (22) oscillera rapidement à une température sensiblement constante, et le champ magnétique de puissance élevée pulsé est appliqué suffisamment longtemps pour que la superplasticité de la préforme (22) soit atteinte pendant une oscillation de phase ; et

    dans lequel la puissance du champ magnétique de puissance élevée est supérieure ou égale à 0,5 tesla et la puissance du champ magnétique de faible puissance est inférieure à 0,1 tesla.


     
    2. Procédé selon la revendication 1, dans lequel le taux d'impulsions du champ magnétique de puissance élevée est de multiples impulsions par seconde.
     
    3. Procédé selon la revendication 1, dans lequel la pression de consolidation est dans une plage de 5 à 20 MPa.
     
    4. Procédé selon la revendication 1, dans lequel le champ magnétique de faible puissance alterne à une fréquence qui est dans une plage de 0,5 à 10 kHz.
     
    5. Procédé selon la revendication 1, dans lequel la poudre comprend un alliage à base de fer ou à base de titane.
     
    6. Procédé selon la revendication 1, comprenant en outre :

    le compactage à froid de la poudre pour créer une préforme (22) ; et

    l'inondation d'un espace à l'intérieur de l'ensemble outil à induction avec un gaz exempt d'oxygène.


     
    7. Procédé selon la revendication 1, comprenant en outre les étapes suivantes effectuées après l'étape d'application de champ magnétique de puissance pulsé élevée et alors que la préforme (22) reste entre les premier et second suscepteurs (18, 20) :

    la trempe de la préforme (22) ;

    le revenu de la préforme (22) trempée ; et

    le retrait de la préforme (22) de l'ensemble d'outil à induction.


     
    8. Procédé selon la revendication 1, dans lequel la préforme (22) a une épaisseur dépassant la limite d'épaisseur pour les préformes consolidées au moyen d'une oscillation thermique.
     
    9. Appareil de consolidation d'une préforme (22) constituée de poudre, comprenant :

    des premier et second ensembles d'outils comprenant respectivement des parties respectives d'au moins une bobine à induction (34) et des premier et second suscepteurs intelligents (18, 20) ayant des surfaces se confrontant mutuellement, ledit premier ensemble d'outils étant mobile par rapport audit second ensemble d'outils pour application d'une pression de force compressive sur une préforme (22) disposée entre lesdites surfaces de confrontation ;

    une alimentation électrique (48) connectée électriquement à ladite au moins une bobine à induction (34) ;

    des moyens pour appliquer une force à un ou aux deux premier et second ensembles d'outils de sorte que lesdites surfaces de confrontation exerceront une force compressive sur une préforme (22) placée entre elles ; et

    une unité de commande (44) programmée pour commander ladite alimentation électrique (48) et lesdits moyens d'application de force de la manière suivante :

    (a) commande de ladite alimentation électrique (48) pour appliquer un champ magnétique de faible puissance variable ayant un flux magnétique qui passe à travers des surfaces des suscepteurs intelligents (18, 20) jusqu'à ce que les suscepteurs intelligents (18, 20) soient chauffés à une température de nivellement ;

    (b) commande desdits moyens d'application de force pour appliquer une force compressive sur une préforme (22) égale à une pression de consolidation au moins pendant une période de temps suivant le moment où la température des suscepteurs intelligents (22) atteint la température de nivellement ; et

    (c) tandis que la pression de consolidation est appliquée, commande de ladite alimentation électrique (48) pour appliquer un champ magnétique de puissance élevée pulsé ayant un flux magnétique qui passe à travers une surface de la préforme (22) ;

    dans lequel une puissance du champ magnétique de puissance élevée est supérieure à une puissance crête du champ magnétique de faible puissance, la puissance et et le taux d'impulsions du champ magnétique de puissance élevée sont sélectionnés de telle sorte que la phase cristallographique de la préforme (22) oscillera rapidement à une température sensiblement constante, et le champ magnétique de puissance élevée pulsé est appliqué suffisamment longtemps pour que la superplasticité de la préforme (22) soit atteinte pendant une oscillation de phase ; et

    dans lequel la puissance du champ magnétique de puissance élevée est supérieure ou égale à 0,5 tesla et la puissance du champ magnétique de faible puissance est inférieure à 0,1 tesla.


     




    Drawing





















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description