(19)
(11)EP 2 951 459 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 14703695.8

(22)Date of filing:  21.01.2014
(51)International Patent Classification (IPC): 
F16F 9/512(2006.01)
(86)International application number:
PCT/US2014/012246
(87)International publication number:
WO 2014/116557 (31.07.2014 Gazette  2014/31)

(54)

SHOCK ABSORBER WITH VARIABLE DAMPING PROFILE

STOSSDÄMPFER MIT VARIABLEM DÄMPFUNGSPROFIL

ABSORBEUR DE CHOCS PRÉSENTANT UN PROFIL D'AMORTISSEMENT VARIABLE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 22.01.2013 US 201361755051 P
28.05.2013 US 201361827900 P
01.08.2013 US 201361861115 P
20.01.2014 US 201414159135

(43)Date of publication of application:
09.12.2015 Bulletin 2015/50

(73)Proprietor: Kyntec Corporation
Cheektowaga, NY 14227 (US)

(72)Inventors:
  • SPYCHE, Gerald, J.
    Orchard Park, NY 14127 (US)
  • JOPP, Allan, J.
    Tonawanda, NY 14150 (US)
  • SCHOEN, Joseph
    Clarence, NY 14031 (US)
  • TAYLOR, Scott, J.
    Amherst, NY 14228 (US)

(74)Representative: Potter Clarkson 
The Belgrave Centre Talbot Street
Nottingham NG1 5GG
Nottingham NG1 5GG (GB)


(56)References cited: : 
EP-A1- 1 266 149
US-A- 3 840 097
US-A- 4 057 236
US-A- 4 059 175
US-A1- 2004 094 376
EP-A1- 1 266 149
US-A- 3 840 097
US-A- 4 059 175
US-A1- 2004 094 376
US-B2- 6 974 002
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    RELATED APPLICATIONS



    [0001] This application is a continuation of U.S. Application No. 14/159,135, filed January 20, 2014, which claims the benefit of U.S. Provisional Application No. 61/755,051, filed on January 22, 2013, U.S. Provisional Application No. 61/827,900, filed on May 28, 2013, and U.S. Provisional Application No. 61/861,115, filed on August 1, 2013.

    BACKGROUND OF THE INVENTION



    [0002] Most traditional non-adjustable shock absorbers can be designed to individually deliver progressive, square wave, dashpot, or self-compensating shock force vs. stroke profiles, but force a user to select between individual shock absorber units, each with a single damping profile. These traditional shock absorbers are, therefore, tuned to narrow performance bands within the specific shock force vs. stoke profile selected, and cannot compensate for changes in conditions of operation, including variations in load and impact velocity. Other traditional shock absorbers allow for adjustable damping only in a square wave or dashpot damping profile, which may not be well suited for specific fragile load applications. One such example shock absorber is described in U.S. Patent No. 5,598,904 and uses a spiral groove to both provide a flow path for oil as well as to cut off or meter fluid flow out of an orifice.

    [0003] US2004094376 A1 discloses a shock absorber includes a body having an outer cylinder which rotates relative to an inner cylinder to provide an adjustable damping force through fluid bypass.

    [0004] US3840097 A discloses an adjustable energy absorber including a housing having a ram slidably extending therefrom.

    [0005] US4059175 A discloses a shock absorber for providing a linear decelerating force to a machine part by means of a piston which forces fluid through a series of orifices formed by the coaction of holes in the piston cylinder and grooves formed on the internal diameter of a sleeve which fits over the cylinder.

    [0006] EP1266149 A1 discloses a hydraulic shock absorber (1) comprising a shock absorber body (16) wherein is provided a compression chamber in which slides a piston (3) and its rod for compressing a damping fluid which it draws with drawing means.

    [0007] US 4057236 discloses an adjustable energy absorber including a housing having a ram slidably extending therefrom. A first control sleeve divides the housing into a pair of fluid chambers, which sleeve has an axially extending row of openings to provide communication between the two chambers. A second control sleeve surrounds the first sleeve and is nonrotatably connected thereto.

    SUMMARY OF THE INVENTION



    [0008] The device disclosed herein, on the other hand, incorporates a diverse range of uses within a single shock absorber device. The device disclosed herein is a novel combination of interaction between various components (e.g., piston head, shock tube, cylinder end, external cylinder, and adjustment mechanism) within a single shock absorber. Interaction of this degree is not found elsewhere in industry, where the highest degree of complexity in previous devices is limited to interaction between, for example, three parts. When the components disclosed herein are considered together and designed as an interrelated assembly, the ability to incorporate such a diverse range of uses within a single device emerges.

    [0009] The invention is defined by the independent claims 1, 6 and 11. One example embodiment of the present invention is an energy absorption device that includes an external cylinder housing member, shock tube, piston, and accumulator. The external cylinder has a distal end, a proximal end, an interior wall, and a flow channel formed on the interior wall of the external cylinder. The flow channel substantially extends along the length of the external cylinder and is in fluid communication with the accumulator. The piston includes a head portion and a rod portion. The head portion is slidably retained within the shock tube, and the rod portion extends from the head portion through the proximal end of the external cylinder and engages with an external body in motion. The accumulator is contained within the external cylinder and collects fluid from the interior of the shock tube when the head portion of the piston moves toward the distal end of the external cylinder.

    [0010] The shock tube is rotatably secured within the external cylinder and has an interior surface, an exterior surface, and a group of inline holes along the long axis of the shock tube. Each hole passes from the interior surface of the shock tube to the exterior surface of the shock tube to allow fluid to pass therethrough. The shock tube also has a tapered patch on the exterior surface of the shock tube. The tapered patch starts at the location of the group of inline holes and is of a first depth into the exterior surface of the shock tube. The tapered patch ends at another location around the circumference of the shock tube and is of a second depth into the exterior surface of the shock tube. The second depth is less than the first depth, and the depth of the tapered patch tapers from the first depth to the second depth.

    [0011] Relative rotation between the shock tube and the external cylinder changes which part of the tapered patch interfaces the flow channel to adjustably change the rate of fluid flow out of the shock tube, through the group of inline holes, through the tapered patch, through the flow channel, and into the accumulator. Such rotation, thus, changes the dampening of the energy absorption device.

    [0012] In many embodiments, the tapered patch may extend substantially around the circumference of the shock tube (e.g., about 350 degrees around the circumference of the shock tube), the length of the tapered patch along the long axis of the shock tube can span the group of inline holes, and the width of the flow channel may be at least the width of the group of inline holes. In many embodiments, the first depth of the tapered patch may be substantially the thickness of the shock tube, and the second depth of the tapered patch may be zero or near-zero, for example. In many embodiments, the dampening of the energy absorption device is based on a projected area of the width and depth of the tapered patch at the point interfacing the flow channel at a given time.

    [0013] In some embodiments, the energy absorption device includes multiple groups of inline holes along the long axis of the shock tube, where each group of inline holes is positioned at different locations around the circumference of the shock tube. Such embodiments may include multiple tapered patches corresponding to the multiple groups of inline holes, where each tapered patch starts at the location of a corresponding group of inline holes. In embodiments with multiple groups of inline holes, each group of inline holes can provide a different type of damping (e.g., square wave damping, dashpot damping, progressive damping, or self-compensating damping). In embodiments with multiple groups of inline holes, the energy absorption device may include one or more flow channels. Embodiments with multiple groups of inline holes and one flow channel allow a user to select which tapered patch interfaces the flow channel. Alternatively, the energy absorption device may include multiple flow channels corresponding to the multiple groups of inline holes, where each flow channel is formed at a different location around the interior wall of the external cylinder.

    [0014] Another example embodiment of the present invention is an energy absorption device that includes an external cylinder housing member, shock tube, piston, and accumulator. The external cylinder has a distal end, a proximal end, an interior wall, and a flow channel formed on the interior wall of the external cylinder. The flow channel substantially extends along the length of the external cylinder and is in fluid communication with the accumulator. The piston includes a head portion and a rod portion. The head portion is slidably retained within the shock tube, and the rod portion extends from the head portion through the proximal end of the external cylinder and engages with an external body in motion. The accumulator is contained within the external cylinder and collects fluid from the interior of the shock tube when the head portion of the piston moves toward the distal end of the external cylinder.

    [0015] The shock tube is rotatably secured within the external cylinder and has an interior surface, an exterior surface, and a group of inline holes along the long axis of the shock tube. Each hole passes from the interior surface of the shock tube to the exterior surface of the shock tube to allow fluid to pass therethrough. The shock tube also has a group of tapered grooves, corresponding to the group of inline holes, on the exterior surface of the shock tube. Each tapered groove starts at the location of a corresponding hole and is of a first depth into the exterior surface of the shock tube. Each tapered groove ends at another location around the circumference of the shock tube and is of a second depth into the exterior surface of the shock tube. The second depth of the groove is less than the first depth of the groove, and the depth of the groove tapers from the first depth to the second depth.

    [0016] Relative rotation between the shock tube and the external cylinder changes which parts of the tapered grooves interface the flow channel to adjustably change the rate of fluid flow out of the shock tube, through the group of inline holes, through the tapered grooves, through the flow channel, and into the accumulator. Such rotation, thus, changes the dampening of the energy absorption device.

    [0017] In many embodiments, the tapered grooves may extend substantially around the circumference of the shock tube (e.g., about 350 degrees around the circumference of the shock tube). In other embodiments, the tapered grooves can end at different locations around the circumference of the shock tube. The width of the flow channel may be at least the width of the group of inline holes. In many embodiments, the first depth of the tapered grooves may be substantially the thickness of the shock tube, and the second depth of the tapered grooves may be zero or near-zero, for example. In many embodiments, the dampening of the energy absorption device is based on a cumulative projected area of the width and depth of the tapered grooves at the points interfacing the flow channel at a given time.

    [0018] In some embodiments, the energy absorption device includes multiple groups of inline holes along the long axis of the shock tube, where each group of inline holes is positioned at different locations around the circumference of the shock tube. Such embodiments may include multiple groups of tapered grooves corresponding to the multiple groups of inline holes, where each group of tapered grooves starts at the location of a corresponding group of inline holes. In embodiments with multiple groups of inline holes, each group of inline holes can provide a different type of damping (e.g., square wave damping, dashpot damping, progressive damping, or self-compensating damping). In embodiments with multiple groups of inline holes, the energy absorption device may include one or more flow channels. Embodiments with multiple groups of inline holes and one flow channel allow a user to select which group of tapered grooves interfaces the flow channel. Alternatively, the energy absorption device may include multiple flow channels corresponding to the multiple groups of tapered grooves, where each flow channel is formed at a different location around the interior wall of the external cylinder.

    [0019] Another example embodiment of the present invention is an energy absorption device that includes an external cylinder housing member, shock tube, piston, and accumulator. The external cylinder has a distal end, a proximal end, an interior wall, and a flow channel formed on the interior wall of the external cylinder. The flow channel substantially extends along the length of the external cylinder and is in fluid communication with the accumulator. The piston includes a head portion and a rod portion. The head portion is slidably retained within the shock tube, and the rod portion extends from the head portion through the proximal end of the external cylinder and engages with an external body in motion. The accumulator is contained within the external cylinder and collects fluid from the interior of the shock tube when the head portion of the piston moves toward the distal end of the external cylinder.

    [0020] The shock tube is rotatably secured within the external cylinder and has an interior surface, an exterior surface, and multiple groups of holes. Each group of holes are positioned at different locations around the circumference of the shock tube, and each hole passes from the interior surface of the shock tube to the exterior surface of the shock tube to allow fluid to pass therethrough.

    [0021] The flow channel has a width so as to align with one group of the multiple groups of holes at a time. Relative rotation between the shock tube and the external cylinder changes which group of holes are aligned with the flow channel to selectably change the rate of fluid flow out of the shock tube, through the holes aligned with the flow channel, through the flow channel, and into the accumulator. Such rotation, thus, changes the dampening of the energy absorption device.

    [0022] In many embodiments, each group of holes can provide a different type of damping (e.g., square wave damping, dashpot damping, progressive damping, or self-compensating damping). In some embodiments, the flow channel varies in width along its length, and in some embodiments the multiple groups of holes can be arranged in a spiral pattern around the circumference of the shock tube.

    [0023] In any of the disclosed embodiments, the energy absorption device may also include a cylinder end at the proximal end of the external cylinder, an end groove on the exterior surface of the cylinder end, a first orifice in the cylinder end, and a second orifice in the shock tube. The end groove starts at a first location on the exterior surface of the cylinder end and is of a first depth into the exterior surface of the cylinder end. The end groove ends at a second location around the circumference of the cylinder end and is of a second depth into the exterior surface of the cylinder end. The second depth of the end groove is less than the first depth of the end groove, and the depth of the end groove tapers from the first depth of the end groove to the second depth of the end groove. The first orifice (in the cylinder end) is in fluid communication with the interior of the shock tube and the end groove, and allows fluid to flow from the interior of the shock tube to the end groove when the head portion of the piston moves toward the proximal end of the external cylinder. The second orifice (in the shock tube) is in fluid communication with the end groove and the accumulator, and allows fluid to flow from the end groove to the accumulator when the head portion of the piston moves toward the proximal end of the external cylinder. Relative rotation between the shock tube and the external cylinder changes which part of the end groove interfaces the second orifice (in the shock tube) to adjustably change the rate of fluid flow out of the shock tube, through the first orifice (in the cylinder end), through the end groove, through the second orifice (in the shock tube), and into the accumulator. Such rotation changes the dampening of the energy absorption device.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0024] The foregoing will be apparent from the following more particular description of example embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of the present invention.

    FIG. 1 is a cross-section schematic drawing of an energy absorption device according to an example embodiment of the invention.

    FIG. 2 is a cross-section schematic drawing of an energy absorption device according to an example embodiment of the invention.

    FIGS. 3A and 3B are schematic drawings of a shock tube with tapered grooves according to an example embodiment of the invention.

    FIGS. 4A-4D are schematic drawings of a shock tube with tapered grooves according to an example embodiment of the invention.

    FIGS. 5A and 5B are schematic drawings of shock tubes with at least one tapered patch according to example embodiments of the invention.

    FIG. 6 is a cross-section schematic drawing of an energy absorption device with a tapered groove on a cylinder end used for damping adjustment according to an example embodiment of the invention.


    DETAILED DESCRIPTION OF THE INVENTION



    [0025] The device disclosed herein is a novel combination of interaction between features of various components (e.g., piston head, shock tube, cylinder end, external cylinder, and adjustment mechanism) within a single shock absorber. Designing and developing such parts to interact together and behave in a predictable way is neither obvious nor easy. Nonlinearities in flow, flow paths, interaction effects of multiple flow paths, and deliberate engineering of flow channels to be either active or inactive depending on customer orientation of the device has not been accomplished by others. The device disclosed herein combines into a single shock absorber the ability to select the most advantageous shock force vs. stroke damping profile for a given application, and to combine into a single device the ability to select damping characteristics previously unable to be combined in a single device. This allows a user of the shock absorber to make a single, simplified product selection decision, and to then adjust the device to deliver the exact performance that the user desires for a specific application of the shock absorber.

    [0026] Fig. 1 is a cross-section schematic drawing of an energy absorption device 100 according to an example embodiment of the invention. Fig. 1 shows example components of the device 100 in alignment with each other. The embodiment shown in Fig. 1 includes a piston head 115 that moves axially under load internal to an internal cylinder (shock tube) 110. The shock tube 110 is positioned internal to a second cylinder (external cylinder) 105 and connected to a component at the far end of the external cylinder, a distal cylinder end 135. The shock tube 110 and cylinder end 135 are a close mechanical fit between the outside diameter of the shock tube 110 and the inside diameter of the external cylinder 135, but are able to be rotated through an externally located adjustment component (e.g., adjustment knob) 150. The inside diameter of the external cylinder 105 is round, but is interrupted by a flow channel 140 running axially down one side of the device 100. This flow channel 140 may be of constant area or may be configured to be variable in size vs. its position on the external cylinder's axis.

    [0027] The shock tube 110 can be configured with multiple arrangements of holes (groups of holes) 145, with each group being restricted to an area on the shock tube 110 in approximately the same size as the flow channel 145 on the inside diameter surface of the external cylinder 105. Each group of holes 145 may be called an "orifice pattern" and, along with the flow channel 145, determines the effective damping performance of the device 100. Multiple orifice patterns may be incorporated into a single shock tube, with each pattern being tuned to deliver optimum performance under different input conditions. A user can select which pattern to activate by rotating the shock tube 100 relative to the external cylinder 105. In some embodiments, the orifice patterns 145 can be constructed in a spiral configuration, with the configuration being designed in concert with the flow channel 145 in the inside diameter wall of the external cylinder 105. This configuration effectively delivers square wave damping in the device, which a user can adjust in a manner similar to traditional adjustable shock absorbers.

    [0028] The ability to combine dashpot, square wave, and progressive wave, and self-compensating damping in a single device 100 is itself unprecedented, as is the ability to deliver sublinear damping force vs. input velocity performance in an adjustable device. It allows a user of the device 100 to make a much simpler sizing calculation and decision, and provides the user with the ability to easily and simply adjust the shock absorber 100 to a specific application, for example, with the turn of an adjustment knob 150. It also reduces product variation in the manufacturing process, providing economy of scale in manufacturing quantities at much lower levels than those afforded by traditional shock absorber models.

    [0029] Fig. 2 is a cross-section schematic drawing of an energy absorption device 200 according to an example embodiment of the invention. Fig. 2 shows an example flow channel 240 on the inner diameter of the external cylinder 205 in more detail, as well as a shock tube 210 containing three orifice patterns 245. The illustrated example embodiment shows that because the flow channel 240 may only align with one of the three orifice patters 245 at a time, only one of the orifice patterns 245 may be active at any given time, allowing the example device 200 shown in Fig. 2 to act as three separate shock absorbers in one device.

    [0030] Figs. 3A and 3B are schematic drawings of a shock tube 310 with tapered grooves 320 according to an example embodiment of the invention. The example shock tube 310 shown in Figs. 3A and 3B includes on the outside diameter of the shock tube 310 at least one circumferential tapered groove 320. The tapered groove(s) 320 at one end is of a certain depth in the shock tube 310 and tapers to a lesser depth at the other end of the groove(s) 320. For example, the tapered groove 320 may extend about 350 degrees around the outside diameter of the shock tube 310, and may start at a certain depth at one end and taper to a depth of zero at the other end of the groove 320, about 350 degrees from where the groove 320 started. A slot cut axially along the length of the external cylinder (not shown) interfaces the groove 320 to allow for oil/fluid to flow through the orifices 330, groove 320, and slot (not shown). The slot is similar to that of the flow channel 240 shown in Fig. 2, but may be much narrower.

    [0031] When the slot of the external cylinder is aligned with a certain part of the tapered groove 320, the tapered groove 320 presents a resulting projected area and flow path for the oil/fluid of the device to travel. The projected area is based on the width and depth of the groove 320 and the width of the slot. When the shock tube 310 is rotated relative to the external cylinder, the slot of the external cylinder is aligned with different parts of the tapered groove 320. As the depth of the groove 320 changes, due to rotation of the shock tube 310 relative to the external cylinder, so does the projected area through which the oil/fluid may travel. By rotating the shock tube 310 relative to the external cylinder and, thus, changing the projected area, the shock absorber damping can be adjusted. In some embodiments, various orifices 330 of the shock tube may have different start and end points along the groove 320 to achieve variable rotational flow cut off channels. In further or other embodiments, the shock tube 310 may include multiple tapered grooves 320 that start and end at differing points around the shock tube 310.

    [0032] The example shock 310 tube of Figs. 3A and 3B is suitable for use in an energy absorption device that includes an external cylinder housing member, shock tube 310, piston, and accumulator, where the shock tube 310 is rotatably secured within the external cylinder and has an interior surface, an exterior surface, and a group of inline holes 330 along the long axis of the shock tube 310. In such a device, each hole 330 passes from the interior surface of the shock tube 310 to the exterior surface of the shock tube 310 to allow fluid to pass therethrough. The shock tube 310 also has a group of tapered grooves 320, corresponding to the group of inline holes 330, on the exterior surface of the shock tube 310. Each tapered groove 320 starts at the location of a corresponding hole 330 and is of a first depth into the exterior surface of the shock tube. Each tapered groove 320 ends at another location around the circumference of the shock tube 310 and is of a second depth into the exterior surface of the shock tube 310. The second depth of the groove 320 is less than the first depth of the groove 320, and the depth of the groove 320 tapers from the first depth to the second depth.

    [0033] In such an energy absorption device, the external cylinder has a distal end, a proximal end, an interior wall, and a flow channel formed on the interior wall of the external cylinder (not shown). The flow channel substantially extends along the length of the external cylinder and is in fluid communication with the accumulator. The piston includes a head portion and a rod portion. The head portion is slidably retained within the shock tube, and the rod portion extends from the head portion through the proximal end of the external cylinder and engages with an external body in motion. The accumulator is contained within the external cylinder and collects fluid from the interior of the shock tube when the head portion of the piston moves toward the distal end of the external cylinder. Relative rotation between the shock tube 310 and the external cylinder changes which parts of the tapered grooves 320 interface the flow channel to adjustably change the rate of fluid flow out of the shock tube, through the group of inline holes 330, through the tapered grooves 320, through the flow channel, and into the accumulator. Such rotation, thus, changes the dampening of the energy absorption device.

    [0034] Figs. 4A-4D are schematic drawings of a shock tube 410 with tapered grooves 420 according to an example embodiment of the invention. Figs. 4A-4D show various views of an example shock tube 410 having multiple circumferential tapered grooves 420.

    [0035] Figs. 5A and 5B are schematic drawings of example shock tubes 510, 512 with at least one tapered patch 520 or 525, 535 according to example embodiments of the invention. The example shock tube 510 shown in Figs. 5A, for example, includes on the outside diameter of the shock tube 510 a circumferential tapered patch 520. The tapered patch 520 at one end is of a certain depth 522 in the shock tube 510 and tapers to a lesser depth 524 at the other end of the patch 520. For example, the tapered patch 520 may extend about 350 degrees around the outside diameter of the shock tube 510, and may start at a certain depth 522 at one end and taper to a depth of zero 524 at the other end of the patch 520, about 350 degrees from where the patch 520 started. A slot cut axially along the length of the external cylinder (not shown) interfaces the patch 520 to allow for oil/fluid to flow through the orifices 530, patch 520, and slot (not shown). The slot is similar to that of the flow channel 240 shown in Fig. 2, but may be much narrower. In many embodiments, the patch 520 starts at and spans the length of the shock tube's orifice pattern 530. In some embodiments, as shown in Fig. 5B, for example, a shock tube 512 may include multiple tapered patches 525, 535 that start and end at differing points 523, 526, 532, 534 around the shock tube 512, and the external cylinder may include multiple corresponding slots (not shown).

    [0036] Referring to Fig. 5A, for example, when the slot of the external cylinder is aligned with a certain part of the tapered patch 520, the tapered patch 520 presents a resulting projected area and flow path for the oil/fluid of the device to travel. The projected area is based on the width and depth of the patch 520 and the width of the slot. When the shock tube 510 is rotated relative to the external cylinder, the slot of the external cylinder is aligned with different parts of the tapered patch 520. As the depth of the patch 520 changes, due to rotation of the shock tube 510 relative to the external cylinder, so does the projected area through which the oil/fluid may travel. By rotating the shock tube 510 relative to the external cylinder and, thus, changing the projected area, the shock absorber damping can be adjusted.

    [0037] The example shock tubes 510, 512 of Figs. 5A and 5B are suitable for use in an energy absorption device that includes an external cylinder housing member, shock tube, piston, and accumulator, where the shock tube 510, in the case of the shock tube of Fig. 5A, for example, is rotatably secured within the external cylinder and has an interior surface, an exterior surface, and a group of inline holes 530 along the long axis of the shock tube 510. In such a device, each hole 530 passes from the interior surface of the shock tube 510 to the exterior surface of the shock tube 510 to allow fluid to pass therethrough. The shock tube 510 also has a tapered patch 520 on the exterior surface of the shock tube 510. The tapered patch 520 starts at the location of the group of inline holes 530 and is of a first depth 522 into the exterior surface of the shock tube 510. The tapered patch 520 ends at another location around the circumference of the shock tube 510 and is of a second depth 524 into the exterior surface of the shock tube 510. The second depth 524 is less than the first depth 522, and the depth of the tapered patch 520 tapers from the first depth 522 to the second depth 524.

    [0038] In such an energy absorption device, the external cylinder has a distal end, a proximal end, an interior wall, and a flow channel formed on the interior wall of the external cylinder (not shown). The flow channel substantially extends along the length of the external cylinder and is in fluid communication with the accumulator. The piston includes a head portion and a rod portion. The head portion is slidably retained within the shock tube, and the rod portion extends from the head portion through the proximal end of the external cylinder and engages with an external body in motion. The accumulator is contained within the external cylinder and collects fluid from the interior of the shock tube when the head portion of the piston moves toward the distal end of the external cylinder. Relative rotation between the shock tube 510 and the external cylinder changes which part of the tapered patch 520 interfaces the flow channel to adjustably change the rate of fluid flow out of the shock tube, through the group of inline holes 530, through the tapered patch, through the flow channel, and into the accumulator. Such rotation, thus, changes the dampening of the energy absorption device.

    [0039] An example advantage of embodiments using the disclosed tapered patch is that machining costs can be reduced. Rather than manufacturing a shock tube with several close tolerance machine cuts, inclusion of the patch allows for a faster, simpler large cut that is less expensive to manufacture.

    [0040] Fig. 6 is a cross-section schematic drawing of an energy absorption device 600 with a tapered groove (end groove) 640 on a cylinder end 630 used for damping adjustment according to an example embodiment of the invention. Such a groove 640 on a cylinder end 630 can be either in combination with an orifice pattern (not shown) through the shock tube 610 wall, or alone. An orifice being through the cylinder end 630, by virtue of its size and flow characteristics, yields unique damping characteristics as compared to an orifice being through the shock tube 610 wall, including dashpot damping and the potential to deliver damping and shock force proportional to a sublinear power of an impact velocity.

    [0041] For example, in any of the embodiments disclosed above, the energy absorption device may include a cylinder end 630 at the proximal end of the external cylinder 605, an end groove 640 on the exterior surface of the cylinder end 630, a first orifice 635 in the cylinder end 630, and a second orifice 645 in the shock tube 610. The end groove 640 starts at a first location on the exterior surface of the cylinder end 630 and is of a first depth into the exterior surface of the cylinder end 630. The end groove 640 ends at a second location around the circumference of the cylinder end 630 and is of a second depth into the exterior surface of the cylinder end 630. The second depth of the end groove 640 is less than the first depth of the end groove 640, and the depth of the end groove 640 tapers from the first depth of the end groove 640 to the second depth of the end groove 640. The first orifice 635 (in the cylinder end) is in fluid communication with the interior of the shock tube 610 and the end groove 640, and allows fluid to flow from the interior of the shock tube 610 to the end groove 640 when the head portion 615 of the piston moves toward the proximal end of the external cylinder 605. The second orifice 645 (in the shock tube) is in fluid communication with the end groove 640 and the accumulator 625, and allows fluid to flow from the end groove 640 to the accumulator 625 when the head portion 615 of the piston moves toward the proximal end of the external cylinder 605. Relative rotation between the shock tube 610 and the external cylinder 605 changes which part of the end groove 640 interfaces the second orifice 645 (in the shock tube) to adjustably change the rate of fluid flow out of the shock tube 610, through the first orifice 635 (in the cylinder end), through the end groove 640, through the second orifice 645 (in the shock tube), and into the accumulator 625. Such rotation changes the dampening of the energy absorption device.

    [0042] As an alternative to the end groove being on the exterior surface of the cylinder end 605, the end groove can be on the interior surface of the shock tube 610, or located in the exterior surface of the shock tube 610. In addition, the end groove may be located at the opposite end of the device than the accumulator 625 (e.g., at the distal end of the embodiment shown in Fig. 6), and in such embodiments, an axial groove may be cut on the outside diameter of the shock tube 610 to provide a flow path to the accumulator area 625.

    [0043] While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.


    Claims

    1. An energy absorption device (100) comprising:

    an external cylinder housing member (105) having a distal end (135), a proximal end, and an interior wall;

    a shock tube (110; 510) being rotatably secured within the external cylinder (105) and having:

    an interior surface;

    an exterior surface;

    a group of inline holes (530) along the long axis of the shock tube (110; 510), each hole passing from the interior surface of the shock tube to the exterior surface of the shock tube to allow fluid to pass therethrough; and

    a tapered patch (520, 525, 535) on the exterior surface of the shock tube (110; 510), the length of the tapered patch (520, 525, 535) along the long axis of the shock tube (510) spans the group of inline holes (530), the tapered patch starting at the location of the group of inline holes (530) and being of a first depth (522) into the exterior surface of the shock tube (110; 510), and ending at another location around the circumference of the shock tube and being of a second depth (524) into the exterior surface of the shock tube (110; 510), the second depth (524) being less than the first depth (522), and the depth of the tapered patch tapering from the first depth (522) to the second depth (524);

    a piston including a head portion (115) and a rod portion, the head portion (115) being slidably retained within the shock tube (110; 510), and the rod portion extending from the head portion (115) through the proximal end of the external cylinder and configured to be engaged with an external body in motion;

    an accumulator (625), contained within the external cylinder (105), to collect fluid from the interior of the shock tube (110; 510) when the head portion (115) of the piston moves toward the distal end (135) of the external cylinder (105); and

    a flow channel (140) formed on the interior wall of the external cylinder (105), substantially extending along the length of the external cylinder (105), and in fluid communication with the accumulator (625), relative rotation between the shock tube (110; 510) and the external cylinder (105) changing which part of the tapered patch (520, 525, 535) interfaces the flow channel (140) to adjustably change the rate of fluid flow out of the shock tube (110; 510), through the group of inline holes (530), through the tapered patch (520, 525, 535), through the flow channel (140), and into the accumulator (625), said rotation changing dampening of the energy absorption device (100).


     
    2. An energy absorption device as in claim 1 wherein the tapered patch (520) extends substantially around the circumference of the shock tube (510).
     
    3. An energy absorption device as in claim 1 wherein the width of the flow channel (140) is at least the width of the group of inline holes (530).
     
    4. An energy absorption device as in claim 1 further comprising:

    multiple groups of inline holes (530) along the long axis of the shock tube (510), each group of inline holes (530) being positioned at different locations around the circumference of the shocktube (510); and

    multiple tapered patches (525, 535) corresponding to the multiple groups of inline holes (530), each tapered patch (525, 535) starting at the location of a corresponding group of inline holes (530).


     
    5. An energy absorption device as in claim 4 further comprising:
    multiple flow channels corresponding to the multiple groups of inline holes (530), each flow channel being formed at different locations around the interior wall of the external cylinder.
     
    6. An energy absorption device (100) comprising:

    an external cylinder housing member (105) having a distal end (135), a proximal end, and an interior wall;

    a shock tube (110; 310) being rotatably secured within the external cylinder (105) and having:

    an interior surface;

    an exterior surface;

    a group of inline holes (330) along the long axis of the shock tube (110; 310), each hole passing from the interior surface of the shock tube to the exterior surface of the shock tube to allow fluid to pass therethrough; and

    a group of tapered grooves (320), corresponding to the group of inline holes (330), on the exterior surface of the shock tube (110; 310), each tapered groove (320) starting at the location of a corresponding hole (330) and being of a first depth into the exterior surface of the shock tube, and ending at another location around the circumference of the shock tube and being of a second depth into the exterior surface of the shock tube, the second depth of the groove being less than the first depth of the groove, and the depth of the groove tapering from the first depth to the second depth, wherein the tapered grooves (320) extend substantially around the circumference of the shock tube (110; 310);

    a piston including a head portion (115) and a rod portion, the head portion (115) being slidably retained within the shock tube (110; 310), and the rod portion extending from the head portion (115) through the proximal end of the external cylinder and configured to be engaged with an external body in motion;

    an accumulator (625), contained within the external cylinder (105), to collect fluid from the interior of the shock tube (110; 310) when the head portion (115) of the piston moves toward the distal end (135) of the external cylinder (105); and

    a flow channel (140) formed on the interior wall of the external cylinder (105), substantially extending along the length of the external cylinder (105), and in fluid communication with the accumulator (625), relative rotation between the shock tube (110; 310) and the external cylinder (105) changing which parts of the tapered grooves (320) interface the flow channel (140) to adjustably change the rate of fluid flow out of the shock tube (110; 310), through the group of inline holes (330), through the tapered grooves (320), through the flow channel (140), and into the accumulator (625), said rotation changing dampening of the energy absorption device.


     
    7. An energy absorption device as in claim 6 wherein the width of the flow channel (140) is at least the width of the group of inline holes (330).
     
    8. An energy absorption device as in claim 6 wherein the tapered grooves (320) end at different locations around the circumference of the shock tube (110; 310).
     
    9. An energy absorption device as in claim 6 further comprising:

    multiple groups of inline holes along the long axis of the shock tube, each group of inline holes being positioned at different locations around the circumference of the shocktube; and

    multiple groups of tapered grooves corresponding to the multiple groups of inline holes, each group of tapered grooves starting at the locations of a corresponding group of inline holes.


     
    10. An energy absorption device as in claim 6 further comprising:

    a cylinder end at the proximal end of the external cylinder;

    an end groove (640) on the exterior surface of the cylinder end, the end groove (640) starting at a first location on the exterior surface of the cylinder end and being of a first depth into the exterior surface of the cylinder end, and ending at a second location around the circumference of the cylinder end and being of a second depth into the exterior surface of the cylinder end, the second depth of the end groove (640) being less than the first depth of the end groove (640), and the depth of the end groove (640) tapering from the first depth of the end groove to the second depth of the end groove (640);

    a first orifice (635) in the cylinder end, the first orifice (635) being in fluid communication with the interior of the shock tube (610) and the end groove (640), and allowing fluid to flow from the interior of the shock tube (610) to the end groove (640) when the head portion (615) of the piston moves toward the proximal end of the external cylinder;

    a second orifice (645) in the shock tube (610), the second orifice (645) being in fluid communication with the end groove (640) and the accumulator (625), and allowing fluid to flow from the end groove (640) to the accumulator (625) when the head portion (615) of the piston moves toward the proximal end of the external cylinder, relative rotation between the shock tube (610) and the external cylinder changing which part of the end groove (640) interfaces the second orifice (645) to adjustably change the rate of fluid flow out of the shock tube (610), through the first orifice (635), through the end groove (640), through the second orifice (645), and into the accumulator (625), said rotation changing dampening of the energy absorption device.


     
    11. An energy absorption device (100) comprising:

    an external cylinder housing member (205) having a distal end (135), a proximal end, and an interior wall;

    a shock tube (210) being rotatably secured within the external cylinder (205) and having an interior surface, an exterior surface, and multiple groups of inline holes (245) arranged along the long axis of the shock tube, each group of holes (245) being positioned at different locations around the circumference of the shock tube (210), each hole (245) passing from the interior surface of the shock tube (210) to the exterior surface of the shock tube (210) to allow fluid to pass therethrough;

    a piston including a head portion (115) and a rod portion, the head portion (115) being slidably retained within the shock tube (210), and the rod portion extending from the head portion (115) through the proximal end of the external cylinder (205) and configured to be engaged with an external body in motion;

    an accumulator (625), contained within the external cylinder (205), to collect fluid from the interior of the shock tube (210) when the head portion (115) of the piston moves toward the distal end (135) of the external cylinder; and

    a flow channel (240) formed on the interior wall of the external cylinder (205), substantially extending along the length of the external cylinder (205), and in fluid communication with the accumulator (625), the flow channel (240) having a width configured to align with one group of the multiple groups of inline holes (245), relative rotation between the shock tube (210) and the external cylinder (205) changing which hole in a group of inline holes (245) is aligned with the flow channel (240) to selectably change the rate of fluid flow out of the shock tube (210), through the inline holes (245) aligned with the flow channel (240), through the flow channel (240), and into the accumulator (625), said rotation changing dampening of the energy absorption device.


     
    12. An energy absorption device as in claim 11 wherein the multiple groups of inline holes (245) are arranged in a spiral pattern around the circumference of the shock tube (210).
     
    13. An energy absorption device as in claim 11 wherein each group of inline holes (245) is configured to provide a different type of damping selected from square wave damping, dashpot damping, progressive damping, and self-compensating damping.
     


    Ansprüche

    1. Energieabsorptionsvorrichtung (100), umfassend:

    ein Außenzylindergehäuseelement (105) mit einem distalen Ende (135), einem proximalen Ende und einer Innenwand;

    ein Stoßdämpferrohr (110; 510), das drehbar in dem Außenzylinder (105) befestigt ist und Folgendes aufweist:

    eine Innenoberfläche;

    eine Außenoberfläche;

    eine Gruppe von Inline-Löchern (530) entlang der Längsachse des Stoßdämpferrohrs (110; 510), wobei jedes Loch von der Innenoberfläche des Stoßdämpferrohrs zur Außenoberfläche des Stoßdämpferrohrs verläuft, damit Flüssigkeit hindurchtreten kann; und

    einen sich verjüngenden Bereich (520, 525, 535) auf der Außenoberfläche des Stoßdämpferrohrs (110; 510), wobei die Länge des sich verjüngenden Bereiches (520, 525, 535) entlang der Längsachse des Stoßdämpferrohrs (510) die Gruppe von Inline-Löchern (530) überspannt, wobei der sich verjüngende Bereich an der Stelle der Gruppe von Inline-Löchern (530) beginnt und eine erste Tiefe (522) in der Außenoberfläche des Stoßdämpferrohrs (110; 510) aufweist, und an einer anderen Stelle um den Umfang des Stoßdämpferrohrs endet und eine zweite Tiefe (524) in die Außenoberfläche des Stoßdämpferrohrs (110; 510) aufweist, wobei die zweite Tiefe (524) geringer als die erste Tiefe (522) ist und die Tiefe des sich verjüngenden Bereiches sich von der ersten Tiefe (522) zur zweiten Tiefe (524) verjüngt;

    einen Kolben einschießlich einem Kopfabschnitt (115) und einem Stangenabschnitt, wobei der Kopfabschnitt (115) verschiebbar in dem Stoßdämpferrohr (110; 510) gehalten wird, und der Stangenabschnitt sich vom Kopfabschnitt (115) durch das proximale Ende von des äußeren Zylinders erstreckt und konfiguriert ist, um mit einem in Bewegung befindlichen äußeren Körper in Eingriff zu stehen;

    einen Druckspeicher (625), der in dem Außenzylinder (105) enthalten ist, um Flüssigkeit aus dem Inneren des Stoßdämpferrohrs (110; 510) zu sammeln, wenn sich der Kopfabschnitt (115) des Kolbens in Richtung des distalen Endes (135) des Außenzylinders (105) bewegt; und

    einen Strömungskanal (140), der an der Innenwand des Außenzylinders (105) ausgebildet ist, sich im Wesentlichen entlang der Länge des Außenzylinders (105) erstreckt und in Fluidverbindung mit dem Druckspeicher (625) ist, wobei eine relative Drehung zwischen dem Stoßdämpferrohr (110; 510) und dem Außenzylinder (105) ändert, welcher Teil des sich verjüngenden Bereiches (520, 525, 535) mit dem Strömungskanal (140) in Kontakt kommt, um die Geschwindigkeit des Fluidstroms aus dem Stoßdämpferrohr (110; 510) durch die Gruppe von Inline-Löchern (530), durch den sich verjüngenden Bereich (520, 525, 535), durch den Strömungskanal (140) und in den Druckspeicher (625) hinein einstellbar zu verändern, wobei die Drehung die Dämpfung der Energieabsorptionsvorrichtung (100) ändert.


     
    2. Energieabsorptionsvorrichtung nach Anspruch 1, wobei sich der sich verjüngende Bereich (520) im Wesentlichen um den Umfang des Stoßdämpferrohres erstreckt (510).
     
    3. Energieabsorptionsvorrichtung nach Anspruch 1, wobei die Breite des Strömungskanals (140) mindestens die Breite der Gruppe von Inline-Löchern (530) ist.
     
    4. Energieabsorptionsvorrichtung nach Anspruch 1, ferner umfassend:

    mehrere Gruppen von Inline-Löchern (530) entlang der Längsachse des Stoßdämpferrohrs (510), wobei jede Gruppe von Inline-Löchern (530) an verschiedenen Stellen um den Umfang des Stoßdämpferrohrs (510) positioniert ist; und

    mehrere sich verjüngende Bereiche (525, 535), die den mehreren Gruppen von Inline-Löchern (530) entsprechen, wobei jeder sich verjüngende Bereich (525, 535) an der Stelle einer entsprechenden Gruppe von Inline-Löchern (530) beginnt.


     
    5. Energieabsorptionsvorrichtung nach Anspruch 4, ferner umfassend:
    mehrere Strömungskanäle, die den mehreren Gruppen von Inline-Löchern (530) entsprechen, wobei jeder Strömungskanal an verschiedenen Stellen um die Innenwand des Außenzylinders herum ausgebildet ist.
     
    6. Energieabsorptionsvorrichtung (100), umfassend:

    ein Außenzylindergehäuseelement (105) mit einem distalen Ende (135), einem proximalen Ende und einer Innenwand;

    ein Stoßdämpferrohr (110; 310), das drehbar in dem Außenzylinder (105) befestigt ist und Folgendes aufweist:

    eine Innenoberfläche;

    eine Außenoberfläche;

    eine Gruppe von Inline-Löchern (330) entlang der Längsachse des Stoßdämpferrohrs (110; 310), wobei jedes Loch von der Innenoberfläche des Stoßdämpferrohrs zur Außenoberfläche des Stoßdämpferrohrs verläuft, damit Flüssigkeit hindurchtreten kann; und

    eine Gruppe von sich verjüngenden Nuten (320), die der Gruppe von Inline-Löchern (330) entsprechen, an der Außenoberfläche des Stoßdämpferrohrs (110; 310), wobei jede sich verjüngende Nut (320) an der Stelle eines entsprechenden Lochs (330) beginnt und eine erste Tiefe in die Außenoberfläche des Stoßdämpferrohrs aufweist, und an einer anderen Stelle um den Umfang des Stoßdämpferrohrs endet und eine zweite Tiefe in die Außenoberfläche des Stoßdämpferrohrs aufweist, wobei die zweite Tiefe der Nut geringer als die erste Tiefe der Nut ist, und sich die Tiefe der Nut von der ersten Tiefe zur zweiten Tiefe verjüngt, wobei sich die sich verjüngenden Nuten (320) im Wesentlichen um den Umfang des Stoßdämpferrohrs (110; 310) erstrecken;

    einen Kolben einschließlich einem Kopfabschnitt (115) und einem Stangenabschnitt, wobei der Kopfabschnitt (115) verschiebbar in dem Stoßdämpferrohr (110; 310) gehalten wird, und sich der Stangenabschnitt vom Kopfabschnitt (115) durch das proximale Ende des Außenzylinders erstreckt und konfiguriert ist, um mit einem in Bewegung befindlichen äußeren Körper in Eingriff zu stehen;

    einen Druckspeicher (625), der in dem Außenzylinder (105) enthalten ist, um Flüssigkeit aus dem Inneren des Stoßdämpferrohrs (110; 310) zu sammeln, wenn sich der Kopfabschnitt (115) des Kolbens in Richtung des distalen Endes (135) des Außenzylinders (105) bewegt; und

    einen Strömungskanal (140), der an der Innenwand des Außenzylinders (105) ausgebildet ist, sich im Wesentlichen entlang der Länge des Außenzylinders (105) erstreckt und in Fluidverbindung mit dem Druckspeicher (625) steht, wobei eine relative Drehung zwischen dem Stoßdämpferrohr (110; 310) und dem Außenzylinder (105) ändert, welche Teile der sich verjüngenden Nuten (320) den Strömungskanal (140) verbinden, um die Geschwindigkeit des Fluidstroms aus dem Stoßdämpferrohr (110; 310) durch die Gruppe von Inline-Löchern (330) durch die sich verjüngenden Nuten (320), durch den Strömungskanal (140) und in den Druckspeicher (625) einstellbar zu verändern, wobei die Drehung die Dämpfung der Energieabsorptionsvorrichtung ändert.


     
    7. Energieabsorptionsvorrichtung nach Anspruch 6, wobei die Breite des Strömungskanals (140) mindesten die Breite der Gruppe von Inline-Löchern (330) beträgt.
     
    8. Energieabsorptionsvorrichtung nach Anspruch 6, wobei die sich verjüngenden Nuten (320) an verschiedenen Stellen um den Umfang des Stoßwellenrohrs (110; 310) enden.
     
    9. Energieabsorptionsvorrichtung nach Anspruch 6, ferner umfassend:

    mehrere Gruppen von Inline-Löchern entlang der Längsachse des Stoßdämpferrohrs, wobei jede Gruppe von Inline-Löchern an verschiedenen Stellen um den Umfang des Stoßdämpferrohrs positioniert ist; und

    mehrere Gruppen von sich verjüngenden Nuten, die den mehreren Gruppen von Inline-Löchern entsprechen, wobei jede Gruppe von sich verjüngenden Nuten an den Stellen einer entsprechenden Gruppe von Inline-Löchern beginnt.


     
    10. Energieabsorptionsvorrichtung nach Anspruch 6, ferner umfassend:

    ein Zylinderende am proximalen Ende des Außenzylinders;

    eine Endnut (640) an der Außenoberfläche des Zylinderendes, wobei die Endnut (640) an einer ersten Stelle an der Außenoberfläche des Zylinderendes beginnt und eine erste Tiefe in der Außenoberfläche des Zylinderendes aufweist, und an einer zweiten Stelle um den Umfang des Zylinderendes endet und eine zweite Tiefe in der Außenoberfläche des Zylinderendes aufweist, wobei die zweite Tiefe der Endnut (640) geringer als die erste Tiefe der Endnut (640) ist und sich die Tiefe der Endnut (640) von der ersten Tiefe der Endnut zur zweiten Tiefe der Endnut (640) verjüngt;

    eine erste Öffnung (635) am Zylinderende, wobei die erste Öffnung (635) in Fluidverbindung mit dem Inneren des Stoßdämpferrohrs (610) und der Endnut (640) steht, und Flüssigkeit aus dem Inneren des Stoßdämpfers (610) zur Endnut (640) fließen lässt, wenn sich der Kopfabschnitt (615) des Kolbens zum proximalen Ende des äußeren Zylinders hin bewegt;

    eine zweite Öffnung (645) in dem Stoßdämpferrohr (610), wobei die zweite Öffnung (645) in Fluidverbindung mit der Endnut (640) und dem Druckspeicher (625) steht, und Flüssigkeit aus der Endnut (640) zum Druckspeicher (625) fließen lässt, wenn sich der Kopfabschnitt (615) des Kolbens in Richtung des proximalen Endes des Außenzylinders bewegt, wobei die relative Drehung zwischen dem Stoßdämpferrohr (610) und dem Außenzylinder ändert, welcher Teil der Endnut (640) mit der zweiten Öffnung (645) verbunden ist, zum einstellbaren Ändern der Fluidströmungsrate aus dem Stoßdämpferrohr (610) durch die erste Öffnung (635), durch die Endnut (640), durch die zweite Öffnung (645) und in den Druckspeicher (625), wobei die Drehung die Dämpfung der Energieabsorptionsvorrichtung ändert.


     
    11. Energieabsorptionsvorrichtung (100), umfassend:

    ein Außenzylindergehäuseelement (205) mit einem distalen Ende (135), einem proximalen Ende und einer Innenwand;

    ein Stoßdämpferrohr (210), das drehbar in dem Außenzylinder (205) befestigt ist und eine Innenoberfläche, eine Außenoberfläche und mehrere Gruppen von Inline-Löchern (245) aufweist, die entlang der Längsachse des Stoßdämpferrohrs angeordnet sind, wobei jede Gruppe von Löchern (245) an verschiedenen Stellen um den Umfang des Stoßdämpferrohrs (210) positioniert ist, wobei jedes Loch (245) von der Innenoberfläche des Stoßdämpferrohrs (210) zur Außenoberfläche des Stoßdämpferrohrs (210) verläuft, damit Flüssigkeit hindurchfließen kann;

    einen Kolben einschließlich einem Kopfabschnitt (115) und einem Stangenabschnitt, wobei der Kopfabschnitt (115) verschiebbar in dem Stoßdämpferrohr (210) gehalten wird und der Stangenabschnitt sich vom Kopfabschnitt (115) durch das proximale Ende des Außenzylinders (205) erstreckt und konfiguriert ist, um mit einem in Bewegung befindlichen äußeren Körper in Eingriff zu stehen;

    einen Druckspeicher (625), der in dem Außenzylinder (205) enthalten ist, um Flüssigkeit aus dem Inneren des Stoßdämpferrohrs (210) zu sammeln, wenn sich der Kopfabschnitt (115) des Kolbens in Richtung des distalen Endes (135) des Außenzylinders bewegt; und

    einen Strömungskanal (240), der an der Innenwand des Außenzylinders (205) ausgebildet ist und sich im Wesentlichen entlang der Länge des Außenzylinders (205) erstreckt und in Fluidverbindung mit dem Druckspeicher (625) steht, wobei der Strömungskanal (240) eine Breite aufweist, die konfiguriert ist, um sich mit einer Gruppe der mehreren Gruppen von Inline-Löchern (245) auszurichten, wobei die relative Drehung zwischen dem Stoßdämpferrohr (210) und dem Außenzylinder (205) ändert, welches Loch in einer Gruppe von Inline-Löchern (245) mit dem Strömungskanal (240) ausgerichtet ist, um wählbar die Fluidströmungsrate aus dem Stoßdämpferrohr (210) durch die mit dem Strömungskanal (240) ausgerichteten Inline-Löcher (245), durch den Strömungskanal (240) und in den Druckspeicher (625) zu ändern, wobei die Rotation die Dämpfung der Energieabsorptionsvorrichtung ändert.


     
    12. Energieabsorptionsvorrichtung nach Anspruch 11, wobei die mehreren Gruppen von Inline-Löchern (245) in einem spiralförmigen Muster um den Umfang des Stoßdämpferrohrs (210) angeordnet sind.
     
    13. Energieabsorptionsvorrichtung nach Anspruch 11, wobei jede Gruppe von Inline-Löchern (245) konfiguriert ist, eine andere Art von Dämpfung bereitzustellen, ausgewählt aus Rechteckwellendämpfung, Dashpot-Dämpfung, progressiver Dämpfung und selbstkompensierender Dämpfung.
     


    Revendications

    1. Dispositif d'absorption d'énergie (100) comprenant :

    un élément de logement de vérin externe (105) comportant une extrémité distale (135), une extrémité proximale et une paroi intérieure ;

    un tube à choc (110 ; 510) fixé en rotation à l'intérieur du vérin externe (105) et comportant :

    une surface intérieure ;

    une surface extérieure ;

    un groupe de trous en ligne (530) le long de l'axe long du tube à choc (110 ; 510), chaque trou passant de la surface intérieure du tube à choc à la surface extérieure du tube à choc pour permettre au fluide de passer à travers celui-ci ; et

    un patch effilé (520, 525, 535) sur la surface extérieure du tube à choc (110 ; 510), la longueur du patch effilé (520, 525, 535) le long de l'axe long du tube à choc (510) couvre le groupe de trous en ligne (530), la partie effilée commençant à l'emplacement du groupe de trous en ligne (530) et présentant une première profondeur (522) dans la surface extérieure du tube à choc (110 ; 510), et se terminant à un autre emplacement autour de la circonférence du tube à choc et présentant une seconde profondeur (524) dans la surface extérieure du tube à choc (110 ; 510), la seconde profondeur (524) étant inférieure à la première profondeur (522), et la profondeur du patch effilé s'effilant de la première profondeur (522) à la seconde profondeur (524) ;

    un piston comprenant une partie de tête (115) et une partie de tige, la partie de tête (115) étant retenue de manière coulissante à l'intérieur du tube à choc (110 ; 510), et la partie de tige s'étendant de la partie de tête (115) à travers l'extrémité proximale du vérin externe et étant conçue pour venir en prise avec un corps externe en mouvement ;

    un accumulateur (625), contenu à l'intérieur du vérin externe (105), pour recueillir le fluide de l'intérieur du tube à choc (110 ; 510) lorsque la partie de tête (115) du piston se déplace vers l'extrémité distale (135) du vérin externe (105) ; et

    un canal d'écoulement (140) réalisé sur la paroi intérieure du vérin externe (105), s'étendant sensiblement le long de la longueur du vérin externe (105), et en communication fluidique avec l'accumulateur (625), une rotation relative entre le tube à choc (110 ; 510) et le vérin externe (105) changeant la partie du patch effilé (520, 525, 535) qui sert d'interface avec le canal d'écoulement (140) pour modifier de manière réglable le débit d'écoulement du fluide hors du tube de choc (110 ; 510), à travers le groupe de trous en ligne (530), à travers le patch effilé (520, 525, 535), à travers le canal d'écoulement (140), et dans l'accumulateur (625), ladite rotation changeant l'amortissement du dispositif d'absorption d'énergie (100).


     
    2. Dispositif d'absorption d'énergie selon la revendication 1, dans lequel le patch effilé (520) s'étend sensiblement autour de la circonférence du tube à choc (510).
     
    3. Dispositif d'absorption d'énergie selon la revendication 1, dans lequel la largeur du canal d'écoulement (140) est au moins la largeur du groupe de trous en ligne (530).
     
    4. Dispositif d'absorption d'énergie selon la revendication 1, comprenant en outre :

    plusieurs groupes de trous en ligne (530) le long de l'axe long du tube à choc (510), chaque groupe de trous en ligne (530) étant positionné à différents emplacements autour de la circonférence du tube à choc (510) ; et

    plusieurs patchs effilés (525, 535) correspondant aux multiples groupes de trous en ligne (530), chaque patch effilé (525, 535) commençant à l'emplacement d'un groupe correspondant de trous en ligne (530).


     
    5. Dispositif d'absorption d'énergie selon la revendication 4, comprenant en outre :
    de multiples canaux d'écoulement correspondant aux multiples groupes de trous en ligne (530), chaque canal d'écoulement étant réalisé à différents emplacements autour de la paroi intérieure du vérin externe.
     
    6. Dispositif d'absorption d'énergie (100) comprenant :

    un élément de logement de vérin externe (105) comportant une extrémité distale (135), une extrémité proximale et une paroi intérieure ;

    un tube à choc (110 ; 310) fixé en rotation à l'intérieur du vérin externe (105) et comportant :

    une surface intérieure ;

    une surface extérieure ;

    un groupe de trous en ligne (330) le long de l'axe long du tube à choc (110 ; 310), chaque trou passant de la surface intérieure du tube à choc à la surface extérieure du tube à choc pour permettre au fluide de passer à travers celui-ci ; et

    un groupe de rainures effilées (320), correspondant au groupe de trous en ligne (330), sur la surface extérieure du tube à choc (110 ; 310), chaque rainure effilée (320) commençant à l'emplacement d'un trou correspondant (330) et présentant une première profondeur dans la surface extérieure du tube à choc, et se terminant à un autre emplacement autour de la circonférence du tube à choc et présentant une seconde profondeur dans la surface extérieure du tube à choc, la seconde profondeur de la rainure étant inférieure à la première profondeur de la rainure, et la profondeur de la rainure s'effilant de la première profondeur à la seconde profondeur, les rainures effilées (320) s'étendant sensiblement autour de la circonférence du tube à choc (110 ; 310) ;

    un piston comprenant une partie de tête (115) et une partie de tige, la partie de tête (115) étant retenue de manière coulissante à l'intérieur du tube à choc (110 ; 310), et la partie de tige s'étendant de la partie de tête (115) à travers l'extrémité proximale du vérin externe et étant conçue pour venir en prise avec un corps externe en mouvement ;

    un accumulateur (625), contenu à l'intérieur du vérin externe (105), pour recueillir le fluide de l'intérieur du tube à choc (110 ; 310) lorsque la partie de tête (115) du piston se déplace vers l'extrémité distale (135) du vérin externe (105) ; et

    un canal d'écoulement (140) réalisé sur la paroi intérieure du vérin externe (105), s'étendant sensiblement le long de la longueur du vérin externe (105), et en communication fluidique avec l'accumulateur (625), une rotation relative entre le tube à choc (110 ; 310) et le vérin externe (105) changeant les parties des rainures effilées (320) qui servent d'interface avec le canal d'écoulement (140) pour modifier de manière réglable le débit d'écoulement du fluide hors du tube de choc (110 ; 310), à travers le groupe de trous en ligne (330), à travers la rainure effilée (320), à travers le canal d'écoulement (140), et dans l'accumulateur (625), ladite rotation changeant l'amortissement du dispositif d'absorption d'énergie.


     
    7. Dispositif d'absorption d'énergie selon la revendication 6, dans lequel la largeur du canal d'écoulement (140) est au moins la largeur du groupe de trous en ligne (330).
     
    8. Dispositif d'absorption d'énergie selon la revendication 6, dans lequel les rainures effilées (320) se terminent à différents emplacements autour de la circonférence du tube à choc (110 ; 310).
     
    9. Dispositif d'absorption d'énergie selon la revendication 6, comprenant en outre :

    plusieurs groupes de trous en ligne, chaque groupe de trous en ligne étant positionné à différents emplacements autour de la circonférence du tube à choc ; et

    plusieurs groupes de rainures effilées correspondant aux multiples groupes de trous en ligne, chaque groupe de rainures effilées commençant aux emplacements d'un groupe correspondant de trous en ligne.


     
    10. Dispositif d'absorption d'énergie selon la revendication 6, comprenant en outre :

    un côté vérin à l'extrémité proximale du vérin externe ;

    une rainure d'extrémité (640) sur la surface extérieure du côté vérin, la rainure d'extrémité (640) commençant à un premier emplacement sur la surface extérieure du côté vérin et présentant une première profondeur dans la surface extérieure du côté vérin, et se terminant à un second emplacement autour de la circonférence du côté vérin et présentant une seconde profondeur dans la surface extérieure du côté vérin, la seconde profondeur de la rainure d'extrémité (640) étant inférieure à la première profondeur de la rainure d'extrémité (640) et la profondeur de la rainure d'extrémité (640) s'effilant de la première profondeur de la rainure d'extrémité à la seconde profondeur de la rainure d'extrémité (640) ;

    un premier orifice (635) au côté vérin, le premier orifice (635) étant en communication fluidique avec l'intérieur du tube à choc (610) et la rainure d'extrémité (640), et permettant au fluide de s'écouler depuis l'intérieur du tube à choc (610) vers la rainure d'extrémité (640) lorsque la partie de tête (615) du piston se déplace vers l'extrémité proximale du vérin externe ;

    un second orifice (645) dans le tube à choc (610), le second orifice (645) étant en communication fluidique avec la rainure d'extrémité (640) et l'accumulateur (625), et permettant au fluide de s'écouler de la rainure d'extrémité (640) à l'accumulateur (625) lorsque la partie de tête (615) du piston se déplace vers l'extrémité proximale du vérin externe, la rotation relative entre le tube à choc (610) et le vérin externe changeant la partie de la rainure d'extrémité (640) qui sert d'interface avec le second orifice (645) pour modifier de manière réglable le débit d'écoulement de fluide hors du tube à choc (610), à travers le premier orifice (635), à travers la rainure d'extrémité (640), à travers le second orifice (645), et dans l'accumulateur (625), ladite rotation changeant l'amortissement du dispositif d'absorption d'énergie.


     
    11. Dispositif d'absorption d'énergie (100) comprenant :

    un élément de logement de vérin externe (205) comportant un côté distal (135), un côté proximal et une paroi intérieure ;

    un tube à choc (210) fixé en rotation à l'intérieur du vérin externe (205) et comportant une surface intérieure, une surface extérieure et de multiples groupes de trous en ligne (245) disposés le long de l'axe long du tube à choc, chaque groupe de trous (245) étant positionné à différents emplacements autour de la circonférence du tube à choc (210), chaque trou (245) passant de la surface intérieure du tube à choc (210) à la surface extérieure du tube à choc (210) pour permettre au fluide de passer à travers celui-ci ;

    un piston comprenant une partie de tête (115) et une partie de tige, la partie de tête (115) étant retenue de manière coulissante à l'intérieur du tube à choc (210), et la partie de tige s'étendant de la partie de tête (115) à travers le côté proximal du vérin externe (205) et étant conçue pour venir en prise avec un corps externe en mouvement ;

    un accumulateur (625), contenu à l'intérieur du vérin externe (205), pour recueillir le fluide de l'intérieur du tube à choc (210) lorsque la partie de tête (115) du piston se déplace vers le côté distal (135) du vérin externe ; et

    un canal d'écoulement (240) réalisé sur la paroi intérieure du vérin externe (205), s'étendant sensiblement le long de la longueur du vérin externe (205), et en communication fluidique avec l'accumulateur (625), le canal d'écoulement (240) ayant une largeur conçue pour s'aligner avec un groupe des multiples groupes de trous en ligne (245), la rotation relative entre le tube à choc (210) et le vérin externe (205) modifiant le trou dans un groupe de trous en ligne (245) qui est aligné avec le canal d'écoulement (240) pour modifier de manière sélective le débit d'écoulement de fluide hors du tube à choc (210), à travers les trous en ligne (245) alignés avec le canal d'écoulement (240), à travers le canal d'écoulement (240), et dans l'accumulateur (625), ladite rotation changeant l'amortissement du dispositif d'absorption d'énergie.


     
    12. Dispositif d'absorption d'énergie selon la revendication 11, dans lequel les multiples groupes de trous en ligne (245) sont disposés en spirale autour de la circonférence du tube à choc (210).
     
    13. Dispositif d'absorption d'énergie selon la revendication 11, dans lequel chaque groupe de trous en ligne (245) est conçu pour fournir un type d'amortissement différent choisi parmi l'amortissement à ondes carrées, l'amortissement à friction fluide, l'amortissement progressif et l'amortissement à auto-compensation.
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description